2.656

2021影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
显示方式:
目录
目录
2023, 49(1).  
[封面浏览] [PDF 8012KB](11)
综述
视觉语言导航研究进展
司马双霖, 黄岩, 何科技, 安东, 袁辉, 王亮
2023, 49(1): 1-14.   doi: 10.16383/j.aas.c210352
[摘要](253) [HTML全文](199) [PDF 1310KB](118)
摘要:
视觉语言导航, 即在一个未知环境中, 智能体从一个起始位置出发, 结合指令和周围视觉环境进行分析, 并动态响应生成一系列动作, 最终导航到目标位置. 视觉语言导航有着广泛的应用前景, 该任务近年来在多模态研究领域受到了广泛关注. 不同于视觉问答和图像描述生成等传统多模态任务, 视觉语言导航在多模态融合和推理方面, 更具有挑战性. 然而由于传统模仿学习的缺陷和数据稀缺的现象, 模型面临着泛化能力不足的问题. 系统地回顾了视觉语言导航的研究进展, 首先对于视觉语言导航的数据集和基础模型进行简要介绍; 然后全面地介绍视觉语言导航任务中的代表性模型方法, 包括数据增强、搜索策略、训练方法和动作空间四个方面; 最后根据不同数据集下的实验, 分析比较模型的优势和不足, 并对未来可能的研究方向进行了展望.
深度对比学习综述
张重生, 陈杰, 李岐龙, 邓斌权, 王杰, 陈承功
2023, 49(1): 15-39.   doi: 10.16383/j.aas.c220421
[摘要](1068) [HTML全文](269) [PDF 2499KB](335)
摘要:
在深度学习中, 如何利用大量、易获取的无标注数据增强神经网络模型的特征表达能力, 是一个具有重要意义的研究问题, 而对比学习是解决该问题的有效方法之一, 近年来得到了学术界的广泛关注, 涌现出一大批新的研究方法和成果. 本文综合考察对比学习近年的发展和进步, 提出一种新的面向对比学习的归类方法, 该方法将现有对比学习方法归纳为5类, 包括: 1) 样本对构造; 2) 图像增广; 3) 网络架构; 4) 损失函数; 5) 应用. 基于提出的归类方法, 对现有对比研究成果进行系统综述, 并评述代表性方法的技术特点和区别, 系统对比分析现有对比学习方法在不同基准数据集上的性能表现. 本文还将梳理对比学习的学术发展史, 并探讨对比学习与自监督学习、度量学习的区别和联系. 最后, 本文将讨论对比学习的现存挑战, 并展望未来发展方向和趋势.
论文与报告
基于一步张量学习的多视图子空间聚类
赵晓佳, 徐婷婷, 陈勇勇, 徐勇
2023, 49(1): 40-53.   doi: 10.16383/j.aas.c220138
[摘要](154) [HTML全文](55) [PDF 2130KB](52)
摘要:
现有多视图子空间聚类算法通常先进行张量表示学习, 进而将学习到的表示张量融合为统一的亲和度矩阵. 然而, 因其独立地学习表示张量和亲和度矩阵, 忽略了两者之间的高度相关性. 为了解决此问题, 提出一种基于一步张量学习的多视图子空间聚类方法, 联合学习表示张量和亲和度矩阵. 具体地, 该方法对表示张量施加低秩张量约束, 以挖掘视图的高阶相关性. 利用自适应最近邻法对亲和度矩阵进行灵活重建. 使用交替方向乘子法对模型进行优化求解, 通过对真实多视图数据的实验表明, 较于最新的多视图聚类方法, 提出的算法具有更好的聚类准确性.
基于自适应噪声的最大熵进化强化学习方法
王君逸, 王志, 李华雄, 陈春林
2023, 49(1): 54-66.   doi: 10.16383/j.aas.c220103
[摘要](289) [HTML全文](195) [PDF 1910KB](79)
摘要:
近年来, 进化策略由于其无梯度优化和高并行化效率等优点, 在深度强化学习领域得到了广泛的应用. 然而, 传统基于进化策略的深度强化学习方法存在着学习速度慢、容易收敛到局部最优和鲁棒性较弱等问题. 为此, 提出了一种基于自适应噪声的最大熵进化强化学习方法. 首先, 引入了一种进化策略的改进办法, 在“优胜”的基础上加强了“劣汰”, 从而提高进化强化学习的收敛速度; 其次, 在目标函数中引入了策略最大熵正则项, 来保证策略的随机性进而鼓励智能体对新策略的探索; 最后, 提出了自适应噪声控制的方式, 根据当前进化情形智能化调整进化策略的搜索范围, 进而减少对先验知识的依赖并提升算法的鲁棒性. 实验结果表明, 该方法较之传统方法在学习速度、最优性收敛和鲁棒性上有比较明显的提升.
基于多维度特征融合的云工作流任务执行时间预测方法
李慧芳, 黄姜杭, 徐光浩, 夏元清
2023, 49(1): 67-78.   doi: 10.16383/j.aas.c210123
[摘要](530) [HTML全文](463) [PDF 1005KB](51)
摘要:
任务执行时间估计是云数据中心环境下工作流调度的前提. 针对现有工作流任务执行时间预测方法缺乏类别型和数值型数据特征的有效提取问题, 提出了基于多维度特征融合的预测方法. 首先, 通过构建具有注意力机制的堆叠残差循环网络, 将类别型数据从高维稀疏的特征空间映射到低维稠密的特征空间, 以增强类别型数据的解析能力, 有效提取类别型特征; 其次, 采用极限梯度提升算法对数值型数据进行离散化编码, 通过对稠密空间的输入向量进行稀疏化处理, 提高了数值型特征的非线性表达能力; 在此基础上, 设计多维异质特征融合策略, 将所提取的类别型、数值型特征与样本的原始输入特征进行融合, 建立基于多维融合特征的预测模型, 实现了云工作流任务执行时间的精准预测; 最后, 在真实云数据中心集群数据集上进行了仿真实验. 实验结果表明, 相对于已有的基准算法, 该方法具有较高的预测精度, 可用于大数据驱动的云工作流任务执行时间预测.
基于深度学习LDAMP网络的量子状态估计
林文瑞, 丛爽
2023, 49(1): 79-90.   doi: 10.16383/j.aas.c210156
[摘要](913) [HTML全文](327) [PDF 3887KB](64)
摘要:
设计出一种基于学习去噪的近似消息传递(Learned denoising-based approximate message passing, LDAMP)的深度学习网络, 将其应用于量子状态的估计. 该网络将去噪卷积神经网络与基于去噪的近似消息传递算法相结合, 利用量子系统输出的测量值作为网络输入, 通过设计出的带有去噪卷积神经网络的LDAMP网络重构出原始密度矩阵, 从大量的训练样本中提取各种不同类型密度矩阵的结构特征, 来实现对量子本征态、叠加态以及混合态的估计. 在对4个量子位的量子态估计的具体实例中, 分别在无和有测量噪声干扰情况下, 对基于LDAMP网络的量子态估计进行了仿真实验性能研究, 并与基于压缩感知的交替方向乘子法和三维块匹配近似消息传递等算法进行估计性能对比研究. 数值仿真实验结果表明, 所设计的LDAMP网络可以在较少的测量的采样率下, 同时完成对4种量子态的更高精度估计.
未知非线性零和博弈最优跟踪的事件触发控制设计
王鼎, 胡凌治, 赵明明, 哈明鸣, 乔俊飞
2023, 49(1): 91-101.   doi: 10.16383/j.aas.c220378
[摘要](184) [HTML全文](56) [PDF 1516KB](68)
摘要:
设计了一种基于事件的迭代自适应评判算法, 用于解决一类非仿射系统的零和博弈最优跟踪控制问题. 通过数值求解方法得到参考轨迹的稳定控制, 进而将未知非线性系统的零和博弈最优跟踪控制问题转化为误差系统的最优调节问题. 为了保证闭环系统在具有良好控制性能的基础上有效地提高资源利用率, 引入一个合适的事件触发条件来获得阶段性更新的跟踪策略对. 然后, 根据设计的触发条件, 采用Lyapunov方法证明误差系统的渐近稳定性. 接着, 通过构建四个神经网络, 来促进所提算法的实现. 为了提高目标轨迹对应稳定控制的精度, 采用模型网络直接逼近未知系统函数而不是误差动态系统. 构建评判网络、执行网络和扰动网络用于近似迭代代价函数和迭代跟踪策略对. 最后, 通过两个仿真实例, 验证该控制方法的可行性和有效性.
基于拓扑一致性对抗互学习的知识蒸馏
赖轩, 曲延云, 谢源, 裴玉龙
2023, 49(1): 102-110.   doi: 10.16383/j.aas.c200665
[摘要](748) [HTML全文](631) [PDF 828KB](71)
摘要:
针对基于互学习的知识蒸馏方法中存在模型只关注教师网络和学生网络的分布差异, 而没有考虑其他的约束条件, 只关注了结果导向的监督, 而缺少过程导向监督的不足, 提出了一种拓扑一致性指导的对抗互学习知识蒸馏方法(Topology-guided adversarial deep mutual learning, TADML). 该方法将教师网络和学生网络同时训练, 网络之间相互指导学习, 不仅采用网络输出的类分布之间的差异, 还设计了网络中间特征的拓扑性差异度量. 训练过程采用对抗训练, 进一步提高教师网络和学生网络的判别性. 在分类数据集CIFAR10、CIFAR100和Tiny-ImageNet及行人重识别数据集Market1501上的实验结果表明了TADML的有效性, TADML取得了同类模型压缩方法中最好的效果.
采用神经网络的双吊车自适应防摆控制
文天赐, 方勇纯, 卢彪
2023, 49(1): 111-121.   doi: 10.16383/j.aas.c211062
[摘要](57) [HTML全文](36) [PDF 1925KB](25)
摘要:
由于工业实践对运输能力提出了更高的要求, 双吊车的应用日益广泛. 然而其动力学模型非线性很强, 因此控制器结构十分复杂. 另一方面, 大型货物的摆动很难抑制, 这给双吊车的自动化带来了巨大的挑战. 为了处理以上问题, 首先, 采用神经网络准确地估计了系统的模型, 在此基础上提出了一种自适应防摆控制方法, 很好地实现了双吊车系统的防摆控制; 然后, 采用李雅普诺夫方法, 严格地证明了系统在平衡点的渐近稳定性; 最后, 通过大量的实验结果, 验证了该方法具有良好的性能.
基于单字符注意力的全品类鲁棒车牌识别
穆世义, 徐树公
2023, 49(1): 122-134.   doi: 10.16383/j.aas.c211210
[摘要](230) [HTML全文](63) [PDF 4294KB](46)
摘要:
复杂场景下的高精度车牌识别仍然存在着许多挑战, 除了光照、分辨率不可控和运动模糊等因素导致的车牌图像质量低之外, 还包括车牌品类多样产生的行数不一和字数不一等困难, 以及因拍摄角度多样出现的大倾角等问题. 针对这些挑战, 提出了一种基于单字符注意力的场景鲁棒的高精度车牌识别算法, 在无单字符位置标签信息的情况下, 使用注意力机制对车牌全局特征图进行单字符级特征分割, 以处理多品类车牌和倾斜车牌中的二维字符布局问题. 另外, 该算法通过使用共享参数的多分支结构代替现有算法的串行解码结构, 降低了分类头参数量并实现了并行化推理. 实验结果表明, 该算法在公开车牌数据集上实现了超越现有算法的精度, 同时具有较快的识别速度.
弱对齐的跨光谱人脸检测
闫梦凯, 钱建军, 杨健
2023, 49(1): 135-147.   doi: 10.16383/j.aas.c210058
[摘要](769) [HTML全文](186) [PDF 1399KB](55)
摘要:
跨光谱人脸检测在活体人脸识别、体温筛查等领域有着重要的应用价值. 众所周知, 可见光人脸易于检测, 然而红外人脸难于检测, 因此借助可见光图像的人脸检测结果进而完成红外人脸检测是一种有效的解决方案. 但是跨光谱图像之间不可避免的存在偏差, 导致检测精度不高. 为了解决这一问题, 提出了一种弱对齐跨光谱图像的人脸检测算法, 该方法基于跨光谱图像之间的偏差设计了候选框布置策略, 并在此基础上提出了跨光谱特征表示方法用于选取最优候选框. 此外, 本文还构建了一个跨光谱人脸数据集. 最后, 在跨光谱人脸数据集和OTCBVS人脸数据集上的实验结果证明, 该方法能够较好地完成红外图像人脸检测任务.
考虑全局和局部帕累托前沿的多模态多目标优化算法
李文桦, 明梦君, 张涛, 王锐, 黄生俊, 王凌
2023, 49(1): 148-160.   doi: 10.16383/j.aas.c220476
[摘要](232) [HTML全文](215) [PDF 7625KB](279)
摘要:
多模态多目标优化问题 (Multimodal multi-objective optimization problems, MMOPs)是指具有多个全局或局部Pareto解集(Pareto solution sets, PSs)的多目标优化问题 (Multi-objective optimization problems, MOPs). 在这类问题中, Pareto前沿(Pareto front, PF)上相距很近的目标向量, 可能对应于决策空间中相距较远的不同解. 在实际应用中全局或局部最优解的缺失可能导致决策者缺乏对问题的整体认识, 造成不必要的困难或经济损失. 大部分多模态多目标进化算法 (Multimodal multi-objective evolutionary algorithms, MMEAs) 仅关注获取尽可能多的全局最优解集, 而忽略了对局部最优解集的搜索. 为了找到局部最优解集并提高多模态优化算法的性能, 首先提出了一种局部收敛性指标 (\begin{document}$ I_{LC}$\end{document}), 并设计了一种基于该指标和改进种群拥挤度的环境选择策略. 基于此提出了一种用于获取全局和局部最优解集的多模态多目标优化算法. 经实验验证, 该算法在对比的代表性算法中性能较好.
基于多层次特征融合的图像超分辨率重建
李金新, 黄志勇, 李文斌, 周登文
2023, 49(1): 161-171.   doi: 10.16383/j.aas.c200585
[摘要](1015) [HTML全文](298) [PDF 3425KB](94)
摘要:
深度卷积神经网络显著改进了单图像超分辨率的性能. 更深的网络往往能获得更好的性能. 但是, 加深网络会导致参数量急剧增加, 限制了它在资源受限设备上的应用, 比如智能手机. 提出了一个融合多层次特征的轻量级单图像超分辨率网络, 主要构件是双层嵌套残差块. 为了更好地提取特征, 减少参数量, 每个残差块采用对称结构: 先两次扩张, 然后两次压缩通道数. 在残差块中, 通过添加自相关权重单元, 加权融合不同通道的特征信息. 实验证明, 该方法显著优于当前同类方法.
复杂工业过程非串级双速率组合分散运行优化控制
赵建国, 杨春雨
2023, 49(1): 172-184.   doi: 10.16383/j.aas.c210897
[摘要](121) [HTML全文](36) [PDF 1418KB](36)
摘要:
复杂工业过程具有模型维数高、多时间尺度耦合、动态不确定性等特点, 其运行优化控制(Operational optimal control, OOC)一直是控制领域的研究难点与热点. 本文聚焦一类由多个快变且互联的设备单元与慢变且模型未知的运行过程串联组成的工业过程, 提出一种数据和模型混合驱动的非串级双速率组合分散运行优化控制方法. 该方法通过奇异摄动理论, 将非串级双速率运行优化问题描述为异步采样的慢子系统最优设定值跟踪和快子系统最优调节控制. 利用工业运行数据, 采用不依赖系统动态的Q-学习算法设计慢子系统最优跟踪策略, 克服运行过程模型难以建立的情形; 针对快子系统, 设计基于模型的分散次优控制策略, 并给出收敛因子的下界, 解决设备层互联项对系统稳定性的影响. 通过浮选过程仿真实验验证了所提控制方法的有效性.
基于流模型的缺失数据生成方法在剩余寿命预测中的应用
张博玮, 郑建飞, 胡昌华, 裴洪, 董青
2023, 49(1): 185-196.   doi: 10.16383/j.aas.c220219
[摘要](100) [HTML全文](49) [PDF 2065KB](46)
摘要:
针对缺失数据生成模型精度低和训练速度慢的问题, 本文基于流模型框架提出了一种改进非线性独立成分估计(Nonlinear independent components estimation, NICE)的缺失时间序列生成方法. 该方法依靠流模型框架生成模型精度高、训练过程速度快的优势, 并结合粒子群优化算法(Particle swarm optimization, PSO) 优化NICE生成网络采样的退火参数, 训练学习监测数据的真实分布, 从而实现对数据缺失部分的最优填补. 为进一步拓宽所提方法的应用范围, 利用基于流模型的缺失数据生成方法得到的生成数据, 通过建立融合注意力机制的双向长短时记忆网络(Bidirectional long short-term memory with attention, Bi-LSTM-Att)的退化设备预测模型, 实现设备剩余寿命的准确预测. 最后, 通过锂电池退化数据的实例研究, 验证了该方法的有效性和潜在应用价值.
基于多尺度变形卷积的特征金字塔光流计算方法
范兵兵, 葛利跃, 张聪炫, 李兵, 冯诚, 陈震
2023, 49(1): 197-209.   doi: 10.16383/j.aas.c220142
[摘要](139) [HTML全文](45) [PDF 4021KB](43)
摘要:
针对现有深度学习光流计算方法的运动边缘模糊问题, 提出了一种基于多尺度变形卷积的特征金字塔光流计算方法. 首先, 构造基于多尺度变形卷积的特征提取模型, 显著提高图像边缘区域特征提取的准确性; 然后, 将多尺度变形卷积特征提取模型与特征金字塔光流计算网络耦合, 提出一种基于多尺度变形卷积的特征金字塔光流计算模型; 最后, 设计一种结合图像与运动边缘约束的混合损失函数, 通过指导模型学习更加精准的边缘信息, 克服了光流计算运动边缘模糊问题. 分别采用 MPI-Sintel 和 KITTI2015 测试图像集对该方法与代表性的深度学习光流计算方法进行综合对比分析. 实验结果表明, 该方法具有更高的光流计算精度, 有效解决了光流计算的边缘模糊问题.
多率量测下随机跳变系统迁移交互多模型估计
高爽, 栾小丽, 赵顺毅, 刘飞
2023, 49(1): 210-218.   doi: 10.16383/j.aas.c220011
[摘要](60) [HTML全文](13) [PDF 1017KB](15)
摘要:
实际工业过程中, 量测数据除了在线仪表采集的快速率数据, 还有离线化验等慢速率辅助量测数据. 为了更好地利用离线化验数据, 增加在线估计的精度, 针对随机跳变系统, 引入迁移学习思想, 提出迁移交互多模型估计 (Transfer interacting multiple model state estimator, IMM-TF) 新策略. 首先, 将离线化验数据的边缘分布作为可以迁移的知识, 迁移到贝叶斯后验分布, 实现辅助量测数据的充分利用. 其次, 利用KL (Kullback-Leibler) 散度度量知识迁移前后任务间的差异性, 求解最优的贝叶斯迁移估计器. 同时, 结合慢速率量测, 利用平滑策略获取待迁移的估计值, 解决多率量测下的迁移估计难题. 然后, 利用影响力函数构建辅助量测数据与估计性能之间的解析关系, 从而对迁移效果进行定量评价. 最后, 通过在目标跟踪实例中的应用, 表明所提方法的有效性及优越性.
自监督学习的单幅透射图像恢复
徐金东, 马咏莉, 梁宗宝, 倪梦莹
2023, 49(1): 219-228.   doi: 10.16383/j.aas.c220165
[摘要](125) [HTML全文](27) [PDF 4878KB](23)
摘要:
现有基于学习的单幅透射图像恢复方法常需要大量成对的标签数据来训练模型, 因缺乏成对图像集的监督约束, 致使透射图像恢复效果欠佳, 限制了其实用性. 提出了一种基于自监督学习的单幅透射图像恢复方法, 利用循环一致性生成对抗网络的循环结构和约束转移学习能力实现非成对图像的模型训练, 通过设计自学习模块, 从大规模的无监督数据中挖掘自身的监督信息对网络进行训练, 以此形成有效的从浅层到深层的特征提取, 提高透射图像正面内容的纹理、边缘等细节信息恢复质量, 实现单幅图像的透射去除. 实验结果表明, 该方法在合成图像数据集、公共图像数据集以及真实图像数据集上都取得了较好的透射图像恢复结果.
本刊经同行评议拟录用的文章,目前在编校阶段,尚未确定卷期及页码,已有DOI。
显示方式:
基于单声矢量传声器虚拟扩展的多机动声目标跟踪算法
张君, 鲍明, 赵静, 陈志菲, 杨建华
当前状态:  doi: 10.16383/j.aas.c220172
[摘要](0) [HTML全文](0)
摘要:
为解决单声矢量传声器(Acoustic vector sensor, AVS)可跟踪声目标数目少、跟踪性能差的问题, 提出了基于AVS虚拟扩展的多机动声目标跟踪算法. 首先, 引入高阶累积量预处理过程并建立高阶似然函数, 不仅能够抑制高斯噪声、提高估计精度, 还可通过AVS的虚拟扩展增加可跟踪目标数目. 然后, 在边缘化\begin{document}$\delta$\end{document}广义标签多伯努利(Marginalized \begin{document}$\delta$\end{document}-generalized label multi-bernoulli, M\begin{document}$\delta$\end{document}-GLMB)滤波框架下, 提出了基于累积量的增广运动模型状态的M\begin{document}$\delta$\end{document}-GLMB(Cumulants-based augumented motion model state M\begin{document}$\delta$\end{document}-GLMB, Cum-AMMS-GLMB)算法. 算法引入多种运动模型, 并将表征不同模型的索引标号作为目标状态的增广参数, 通过各模型间的加权混合获取优于单一运动模型的跟踪性能. 除此之外, 算法的序贯蒙特卡洛(Sequential monte carlo, SMC)实现过程中, 依据高阶预处理获得的归一化空间谱拟合检测概率函数, 抑制了杂波向可用粒子扩展, 进一步增强了高似然区域的粒子. 最后, 推导了AVS目标跟踪的后验克拉美罗下界(Posterior cram\begin{document}$\acute{e}$\end{document}r-rao lower bound, PCRLB), 并通过仿真实验验证了算法的量测噪声抑制能力和声目标跟踪性能.
路网约束下异构机器人系统路径规划方法
陈梦清, 陈洋, 陈志环, 赵新刚
当前状态:  doi: 10.16383/j.aas.c200806
[摘要](839) [HTML全文](144)
摘要:
由无人机(Unmanned aerial vehicles, UAV)和地面移动机器人组成的异构机器人系统在协作执行任务时, 可以充分发挥两类机器人各自的优势. 无人机运动灵活, 但通常续航能力有限; 地面机器人载荷多, 适合作为无人机的着陆平台和移动补给站, 但运动受路网约束. 本文研究这类异构机器人协作路径规划问题. 为了降低完成任务的时间代价, 本文提出一种由蚁群算法和遗传算法相结合的两步法对地面机器人和无人机的路线进行解耦, 同时规划地面机器人和无人机的路线. 第1步使用蚁群算法为地面机器人搜索可行路线. 第2步对无人机的最优路径建模, 采用遗传算法求解并将无人机路径长度返回至第1步中, 用于更新路网的信息素参数, 从而实现异构协作系统路径的整体优化. 另外, 为了进一步降低无人机的飞行时间代价, 研究了无人机在其续航能力内连续完成多任务的协作路径规划问题. 最后, 通过大量仿真实验验证了所提方法的有效性.
一种基于自训练的众包标记噪声纠正算法
杨艺, 蒋良孝, 李超群
当前状态:  doi: 10.16383/j.aas.c210051
[摘要](776) [HTML全文](210)
摘要:
针对众包标记经过标记集成后仍然存在噪声的问题, 提出了一种基于自训练的众包标记噪声纠正算法(Self-training-based label noise correction, STLNC). STLNC整体分为3个阶段: 第1阶段利用过滤器将带集成标记的众包数据集分为噪声集和干净集. 第2阶段利用加权密度峰值聚类算法构建数据集中低密度实例指向高密度实例的空间结构关系. 第3阶段首先根据发现的空间结构关系设计噪声实例选择策略; 然后利用在干净集上训练的集成分类器对选择的噪声实例按照设计的实例纠正策略进行纠正, 并将纠正后的实例加入到干净集, 再重新训练集成分类器; 重复实例选择与纠正过程直到噪声集中所有的实例被纠正; 最后用最后一轮训练得到的集成分类器对所有实例进行纠正. 在仿真标准数据集和真实众包数据集上的实验结果表明STLNC比其他5种最先进的噪声纠正算法在噪声比和模型质量两个度量指标上表现更优.
基于跨模态实体信息融合的神经机器翻译方法
黄鑫, 张家俊, 宗成庆
当前状态:  doi: 10.16383/j.aas.c220230
[摘要](58) [HTML全文](17)
摘要:
现有多模态机器翻译(Multi-modal machine translation, MMT)方法将图片与待翻译文本进行句子级别的语义融合. 这些方法存在视觉信息作用不明确和模型对视觉信息不敏感等问题, 并进一步造成了视觉信息与文本信息无法在翻译模型中充分融合语义的问题. 针对这些问题, 提出了一种跨模态实体重构(Cross-modal entity reconstruction, CER)方法. 区别于将完整的图片输入到翻译模型中, 该方法显式对齐文本与图像中的实体, 通过文本上下文与一种模态的实体的组合来重构另一种模态的实体, 最终达到实体级的跨模态语义融合的目的, 通过多任务学习方法将CER模型与翻译模型结合, 达到提升翻译质量的目的. 该方法在多模态翻译数据集的两个语言对上取得了最佳的翻译准确率. 进一步的分析实验表明, 该方法能够有效提升模型在翻译过程中对源端文本实体的忠实度.
航天器位姿运动一体化直接自适应容错控制研究
马亚杰, 姜斌, 任好
当前状态:  doi: 10.16383/j.aas.c220501
[摘要](23) [HTML全文](13)
摘要:
针对航天器近距离操作过程中追踪航天器位姿控制系统执行器故障问题, 提出了一种直接自适应容错控制方法, 保证了追踪航天器在发生执行器故障的下的自身稳定性和对目标航天器位姿状态的渐近跟踪性能. 基于对偶四元数的航天器位姿一体化控制系统模型, 首先假设故障已知, 设计标称控制信号; 设计自适应更新律对标称控制信号中的未知参数进行估计, 构成自适应控制信号; 利用多Lyapunov函数对多故障模式下的系统性能进行分析. 仿真结果表明了所提方法的有效性.
基于异步相关判别性学习的孪生网络目标跟踪算法
许龙, 魏颖, 商圣行, 张皓云, 边杰, 徐楚翘
当前状态:  doi: 10.16383/j.aas.c200237
[摘要](1044) [HTML全文](118)
摘要:
现有基于孪生网络的单目标跟踪算法能够实现很高的跟踪精度, 但是这些跟踪器不具备在线更新的能力, 而且其在跟踪时很依赖目标的语义信息, 这导致基于孪生网络的单目标跟踪算法在面对具有相似语义信息的干扰物时会跟踪失败. 为了解决这个问题, 提出了一种异步相关响应的计算模型, 并提出一种高效利用不同帧间目标语义信息的方法. 在此基础上, 提出了一种新的具有判别性的跟踪算法. 同时为了解决判别模型使用一阶优化算法收敛慢的问题, 使用近似二阶优化的方法更新判别模型. 为验证所提算法的有效性, 分别在Got-10k、TC128、OTB和VOT2018 数据集上做了对比实验, 实验结果表明, 该方法可以明显地改进基准算法的性能.
航天器威胁规避智能自主控制技术研究综述
袁利, 姜甜甜
当前状态:  doi: 10.16383/j.aas.c211027
[摘要](265) [HTML全文](98)
摘要:
当前, 轨道空间日益拥挤、太空竞争不断加剧, 对航天器执行既定任务时的轨道威胁自主应对能力提出了新的挑战, 使得航天器智能自主控制技术迎来新的发展机遇. 在调研分析了轨道威胁感知、自主决策规划、规避机动动作执行、自主控制系统架构相关研究进展的基础上, 总结提出了威胁规避智能自主控制面临的主要瓶颈问题, 并分析指出发展“感知−决策−执行”一体化控制是破解瓶颈难题的有效手段, 最后从一体化控制系统建模、设计、分析与验证多方面, 系统讨论了威胁规避智能自主控制需要重点关注的若干基础问题, 为未来航天器智能自主控制的理论研究和技术发展提供启发和参考.
计算实验方法的溯源、现状与展望
薛霄, 于湘凝, 周德雨, 彭超, 王晓, 周长兵, 王飞跃
当前状态:  doi: 10.16383/j.aas.c220092
[摘要](249) [HTML全文](220)
摘要:
随着信息技术的发展, 复杂系统越来越多的呈现出社会、物理、信息相融合的特征. 因为这些系统涉及到了人和社会的因素, 其设计、分析、管理、控制和综合等问题正面临前所未有的挑战. 在这种背景下, 计算实验应运而生, 通过“反事实”的算法化, 为量化分析复杂系统提供了一种数字化和计算化方法. 对于计算实验方法的发展现状与未来挑战进行了全面梳理: 首先介绍了计算实验方法的概念起源与应用特征; 然后详细阐述了计算实验的方法框架与关键步骤; 接着展示了计算实验方法的典型应用, 包括现象解释、趋势预测与策略优化; 最后给出了计算实验方法所面临的一些关键问题与挑战. 旨在梳理出计算实验方法的技术框架, 为其快速发展与跨学科应用提供支撑.
基于动态注意力深度迁移网络的高炉铁水硅含量在线预测方法
蒋珂, 蒋朝辉, 谢永芳, 潘冬, 桂卫华
当前状态:  doi: 10.16383/j.aas.c210524
[摘要](537) [HTML全文](219)
摘要:
铁水硅含量是反映高炉冶炼过程中热状态变化的灵敏指示剂, 但无法实时在线检测, 造成铁水质量调控盲目. 为此, 提出一种基于动态注意力深度迁移网络的高炉铁水硅含量在线预测方法. 首先, 针对传统深度网络静态建模思路无法准确描述过程变量与铁水硅含量之间的关系, 提出一种基于注意力机制模块的输入过程变量与输出硅含量之间的动态关系描述方法; 其次, 为降低硅含量预测模型训练时对标签数据的依赖, 考虑到铁水温度跟硅含量数据之间的正相关性, 利用小时级硅含量标签数据微调基于分钟级铁水温度数据预训练好的深度模型的结构, 进而提高基于动态注意力深度迁移网络的硅含量预测精度; 同时, 为了增强预测网络的可解释性, 实时给出了基于动态注意力机制模块计算的每个样本各过程变量对铁水硅含量的贡献度. 最后, 基于某钢铁厂2号高炉的工业实验, 验证了该方法的准确性、有效性和先进性.
无人机反应式扰动流体路径规划
吴健发, 王宏伦, 王延祥, 刘一恒
当前状态:  doi: 10.16383/j.aas.c210231
[摘要](723) [HTML全文](343)
摘要:
针对复杂三维障碍环境, 提出一种基于深度强化学习的无人机反应式扰动流体路径规划架构. 该架构以一种受约束扰动流体动态系统算法作为路径规划的基本方法, 根据无人机与各障碍的相对状态以及障碍物类型, 通过经深度确定性策略梯度算法训练得到的动作网络在线生成对应障碍的反应系数和方向系数, 继而可计算相应的总和扰动矩阵并以此修正无人机的飞行路径, 实现反应式避障. 此外, 还研究了与所提路径规划方法相适配的深度强化学习训练环境规范性建模方法. 仿真结果表明, 在路径质量大致相同的情况下, 该方法在实时性方面明显优于基于预测控制的在线路径规划方法.
信息能源系统的信−物融合稳定性分析
王睿, 孙秋野, 张化光
当前状态:  doi: 10.16383/j.aas.c210480
[摘要](299) [HTML全文](228)
摘要:
尽管信息物理系统的稳定性已经得到了广泛的研究, 但大部分的学者皆关注于通信网络延时或攻击下的信息物理系统的稳定性问题, 无网络通信的信息物理系统的信物融合稳定性分析策略亟待提出. 其中, 内嵌数字控制系统的并网逆变器系统是一种最简单、最典型的信息能源系统. 同时, 从效率的角度出发, 逆变器的开关/采样频率总是选择尽可能低的频率, 其势必产生系统固有延迟时间(控制理论中称为时间延迟). 这种延迟时间往往容易引起系统的低频/次同步振荡, 弱电网将加剧此现象. 为此, 提出一种信息能源系统的信−物融合稳定性分析技术. 首先, 基于柏德近似方法, 建立了具有等效延迟时间的信息物理系统阻抗模型. 该等效延迟时间由三部分组成, 即信息/物理层的采样延迟时间、信息层的计算延迟时间和物理层的脉宽调制延迟时间, 其有效地反映了信息−物理相互融合作用的影响. 进而设计了稳定禁止区域判据, 利用空间映射使开关/采样频率求解过程转化为Hurwitz矩阵辨识问题. 在这些空间映射的基础上, 最小开关/采样频率通过自适应步长搜索算法获得. 最后, 仿真和实验结果验证了该方法的有效性.
欺骗攻击下具备隐私保护的多智能体系统均值趋同控制
应晨铎, 伍益明, 徐明, 郑宁, 何熊熊
当前状态:  doi: 10.16383/j.aas.c210889
[摘要](283) [HTML全文](53)
摘要:
针对通信网络遭受欺骗攻击的离散时间多智能体系统, 研究其均值趋同和隐私保护问题. 首先, 考虑链路信道存在窃听者的情形, 提出一种基于状态分解思想的分布式网络节点值重构方法, 以阻止系统初始信息的泄露. 其次, 针对所构建的欺骗攻击模型, 利用重构后节点状态信息并结合现有的安全接受广播算法, 提出一种适用于无向通信网络的多智能体系统均值趋同控制方法. 理论分析表明, 该方法能够有效保护节点初始状态信息的隐私, 并能消除链路中欺骗攻击的影响, 实现分布式系统中所有节点以初始值均值趋同. 最后, 通过数值仿真实验验证了该方法的有效性.
基于运动引导的高效无监督视频目标分割网络
赵子成, 张开华, 樊佳庆, 刘青山
当前状态:  doi: 10.16383/j.aas.c210626
[摘要](496) [HTML全文](197)
摘要:
大量基于深度学习的无监督视频目标分割算法存在模型参数量与计算量较大的问题, 这显著地限制了算法在实际中的应用. 提出了基于运动引导的视频目标分割网络, 在大幅降低模型参数量与计算量的同时提升视频目标分割性能.整个模型由双流网络、运动引导模块、多尺度渐进融合模块三部分组成. 具体地, RGB图像与光流估计输入双流网络提取物体外观特征与运动特征. 然后, 运动引导模块通过局部注意力提取运动特征中的语义信息, 用于引导外观特征学习丰富的语义信息. 最后, 多尺度渐进融合模块获取双流网络的各个阶段输出的特征,将深层特征渐进地融入浅层特征, 最终提升边缘分割效果. 在三个标准数据集上进行了大量评测, 实验结果证明了该方法的优越性能.
一种面向航空母舰甲板运动状态预估的鲁棒学习模型
王可, 徐明亮, 李亚飞, 姜晓恒, 鲁爱国, 李鉴
当前状态:  doi: 10.16383/j.aas.c210664
[摘要](477) [HTML全文](81)
摘要:
航母甲板在风、浪、流等因素影响下做六自由度不规则运动, 影响舰载机着舰精度. 航母甲板运动预估与补偿是自动着舰系统的重要功能之一, 也是提高舰载机着舰安全性与成功率的关键技术之一. 本文提出一种面向甲板运动预估的鲁棒学习模型, 通过基本构建单元自适应演化出复杂学习系统. 构建单元的训练采用非梯度的伪逆学习策略, 提高了训练效率, 简化了学习控制超参数调优;构建单元的架构设计采用数据驱动的策略, 简化了架构超参数调优;采用图拉普拉斯正则化方法提高了模型的鲁棒性. 通过某型航母在中等海况条件下以典型航速巡航时的仿真实验, 验证了所提方法在甲板纵摇、横摇以及垂荡运动预估问题中的有效性及鲁棒性.
基于宽度混合森林回归的城市固废焚烧过程二噁英排放软测量
夏恒, 汤健, 崔璨麟, 乔俊飞
当前状态:  doi: 10.16383/j.aas.c220012
[摘要](176) [HTML全文](61)
摘要:
二噁英是城市固废焚烧过程排放的痕量有机污染物. 受限于相关技术的复杂度和高成本, 二噁英排放浓度检测的大时滞已成为制约城市固废焚烧过程优化控制的关键因素之一. 虽然具有低成本、快响应、高精度等特点的数据驱动软测量模型能够有效解决上述问题, 但二噁英建模方法必须要契合数据的小样本、高维度特性. 对此, 提出了由特征映射层、潜在特征提取层、特征增强层和增量学习层组成的宽度混合森林回归软测量方法. 首先, 构建由随机森林和完全随机森林构成的混合森林组进行高维特征映射; 其次, 依据贡献率对全联接混合矩阵进行潜在特征提取, 采用信息度量准则保证潜在有价值信息的最大化传递和最小化冗余, 降低模型的复杂度和计算消耗; 然后, 基于所提取潜在信息训练特征增强层以增强特征表征能力; 最后, 通过增量式学习策略构建增量学习层后采用Moore-Penrose伪逆获得权重矩阵. 在基准数据集和城市固废焚烧过程二噁英数据集上的实验结果表明了方法的有效性和优越性.
基于时序关联矩阵的高炉冶炼过程多重关联
蒋珂, 蒋朝辉, 谢永芳, 潘冬, 桂卫华
当前状态:  doi: 10.16383/j.aas.c220091
[摘要](78) [HTML全文](11)
摘要:
高炉冶炼过程由炉料传输反应时间和冶炼单元在空间和时间分布上的差异带来的变量时延影响了数据的准确性和真实因果关系, 因此, 有效地估计过程变量间的时延信息并在时序上配准数据是后续过程建模、优化控制与性能评估的核心. 考虑到变量间时延的多重关联性, 提出了一种基于时序关联矩阵的时延参数估计方法. 首先, 根据过程变量的时延参数在时空上重构对应的时序关联矩阵, 并引入灰色关联分析量化时序矩阵的多重关联相关性; 接着, 考虑到穷举所有时序关联矩阵的时间复杂度, 提出了一种双尺度协同搜索策略的动态多群粒子群算法用于快速寻找最优的时延参数, 提出的粒子群算法能兼顾全局探索能力和局部探测能力并跳出局部最优解; 最后, 基于一个数值仿真和某钢铁厂2#高炉的工业实验验证了所提时延参数估计方法的可行性和有效性, 且通过所提方法在时序上重构的数据能有效提高后续硅含量软测量模型性能.
高速动车组数据驱动无模型自适应控制方法
李中奇, 周靓, 杨辉
当前状态:  doi: 10.16383/j.aas.c211068
[摘要](14) [HTML全文](6)
摘要:
针对动车组的速度跟踪控制问题, 同时考虑到现有基于模型的控制方法对系统动力学模型的依赖性, 以及传统无模型自适应控制时变参数估计算法的复杂性, 将改进的多输入多输出偏格式动态线性化无模型自适应控制方法引入到动车组自动驾驶系统中. 该控制方法在无模型自适应控制的基础上, 考虑滑动时间窗口, 增加了可调自由度和设计灵活性, 并在输入准则函数中加上对能量函数的惩罚项, 减少能量损耗, 为动车组的跟踪精度和节能运行提供了一种优化的方法, 在满足动车组速度跟踪效果好的前提下实现节能运行. 最后以CRH380A动车组为对象进行仿真实验, 通过与传统无模型自适应控制对比: 所提出的控制算法各动力单元速度跟踪误差在 ±0.2 km/h以内, 加速度在 ±0.65 m/s2以内且变化平稳, 比传统无模型自适应控制方法节约9.86%的能量.
不确定工业过程运行指标异步更新强化学习决策算法
李金娜, 袁林, 丁进良
当前状态:  doi: 10.16383/j.aas.c210983
[摘要](16) [HTML全文](3)
摘要:
运行指标决策问题是实现工业过程运行安全和生产指标优化的关键. 考虑到多运行指标决策问题求解的复杂性和工业过程生产条件动态波动引发生产指标状态的不确定性, 提出了一种策略异步更新强化学习算法自学习决策运行指标, 并给出算法收敛性的理论证明. 该算法在随机自适应动态规划框架下, 利用样本均值代替计算生产指标状态转移概率矩阵, 因此无需要求生产指标状态转移概率矩阵已知. 并且通过引入时钟和定义其阈值, 采用集中式策略评估、多策略异步更新方式用以简化求解多运行指标决策问题, 提高强化学习的学习效率. 利用可测量数据, 自学习得到的运行指标能够保证生产指标优化, 并且限制在规定范围之内. 最后, 采用中国西部某大型选矿厂的实际数据进行仿真验证, 表明该方法的有效性.
多智能体博弈、学习与控制
王龙, 黄锋
当前状态:  doi: 10.16383/j.aas.c220680
[摘要](178) [HTML全文](71)
摘要:
近年来, 随着人工智能(Artificial intelligence, AI)技术在棋牌游戏、计算机视觉、自然语言处理和蛋白质结构解析与预测等研究领域取得的突破进展, 传统学科之间的固有壁垒正在被逐步打破, 多学科深度交叉融合的态势变得越发明显. 作为现代智能科学的三个重要组成部分, 博弈论、多智能体学习与控制论自诞生之初就逐渐展现出一种“你中有我, 我中有你” 的关联关系. 特别地, 近年来在AI技术的促进作用下, 本文对这三者间的交叉研究成果正呈现出一种井喷式增长的态势. 为及时反映这一学术动态和趋势, 对这三者的异同、联系以及最新的研究进展进行了系统梳理. 首先, 介绍了作为纽带连接这三者的四种基本博弈形式, 进而论述了对应于这四种基本博弈形式的多智能体学习方法; 然后, 按照不同的专题, 梳理了这三者交叉研究的最新进展; 最后, 对这一新兴交叉研究领域进行了总结与展望.
基于多模型融合的肺部CT新冠肺炎病灶区域自动分割
史天意, 程枫, 李震, 郑传胜, 许永超, 白翔
当前状态:  doi: 10.16383/j.aas.c210400
[摘要](1061) [HTML全文](318)
摘要:
自2019年末以来, 全球蔓延的新型冠状病毒已经给世界人民造成了严重的健康威胁. 其中新型冠状病毒患者的计算机断层扫描图像通过肺炎病灶分割技术可以为医学诊断提供有价值的量化信息. 虽然目前基于深度学习的方法已经在新型冠状病毒肺炎病灶分割任务上取得了良好的效果, 但是在面对不同中心数据的情况下分割效果往往会大幅下降. 因此, 研究一种具有更好泛化性能的新型冠状病毒肺炎病灶分割算法具有重要意义. 提出一种新冠肺炎病灶多模型融合分割方法. 通过训练3DUnet模型和2DUnet结合方向场模型, 利用多种模型各自优点进行分割结果的融合, 得到更好的泛化性能. 通过同中心和跨中心数据集的实验, 该能够有效提高新冠肺炎病灶分割的泛化性能, 为医学诊断分析提供帮助.
深度强化学习联合回归目标定位
姚红革, 张玮, 杨浩琪, 喻钧
当前状态:  doi: 10.16383/j.aas.c200045
[摘要](850) [HTML全文](389)
摘要:
为了模拟人眼的视觉注意机制, 快速、高效地搜索和定位图像目标, 提出了一种基于循环神经网络的联合回归深度强化学习目标定位模型. 该模型将历史观测信息与当前时刻的观测信息融合并做出综合分析, 以训练智能体快速定位目标, 并联合回归器对智能体所定位的目标包围框进行精细调整. 实验结果表明, 该模型能够在少数时间步内快速、准确地定位目标.
基于粒度聚类的铁矿石烧结过程运行性能评价
杜胜, 吴敏, 陈略峰, PEDRYCZ Witold
当前状态:  doi: 10.16383/j.aas.c200267
[摘要](1102) [HTML全文](167)
摘要:
烧结过程的运行性能是生产效率和能源利用的综合表现. 运行性能评价是保持烧结过程的运行性能处于最优等级的前提. 考虑到时间序列数据的冗余, 提出一种基于粒度聚类的铁矿石烧结过程运行性能评价方法. 首先, 利用单因素方差分析方法选取影响运行性能等级的检测参数. 然后, 采用多粒度区间信息粒化实现检测参数时间序列数据的降维, 并进行粒度聚类, 得到聚类标签. 最后, 以聚类得到的聚类标签为输入, 利用随机森林算法进行运行性能等级评价. 利用实际钢铁企业的运行数据进行实验, 构建两个对比实验, 分别采用基于时间序列数据聚类的方法和基于时间序列特征聚类的方法. 实验表明, 该方法为有效评价烧结过程的运行性能提供了一套可行方案, 为操作人员提升烧结过程运行性能提供了有力的指导.
基于旋转框精细定位的遥感目标检测方法研究
朱煜, 方观寿, 郑兵兵, 韩飞
当前状态:  doi: 10.16383/j.aas.c200261
[摘要](898) [HTML全文](109)
摘要:
遥感图像中的目标往往呈现出任意方向排列, 而常见的目标检测算法均采用水平框检测, 并不能满足这类场景的应用需求. 因此提出一种旋转框检测网络R2-FRCNN. 该网络利用粗调与细调两阶段实现旋转框检测, 粗调阶段将水平框转换为旋转框, 细调阶段进一步优化旋转框的定位. 针对遥感图像存在较多小目标的特点, 提出像素重组金字塔结构, 融合深浅层特征, 提升复杂背景下小目标的检测精度. 此外, 为了在金字塔各层中提取更加有效的特征信息, 在粗调阶段设计一种积分与面积插值法相结合的感兴趣区域特征提取方法, 同时在细调阶段设计旋转框区域特征提取方法. 最后在粗调和细调阶段均采用全连接层与卷积层相结合的预测分支, 并且利用SmoothLn作为网络的回归损失函数, 进一步提升算法性能. 提出的网络在大型遥感数据集DOTA上进行评估, 评估指标平均准确率达到0.7602. 对比实验表明, R2-FRCNN网络的有效性.
状态测量不确定和动力学未知的无人艇固定时间容错控制
王宁, 高颖, 王仁慧
当前状态:  doi: 10.16383/j.aas.c220482
[摘要](21) [HTML全文](13)
摘要:
针对含有推进器故障和状态测量不确定的无人艇(Unmanned surface vehicle, USV)系统, 提出一种基于双扰动观测器的固定时间容错跟踪控制(Double disturbance observer-based fixed-time fault-tolerant control, DDO-FxFC)方法. 设计两个固定时间扰动观测器, 分别估计状态测量不确定性产生的非匹配干扰和包含推进器故障的集总非线性, 同时自适应实时补偿未知观测误差; 采用测量位姿跟踪误差及其动态, 设计快速非奇异终端滑模面, 构建DDO-FxFC框架; 理论分析证明DDO-FxFC方法能够确保跟踪误差固定时间收敛, 其中收敛时间的上界独立于系统初始状态; 针对原型USV的仿真结果和综合对比验证所提出DDO-FxFC技术的有效性和优越性.
一种规模化混杂生产线缓冲区容量优化分配技术
刘军, 任建华, 冯硕
当前状态:  doi: 10.16383/j.aas.c200578
[摘要](404) [HTML全文](100)
摘要:
针对传统技术难以解决规模化混杂生产线缓冲区容量优化分配问题, 提出了一种规模化生产线递阶分解并行寻优技术, 该技术结合混杂生产线系统综合方法与分解方法的技术思想, 兼顾生产线平衡性与系统规模, 将原系统递阶分解为包含虚拟生产线在内的n + 1个子生产线系统, 通过求解子系统的最优解构造原系统的渐近最优解, 并在系统递阶建模阶段建议了一种设备模糊聚类的辅助方式; 同时, 基于混杂生产线系统综合方法也建议了一种系统渐次综合的初解改进确定方法; 并提出了一种通过构造动态步长来设计领域结构的改进型禁忌搜索算法对子系统进行并行寻优; 最后对技术算法的收敛性进行了证明. 提出的生产线递阶分解建模并行寻优技术具有一般性, 对受设备随机故障等随机事件影响的生产线尤其是规模化生产线系统其他优化、控制问题也具有借鉴、参考价值.
一种用于目标跟踪边界框回归的光滑IoU损失
李功, 赵巍, 刘鹏, 唐降龙
当前状态:  doi: 10.16383/j.aas.c210525
[摘要](551) [HTML全文](255)
摘要:
边界框回归分支是深度目标跟踪器的关键模块, 其性能直接影响跟踪器的精度. 评价精度的指标之一是交并比(Intersection over union, IoU). 基于IoU的损失函数取代了\begin{document}$ \ell_n $\end{document}-norm损失成为目前主流的边界框回归损失函数, 然而IoU损失函数存在2个固有缺陷: 1)当预测框与真值框不相交时IoU为常量 0, 无法梯度下降更新边界框的参数; 2)在IoU取得最优值时其梯度不存在, 边界框很难收敛到 IoU 最优处. 揭示了在回归过程中IoU最优的边界框各参数之间蕴含的定量关系, 指出在边界框中心处于特定位置时存在多种尺寸不同的边界框使IoU损失最优的情况, 这增加了边界框尺寸回归的不确定性. 从优化两个统计分布之间散度的视角看待边界框回归问题, 提出了光滑IoU损失, 即构造了在全局上光滑(即连续可微)且极值唯一的损失函数, 该损失函数自然蕴含边界框各参数之间特定的最优关系, 其唯一取极值的边界框可使IoU达到最优. 光滑性确保了在全局上梯度存在使得边界框更容易回归到极值处, 而极值唯一确保了在全局上可梯度下降更新参数, 从而避开了IoU损失的固有缺陷. 提出的光滑IoU损失可以很容易取代IoU损失集成到现有的深度目标跟踪器上训练边界框回归, 在 LaSOT、GOT-10k、TrackingNet 和OTB2015测试基准上所取得的结果, 验证了光滑IoU损失的易用性和有效性.
类别增量学习研究进展和性能评价
朱飞, 张煦尧, 刘成林
当前状态:  doi: 10.16383/j.aas.c220588
[摘要](18) [HTML全文](15)
摘要:
机器学习技术成功地应用于计算机视觉、自然语言处理和语音识别等众多领域. 然而, 大多数机器学习模型的在部署后类别和参数是固定的, 只能泛化到训练集中出现的类别, 无法增量式地学习新类别. 在实际应用中, 新的类别或任务会源源不断地出现, 这要求模型能够像人类一样在较好地保持已有知识的基础上持续地学习新知识. 近年来新兴的类别增量学习研究方向, 旨在使得模型能够在开放、动态的环境中持续学习新类别的同时保持对旧类别的判别能力(防止“灾难性遗忘”). 本文对类别增量学习方法进行了详细综述. 根据克服遗忘的技术思路, 将现有方法分为基于参数正则化、基于知识蒸馏、基于数据回放、基于特征回放和基于网络结构的五类方法, 对每类方法的优缺点进行了总结. 此外, 本文在常用数据集上对代表性方法进行了实验评估, 并通过实验结果对现有算法的性能进行了比较. 最后, 对类别增量学习的研究趋势进行展望.
一种基于区块链的DNSSEC公钥验证机制
陈闻宇, 李晓东, 杨学, 徐彦之
当前状态:  doi: 10.16383/j.aas.c201082
[摘要](593) [HTML全文](304)
摘要:
针对中心化域名安全扩展(Domain name system security extensions, DNSSEC)架构所导致的信任链复杂性和单边控制模式, 提出了一种去中心化的DNSSEC公钥验证机制. 该机制结合区块链结构、密码学累加器和共识算法设计, 创新性地实现使用区块链技术的密钥绑定、轮转和验证操作, 无需中心化权威节点即可使用可信公钥验证域名记录. 进一步分析和实验表明, 所提出的机制在保证密钥管理安全性的同时, 提高了密钥验证的效率.
基于ACP理论的微型扑翼飞行器的姿态控制
金龙, 李嘉昌, 常振强, 卢经纬, 程龙
当前状态:  doi: 10.16383/j.aas.c210646
[摘要](665) [HTML全文](309)
摘要:
微型扑翼飞行器(Flapping wing micro aerial vehicle, FWMAV)因飞行效率高、质量轻、耗能低、机动性强等显著优点, 在飞行器研究和应用中占据重要地位. 目前, FWMAV姿态控制成为飞行器控制研究领域的研究热点. 针对FWMAV姿态控制问题, 基于平行智能理论框架提出了一种FWMAV抗扰动姿态控制器. 通过建立人工系统(Artificial systems, A)、计算实验(Computational experiments, C)、平行执行(Parallel execution, P)三个过程, 得到一个能够有效解决FWMAV姿态控制过程中扰动问题的控制器, 并通过理论分析和数值仿真证明了该控制器的有效性.
基于无锚框的目标检测方法及其在复杂场景下的应用进展
刘小波, 肖肖, 王凌, 蔡之华, 龚鑫, 郑可心
当前状态:  doi: 10.16383/j.aas.c220115
[摘要](40) [HTML全文](16)
摘要:
基于深度学习的目标检测方法是目前计算机视觉领域的热点, 在目标识别、跟踪等领域发挥了重要的作用. 随着研究的深入开展, 基于深度学习的目标检测方法主要分为有锚框的目标检测方法和无锚框的目标检测方法, 其中无锚框的目标检测方法无需预定义大量锚框, 具有更低的模型复杂度和更稳定的检测性能, 是目前目标检测领域中较前沿的方法. 在调研国内外相关文献的基础上, 梳理基于无锚框的目标检测方法及各场景下的常用数据集, 根据样本分配方式不同, 分别从基于关键点组合、中心点回归、Transformer、锚框和无锚框融合等4个方面进行整体结构分析和总结, 并结合COCO数据集上的性能指标进一步对比. 在此基础上, 介绍了无锚框目标检测方法在重叠目标、小目标和旋转目标等复杂场景情况下的应用, 聚焦目标遮挡、尺寸过小、角度多等关键问题, 综述现有方法的优缺点及难点. 最后对无锚框目标检测方法中仍存在的问题进行总结并对未来发展的应用趋势进行展望.
基于内容特征和风格特征融合的单幅图像去雾网络
杨爱萍, 刘瑾, 邢金娜, 李晓晓, 何宇清
当前状态:  doi: 10.16383/j.aas.c200217
[摘要](705) [HTML全文](233)
摘要:
基于深度学习的方法在去雾领域已经取得了很大进展, 但仍然存在去雾不彻底和颜色失真等问题. 针对这些问题, 本文提出一种基于内容特征和风格特征相融合的单幅图像去雾网络. 所提网络包括特征提取、特征融合和图像复原三个子网络, 其中特征提取网络包括内容特征提取模块和风格特征提取模块, 分别用于学习图像内容和图像风格以实现去雾的同时可较好地保持原始图像的色彩特征. 在特征融合子网络中, 引入注意力机制对内容特征提取模块输出的特征图进行通道加权实现对图像主要特征的学习, 并将加权后的内容特征图与风格特征图通过卷积操作相融合. 最后, 图像复原模块对融合后的特征图进行非线性映射得到去雾图像. 与已有方法相比, 所提网络对合成图像和真实图像均可取得理想的去雾结果, 同时可有效避免去雾后的颜色失真问题.
面向卷积混叠环境下的盲源分离新方法
解元, 邹涛, 孙为军, 谢胜利
当前状态:  doi: 10.16383/j.aas.c211207
[摘要](30) [HTML全文](4)
摘要:
卷积混叠环境下的的盲源分离(Blind source separation, BSS)是一个极具挑战性和实际意义的问题. 本文在独立分量分析(Independent component analysis, ICA)框架下, 建立非负矩阵分解(Nonnegative matrix factorization, NMF)模型, 设计新的优化目标函数, 通过严格的数学理论推导, 得到新的模型参数更新规则; 并对解混叠矩阵进行标准化处理, 避免幅度歧义性问题; 在源信号的重构阶段, 通过实时更新非负矩阵分解模型参数, 避免源信号的排序歧义性问题. 实验结果验证了本文算法在分离中英文语音混叠信号、音乐混叠信号时的有效性和优越性.
基于极点配置和椭球分析的传感器故障检测
张文瀚, 王振华, 沈毅
当前状态:  doi: 10.16383/j.aas.c200189
[摘要](590) [HTML全文](71)
摘要:
针对具有未知扰动与测量噪声的线性离散时间系统, 提出了一种传感器故障检测方法. 首先, 将传感器故障视为增广状态, 将原始系统转化为一个等效的新线性动态系统. 然后, 基于鲁棒观测器设计和极点配置方法构造了一个故障检测观测器, 使得生成的残差能够同时满足对扰动与噪声的鲁棒性和对故障的敏感性. 此外, 本文设计了一种基于椭球分析的残差评价方法, 该方法可通过判断残差是否被无故障残差椭球包含来检测故障. 最后, 通过一个二阶RC电路模型的仿真算例验证了所提出方法的有效性与优越性.
基于突触巩固机制的前馈小世界神经网络设计
李文静, 李治港, 乔俊飞
当前状态:  doi: 10.16383/j.aas.c220638
[摘要](23) [HTML全文](4)
摘要:
小世界神经网络具有较快的收敛速度和优越的容错性, 近年来得到广泛关注. 然而, 在网络构造过程中, 随机重连可能造成重要信息丢失, 进而导致网络精度下降. 针对该问题, 基于Watts-Strogatz (WS) 型小世界神经网络, 提出了一种基于突触巩固机制的前馈小世界神经网络(Feedforward small-world neural network based on synaptic consolidation, FSWNN-SC). 首先, 使用网络正则化方法对规则前馈神经网络进行预训练, 基于突触巩固机制, 断开网络不重要的权值连接, 保留重要的连接权值; 其次, 设计重连规则构造小世界神经网络, 在保证网络小世界属性的同时实现网络稀疏化, 并使用梯度下降算法训练网络; 最后, 通过4个UCI基准数据集和2个真实数据集进行模型性能测试, 并使用Wilcoxon符号秩检验对对比模型进行显著性差异检验. 实验结果表明: 所提出的FSWNN-SC模型在获得紧凑的网络结构的同时, 其精度显著优于规则前馈神经网络及其它WS型小世界神经网络.
基于加权锚点的多视图聚类算法
刘溯源, 王思为, 唐厂, 周思航, 王思齐, 刘新旺
当前状态:  doi: 10.16383/j.aas.c220531
[摘要](37) [HTML全文](14)
摘要:
大规模多视图聚类旨在解决传统多视图聚类算法中计算速度慢、空间复杂度高以致无法扩展到大规模数据的问题.其中, 基于锚点的多视图聚类方法通过使用整体数据集合的锚点集构建后者对于前者的重构矩阵, 利用重构矩阵进行聚类, 有效地降低了算法的时间和空间复杂度.然而, 现有的方法忽视了锚点之间的差异, 均等地看待所有锚点, 导致聚类结果受到低质量锚点的限制.为了定位更具有判别性的锚点, 加强高质量锚点对聚类的影响, 提出了一种基于加权锚点的大规模多视图聚类算法(Multi-view Clustering With Weighted Anchors, MVC-WA).通过引入自适应锚点加权机制, 所提方法在统一框架下确定锚点的权重, 进行锚图的构建.同时, 为了增加锚点的多样性, 根据锚点之间的相似度进一步调整锚点的权重.在9个基准数据集上与现有最先进的大规模多视图聚类算法的对比实验结果验证了所提方法的高效性与有效性.
基于时滞测量的复杂网络分布式状态估计研究
滕达, 徐雍, 鲍鸿, 王卓, 鲁仁全
当前状态:  doi: 10.16383/j.aas.c210921
[摘要](44) [HTML全文](14)
摘要:
研究了一类存在一步随机时滞的复杂网络分布式状态估计问题, 采用伯努利随机变量刻画测量值的随机时滞情况. 基于复杂网络模型和不可靠测量值, 分别设计了复杂网络的状态预测器和分布式状态估计器, 基于杨氏不等式消除了节点之间的耦合项, 通过优化杨氏不等式引进的参数, 优化了状态预测协方差. 通过设计估计器增益, 获得了状态估计误差协方差, 同时结合预测误差协方差, 获得了状态估计误差协方差的迭代公式, 并给出了估计误差协方差稳定的充分条件. 最后, 对由小车组成的耦合系统进行数值仿真, 验证了所设计估计器的有效性.
基于自适应动态规划的移动机器人视觉伺服跟踪控制
罗彪, 欧阳志华, 易昕宁, 刘德荣
当前状态:  doi: 10.16383/j.aas.c211230
[摘要](52) [HTML全文](33)
摘要:
针对移动机器人视觉伺服跟踪控制问题, 提出了一种基于自适应动态规划(Adaptive dynamic programming, ADP) 的控制方法. 通过移动机器人上的相机拍摄共面特征点的当前图像、期望图像以及参考图像, 利用单应性技术得到移动机器人当前的位姿信息与期望的位姿信息(即平移量与旋转角度), 从而通过当前与期望的平移旋转之间差值得到系统的开环误差模型. 进而, 针对此系统设计最优控制器, 同时做合适的控制输入变换. 在此基础上设计一个基于ADP的视觉伺服控制方法以保证移动机器人完成轨迹跟踪任务. 为求出最优控制输入, 采用一个评价神经网络近似值函数, 通过不断学习逼近哈密顿-雅可比-贝尔曼(Hamilton-Jacobi-Bellman, HJB)方程的解. 与以往不同的是, 由于系统存在时变项, 导致HJB方程也含有时变项, 因此需要设计具有时变权值结构的神经网络近似值函数. 最终证明在所设计的控制方法作用下, 闭环系统是一致最终有界的.
基于改进YOLOX的移动机器人目标跟随方法
万琴, 李智, 李伊康, 葛柱, 王耀南, 吴迪
当前状态:  doi: 10.16383/j.aas.c220344
[摘要](171) [HTML全文](46)
摘要:
针对移动机器人在复杂场景中难以稳定跟随目标的问题, 提出基于改进YOLOX的移动机器人目标跟随方法, 主要包括目标检测、目标跟踪以及目标跟随三个部分. 首先, 以 YOLOX 网络为基础, 在其框架下将主干网络采用轻量化网络 MobileNetV2X, 提高复杂场景中目标检测的实时性. 然后, 通过改进的卡尔曼滤波器获取目标跟踪状态并采用数据关联进行目标匹配, 同时通过深度直方图判定目标发生遮挡后, 采用深度概率信息约束及最大后验概率进行匹配跟踪, 确保机器人在遮挡情况下稳定跟踪目标. 再采用基于视觉伺服控制的目标跟随算法, 当跟踪目标丢失时, 引入重识别特征主动搜寻目标实现目标跟随. 最后, 在公开数据集上与具有代表性的目标跟随方法进行了定性和定量实验, 同时在真实场景中完成了移动机器人目标跟随实验, 实验结果均验证了所提方法具有较好的鲁棒性和实时性.
基于改进扩展状态观测器的液压锚杆钻机滑模摆角控制
张振, 郭一楠, 巩敦卫, 朱松, 田滨
当前状态:  doi: 10.16383/j.aas.c220524
[摘要](59) [HTML全文](31)
摘要:
液压锚杆钻机摆角系统固有的死区、干扰和时变参数, 严重影响其动态和稳态性能. 为了解决该问题, 通过融合动态面方法、滑模方法和扩展状态观测器, 提出一种基于改进非线性扩展状态观测器的液压锚杆钻机自适应滑模摆角控制方法. 首先, 引入一种死区补偿方法, 建立了摆角系统的死区补偿模型. 其次, 为了提高系统的抗扰动能力和抑制噪声, 设计了一种改进的非线性扩展状态观测器. 此外, 构造了一种自适应滑模控制律, 这其中, 基于性能函数和动态面方法设计了一种新型的滑模面, 以提高控制精度; 随后, 设计了一种新的滑模趋近律, 以提高系统滑模响应速度和消除滑模抖振. 进一步, 分别设计了估计误差自适应律和参数自适应律以补偿扰动估计误差和抑制时变参数的影响. 最后, 通过将所提出的控制方法与8种控制方法进行比较, 验证其有效性.
基于讨价还价博弈机制的B-IHCA*多机器人路径规划算法
张凯翔, 毛剑琳, 向凤红, 宣志玮
当前状态:  doi: 10.16383/j.aas.c220065
[摘要](99) [HTML全文](34)
摘要:
针对密集场景中大规模冲突导致多机器人路径规划(Multi-agent path finding, MAPF) 成功率低的问题, 引入讨价还价博弈机制并以层级协作A* (Hierarchical cooperative A*, HCA*) 算法为内核, 提出一种基于讨价还价博弈机制的改进层级协作A* (Bargaining game based improving HCA*, B-IHCA*) 算法. 首先, 在HCA*算法基础上, 对导致路径无解的冲突双方或多方进行讨价还价博弈. 由高优先级机器人先出价, 当低优先级机器人在该条件下无法求解时, 则其将不接受该出价, 并通过降约束求解方式进行还价. 再由其他冲突方对此做进一步还价, 直至各冲突方都能协调得到可接受的路径方案. 其次, 为避免原始HCA*算法由于高优先级的阻碍陷于过长或反复无效搜索状态, 在底层A*搜索环节加入了熔断机制. 通过熔断机制与讨价还价博弈相配合可在提升路径求解成功率的同时兼顾路径代价. 研究结果表明, 所提算法在密集场景大规模机器人路径规划问题上较现有算法求解成功率更高, 求解时间更短, 路径代价得到改善, 验证了算法的有效性.
基于高斯–广义双曲混合分布的非线性卡尔曼滤波
王国庆, 杨春雨, 马磊, 代伟
当前状态:  doi: 10.16383/j.aas.c220400
[摘要](160) [HTML全文](70)
摘要:
本文研究带非平稳厚尾非高斯量测噪声的非线性系统状态估计问题. 考虑到广义双曲分布包含多种常见厚尾分布特例, 且其混合分布为共轭的广义逆高斯分布, 本文选用广义双曲分布建模厚尾噪声; 进而引入伯努利变量构建高斯–广义双曲混合分布来建模非平稳厚尾噪声, 并利用该分布的高斯分层结构得到系统的概率模型. 随后采用变分贝叶斯方法实现对系统状态以及噪声参数的后验估计, 得到针对此类噪声系统的卡尔曼滤波 (Kalman filter, KF) 框架, 现有的几种鲁棒滤波均是本文方法的特例. 机器人跟踪仿真实验表明, 本文所提算法与同类算法相比具有更好的估计精度和数值稳定性, 且对于初始参数具有较好的鲁棒性.
一种空间几何角度最大化的随机增量学习模型及应用
南静, 代伟, 袁冠, 周平
当前状态:  doi: 10.16383/j.aas.c211041
[摘要](36) [HTML全文](11)
摘要:
针对随机权神经网络(Random weight neural networks, RWNNs)含层节点随机生成过程可解释性不足和节点随机生成而导致的网络结构不紧致等问题, 本文提出了一种空间几何角度最大化随机增量学习模型(Stochastic incremental learning model with maximizing spatial geometry angle, SGA-SIM). 首先, 以空间几何视角深入分析随机增量学习过程, 建立了具有可解释性的空间几何角度最大化约束, 以改善隐含层节点质量, 并证明该学习模型具有无限逼近特性; 同时, 引入格雷维尔迭代法优化学习模型输出权值计算方法, 提高模型学习效率. 在真实的分类和回归数据集以及数值模拟实例上的实验结果表明, 本文所提增量学习模型在建模速度、模型精度和模型网络结构等多个方面具有明显优势.
基于终端诱导强化学习的航天器轨道追逃博弈
耿远卓, 袁利, 黄煌, 汤亮
当前状态:  doi: 10.16383/j.aas.c220204
[摘要](38) [HTML全文](30)
摘要:
针对脉冲推力航天器轨道追逃博弈问题, 提出一种基于强化学习的决策方法, 实现追踪星在指定时刻抵近至逃逸星的特定区域, 其中两星都具备自主博弈能力. 首先, 充分考虑追踪星和逃逸星的燃料约束、推力约束、决策周期约束、运动范围约束等实际约束条件, 建立锥形安全接近区及追逃博弈过程的数学模型; 其次, 为了提升航天器面对不确定博弈对抗场景的自主决策能力, 以近端策略优化 (Proximal policy optimization, PPO) 算法框架为基础, 采用左右互搏的方式同时训练追踪星和逃逸星, 交替提升两星的决策能力; 在此基础上, 为了在指定时刻完成追逃任务, 提出一种终端诱导的奖励函数设计方法, 基于~CW(Clohessy Wiltshire)~方程预测两星在终端时刻的相对误差, 并将该预测误差引入奖励函数中, 有效引导追踪星在指定时刻进入逃逸星的安全接近区. 与现有基于当前误差设计奖励函数的方法相比, 本文方法能够有效提高追击成功率. 最后, 通过与其他学习方法仿真对比, 验证本文提出的训练方法和奖励函数设计方法的有效性和优越性.
基于单试次脑电解码的类自举法谎言预测研究
白帅帅, 陈超, 魏玮, 代璐瑶, 刘烨, 邱爽, 何晖光
当前状态:  doi: 10.16383/j.aas.c220341
[摘要](54) [HTML全文](12)
摘要:
基于脑电(Electroencephalogram, EEG)的谎言预测技术依赖于对事件相关电位(Event-related potential, ERP)的有效解码, 当前主要采用手工设计特征进行脑电分析. 近年, 单试次脑电分类方法取得了长足进步, 其中端到端的脑电分类方法能够实现对脑电的自动特征提取和分类, 但在谎言预测中缺乏研究和应用, 同时存在无法在测谎场景下直接应用的问题. 本研究设计基于复合反应范式(Complex trial protocol, CTP)进行自我面孔信息识别任务的实验, 采集了18 名被试的脑电数据. 研究了不同端到端的单试次ERP分类方法在谎言预测中的应用, 同时针对单试次脑电解码方法无法直接实际应用的问题, 提出了一种类自举算法. 算法基于数据分布假设, 通过对比各类刺激图像被视为探针刺激时所训练模型的性能, 来推断真正的探针刺激. 实验结果表明, 在基于自我面孔信息的CTP的谎言预测中, 所提出的类自举法性能优于传统探针预测方法, 在仅使用少量脑电数据情况下, 可实现准确的谎言预测.
自适应特征融合的多模态实体对齐研究
郭浩, 李欣奕, 唐九阳, 郭延明, 赵翔
当前状态:  doi: 10.16383/j.aas.c210518
[摘要](165) [HTML全文](110)
摘要:
多模态数据间交互式任务的涌现对综合利用不同模态的知识提出了高要求, 多模态知识图谱应运而生, 其通过融合不同模态的知识来满足这类任务的需求. 然而, 现有多模态知识图谱存在图谱知识不完整的问题, 严重阻碍对信息的有效利用. 缓解此问题关键是通过实体对齐方法对图谱进行补全. 当前多模态实体对齐方法以固定权重融合多种模态信息, 在融合过程中忽略了不同模态信息贡献的差异性. 为解决上述问题, 本文设计一套自适应特征融合机制, 根据不同模态数据质量动态融合实体结构信息和视觉信息. 此外, 考虑到视觉信息质量不高、知识图谱之间的结构差异也影响实体对齐的效果, 本文分别设计提升视觉信息有效利用率的视觉特征处理模块以及缓和结构差异性的三元组筛选模块. 在多模态实体对齐任务上的实验结果表明, 本文提出的多模态实体对齐方法的性能优于当前最好的方法.
基于激光雷达的无人驾驶3D多目标跟踪
熊珍凯, 程晓强, 吴幼冬, 左志强, 刘家胜
当前状态:  doi: 10.16383/j.aas.c210783
[摘要](274) [HTML全文](108)
摘要:
无人驾驶汽车行驶是连续时空的三维运动, 汽车周围的目标不可能突然消失或者出现, 因此, 对于感知层而言, 稳定可靠的多目标跟踪(Multi-object tracking, MOT)意义重大. 针对传统的目标关联和固定生存周期管理的不足, 提出了基于边界交并比(Border intersection over union, BIoU)度量的目标关联和自适应生存周期管理策略. BIoU综合了欧氏距离和交并比(Intersection over union, IoU)的优点, 提高了目标关联的精度. 自适应生存周期管理将目标轨迹置信度与生存周期相联系, 显著减少了目标丢失和误检. 在KITTI多目标跟踪数据集上的实验验证了该方法的有效性.
基于多层注意力和消息传递网络的药物相互作用预测方法
饶晓洁, 张通, 孟献兵, 陈俊龙
当前状态:  doi: 10.16383/j.aas.c220371
[摘要](118) [HTML全文](28)
摘要:
药物相互作用(Drug-drug interaction, DDI)是指不同药物存在抑制或促进等作用. 现有DDI预测方法往往直接利用药物分子特征表示预测DDI, 而忽略药物分子中不同原子对DDI的影响. 为此, 提出基于多层次注意力机制和消息传递神经网络的DDI预测方法. 该方法将DDI建模为通过学习基于序列表示的药物分子特征实现DDI预测的链接预测问题. 首先, 建立基于注意力机制和消息传递神经网络的原子特征网络, 结合提出的基于分子质心的位置编码, 学习不同原子及其相关联化学键的特征, 构建基于图结构的药物分子特征表示; 然后, 设计基于注意力机制的分子特征网络, 并通过监督和对比损失学习, 实现DDI预测; 最后, 通过实验证明该方法的有效性和优越性.
一种基于随机权神经网络的类增量学习与记忆融合方法
李德鹏, 曾志刚
当前状态:  doi: 10.16383/j.aas.c220312
[摘要](54) [HTML全文](37)
摘要:
连续学习多个任务的能力对于通用人工智能的发展至关重要. 现有人工神经网络在单一任务上具有出色表现, 但在开放环境中依次面对不同任务时非常容易发生灾难性遗忘现象, 即联结主义模型在学习新任务时会迅速地忘记旧任务. 为了解决这个问题, 本文将随机权神经网络与生物大脑的相关工作机制联系起来, 提出了一种新的再可塑性启发的随机化网络(Metaplasticity-inspired randomized network, MRNet)用于类增量学习场景, 使得单一模型在不访问旧任务数据的情况下能够从未知的任务序列中学习与记忆融合. 首先, 以前馈方式构造了具有解析解的通用连续学习框架, 用于有效兼容新任务中出现的新类别; 然后, 基于突触可塑性设计了具备记忆功能的权值重要性矩阵, 自适应地调整网络参数以避免发生遗忘; 最后, 所提方法的有效性和高效性通过5个评价指标, 5个基准任务序列和10个比较方法在类增量学习场景中得到验证.
基于有向图的分布式连续时间非光滑耦合约束凸优化分析
刘奕葶, 马铭莙, 付俊
当前状态:  doi: 10.16383/j.aas.c210808
[摘要](61) [HTML全文](13)
摘要:
本文研究了一类分布式优化问题, 其目标是在满足耦合不等式约束和局部可行集约束的情况下使非光滑全局代价函数值最小. 首先, 对原有的分布式连续时间投影算法进行拓展, 结合线性代数理论分析, 我们设计一个适用于强连通加权平衡有向通信网络拓扑图的算法. 其次, 在局部代价函数和耦合不等式约束函数是非光滑凸函数的假设条件下, 利用Moreau-Yosida函数正则化使目标函数和约束函数近似光滑可微. 然后, 根据强连通加权平衡有向图的分布式连续时间投影算法构造李雅普诺夫函数, 证明该算法下的平衡解是分布式优化问题最优解, 并对算法进行收敛性分析. 最后, 通过数值仿真验证了算法的有效性.
基于SCN数据模型的SISO非线性自适应控制
代伟, 张政煊, 杨春雨, 马小平
当前状态:  doi: 10.16383/j.aas.c210174
[摘要](73) [HTML全文](33)
摘要:
针对一类难以建立精确模型的单输入单输出(Single-input single-output, SISO) 非线性离散动态系统, 提出了一种数据驱动模型的自适应控制方法. 所提方法首先设计具有直链与增强结构的随机配置网络(Stochastic configuration network, SCN), 建立了一种可同时表征非线性系统低阶线性部分与高阶非线性项(未建模动态)的数据驱动模型, 并采用增量学习方法与监督机制, 对模型结构与模型参数进行同步更新优化, 保证了数据驱动模型的无限逼近能力, 解决了传统自适应控制采用交替辨识算法存在的建模精度低、模型收敛性无法保证的问题. 进而利用直链部分与增强部分, 分别设计了线性控制器及虚拟未建模动态补偿器, 建立了基于SCN 数据驱动模型的自适应控制新方法, 分析了其稳定性与收敛性, 通过数值仿真实验和采用交替辨识算法的传统自适应控制方法进行对比, 实验结果表明所提方法的有效性.
城市固废焚烧过程数据驱动建模与自组织控制
丁海旭, 汤健, 乔俊飞
当前状态:  doi: 10.16383/j.aas.c220570
[摘要](147) [HTML全文](76)
摘要:
城市固废焚烧(Municipal solid waste incineration, MSWI)是处置城市固废(Municipal solid waste, MSW) 的主要手段之一. 中国MSW来源范围广、组分复杂、热值波动大, 其焚烧过程通常依靠人工干预, 这导致MSWI过程智能化水平较低且难以满足日益提升的控制需求. MSWI具有多变量耦合、工况漂移等诸多不确定性特征, 因而难以建立其被控对象模型并设计在线控制器. 针对以上问题, 提出了一种面向MSWI过程的数据驱动建模与自组织控制方法. 首先, 构建了基于多输入多输出Takagi Sugeno 模糊神经网络(Multi-input multi-output Takagi Sugeno fuzzy neural network, MIMO-TSFNN) 的被控对象模型; 然后, 设计了基于多任务学习的自组织模糊神经网络控制器(Multi-task learning fuzzy neural network controller, MTL-SOFNNC)用于同步控制炉膛温度与烟气含氧量, 其通过计算神经元的相似度与多任务学习(Multi-task learning, MTL)能力对控制器结构进行自组织调整; 接着, 通过Lyapunov定理对MTL-SOFNNC稳定性进行了证明; 最后, 通过北京市某MSWI厂的过程数据验证了模型与控制器的有效性.
一种同伴知识互增强下的序列推荐方法
胡开喜, 李琳, 吴小华, 解庆, 袁景凌
当前状态:  doi: 10.16383/j.aas.c220347
[摘要](92) [HTML全文](34)
摘要:
序列推荐(Sequential recommendation, SR)旨在建模用户序列中的动态兴趣, 预测下一个行为. 现有基于知识蒸馏的多模型集成方法通常将教师模型预测的概率分布作为学生模型样本学习的软标签, 不利于关注低置信度序列样本中的动态兴趣. 提出了一种同伴知识互增强下的序列推荐方法(Sequential recommendation enhanced by peer knowledge, PeerRec), 使多个具有差异的同伴网络按照人类由易到难的认知过程进行两阶段的相互学习. 在第一阶段知识蒸馏的基础上, 第二阶段的刻意训练通过动态最小组策略协调多个同伴从低置信度样本中挖掘出可被加强训练的潜在样本. 然后, 受训的网络利用同伴对潜在样本预测的概率分布调节自身对该样本学习的权重, 从解空间中探索更优的兴趣表示. 三个公开数据集上的实验结果表明, 提出的PeerRec方法相比于最新的基线方法在基于Top-k的指标上不仅获得了更佳的推荐精度, 且具有良好的在线推荐效率.
基于分层控制策略的六轮滑移机器人横向稳定性控制
于力率, 苏晓杰, 孙少欣, 焦春亭
当前状态:  doi: 10.16383/j.aas.c220326
[摘要](83) [HTML全文](35)
摘要:
六轮野外机器人通常体积庞大, 难以建立其动力学模型. 采用传统的速度控制方法很难保证机器人的横向稳定性. 为了解决这一问题, 研究了基于分层控制策略的六轮滑移机器人横向稳定性控制问题. 首先分析整车受力情况, 建立六轮滑移机器人的动力学模型. 其次, 设计基于分层控制策略的动力学控制器, 其中上层为基于改进趋近律的滑模控制器, 实现对期望横摆角速度的跟踪; 下层为基于附着率最优的转矩分配控制器, 该控制器可以保证机器人行驶的横向稳定性. 最后, 在不同工况下进行仿真实验, 并搭建实验平台进行实物测试. 结果表明设计的控制器可以有效提高机器人的横向稳定性.
基于最大最小策略的纵向联邦学习隐私保护方法
李荣昌, 刘涛, 郑海斌, 陈晋音, 刘振广, 纪守领
当前状态:  doi: 10.16383/j.aas.c211233
[摘要](88) [HTML全文](37)
摘要:
纵向联邦学习是一种新兴的分布式机器学习技术, 在保障隐私性的前提下利用分散在各个机构的数据实现机器学习模型的联合训练. 纵向联邦学习被广泛应用于工业互联网金融借贷和医疗诊断等众多领域中, 因此保证其隐私安全性具有重要意义. 本文首先针对纵向联邦学习协议中由于参与方交换的嵌入表示造成的隐私泄露风险, 研究由协作者发起的通用的属性推断攻击. 攻击者利用辅助数据和嵌入表示训练一个攻击模型, 然后利用训练完成的攻击模型窃取参与方的隐私属性. 实验结果表明: 纵向联邦学习在训练、推理阶段产生的嵌入表示容易泄露数据隐私. 为了应对上述隐私泄露风险, 进一步提出一种基于最大最小策略的纵向联邦学习隐私保护方法, 其引入梯度正则组件保证训练过程主任务的预测性能, 同时引入重构组件掩藏参与方嵌入表示中包含的隐私属性信息. 最后, 在钢板缺陷诊断工业场景的实验结果表明: 相比于没有任何防御方法的VFL, 隐私保护方法将攻击推断准确度从95%降到55%以下, 接近于随机猜测的水平, 同时主任务预测准确率仅下降2%.
面向全量测点耦合结构分析与估计的工业过程监测方法
赵健程, 赵春晖
当前状态:  doi: 10.16383/j.aas.c220090
[摘要](239) [HTML全文](92)
摘要:
实际工业场景中, 需要在生产过程中收集大量测点的数据, 从而掌握生产过程运行状态. 传统的过程监测方法通常仅评估运行状态整体的异常与否, 或对运行状态进行分级评估, 这种方式并不会直接定位故障部位, 不利于故障的高效检修. 为此, 提出了一种基于全量测点估计的监测模型, 根据全量测点估计值与实际值的偏差定义监测指标, 从而实现全量测点的分别精准监测. 为了克服原有的基于工况估计的监测方法监测不全面且对测点间耦合关系建模不充分的问题, 提出了多核图卷积网络(Multi-kernel graph convolution network, MKGCN), 通过将全量传感器测点视为一张全量测点图, 显式地对测点间耦合关系进行建模, 从而实现了全量传感器测点的同步工况估计. 此外, 面向在线监测场景, 设计了基于特征逼近的自迭代方法, 从而克服了在异常情况下由于测点间强耦合导致的部分测点估计值异常的问题. 所提出的方法在电厂百万千瓦超超临界机组中引风机的实际数据上进行了验证, 结果显示, 提出的监测方法与其他典型方法相比能够更精准地检测出发生故障的测点.
基于AMOWOA算法的区域综合能源系统运行优化调度
韩永明, 王新鲁, 耿志强, 朱群雄, 毕帅, 张红斌
当前状态:  doi: 10.16383/j.aas.c211146
[摘要](101) [HTML全文](19)
摘要:
如今智能优化算法已广泛应用于工程优化中,在当前多能耦合与互补的能源发展趋势下,以仅考虑系统经济指标的单目标优化模式已经不再适用于目前区域综合能源系统的运行优化调度,需要研究一种多目标运行策略来解决区域综合能源系统的运行优化调度问题.首先综合考虑经济与能源利用两个指标并结合商业住宅区域的特性,以系统日运行收益和一次能源利用率为优化目标构建了商业住宅区域综合能源系统多目标运行优化调度模型.其次由于传统多目标智能优化算法缺乏一种最优解综合评价方法,基于非支配排序以及拥挤度计算的多目标算法框架,提出了一种利用模糊一致矩阵选取全局最优解的多目标鲸鱼优化算法(AMOWOA),并将提出算法对商住区域综合能源系统多目标运行优化调度模型进行求解.最后以华东某商业住宅区域综合能源系统为例进行仿真,验证了该方法的有效性和可行性.
基于事件触发机制的多自主水下航行器协同路径跟踪控制
王浩亮, 柴亚星, 王丹, 刘陆, 王安青, 彭周华
当前状态:  doi: 10.16383/j.aas.c211163
[摘要](118) [HTML全文](110)
摘要:
针对考虑外部海洋环境扰动和内部模型不确定性的多个欠驱动自主水下航行器, 研究了其在通信资源受限和机载能量受限下的协同路径跟踪控制问题. 首先, 针对水声通信信道窄造成的通信资源受限问题, 设计了一种基于事件触发机制的协同通信策略; 其次, 针对模型不确定性和海洋环境扰动问题, 设计了一种基于事件触发机制的线性扩张状态观测器来逼近水下航行器的未知动力学, 并降低了系统采样次数; 最后, 针对机载能量受限问题, 设计了一种基于事件触发机制的动力学控制律, 在保证控制精度的前提下降低了执行机构的动作频次, 从而节省了能量消耗. 应用级联系统稳定性分析方法, 分别证明了闭环系统是输入状态稳定的, 且系统不存在Zeno行为. 仿真结果验证了所提基于事件触发机制的多自主水下航行器协同路径跟踪控制方法的有效性.
基于多目标PSO混合优化的虚拟样本生成
王丹丹, 汤健, 夏恒, 乔俊飞
当前状态:  doi: 10.16383/j.aas.c211091
[摘要](110) [HTML全文](31)
摘要:
产品质量与污染排放浓度等难测参数的实时检测是实现复杂工业过程优化控制的关键因素之一. 受限于检测技术难度、高时间与经济成本等原因, 难测参数的软测量模型建模样本存在数量少、分布稀疏与不平衡等问题, 严重制约了数据驱动模型的泛化性能. 针对以上问题, 提出一种基于多目标粒子群优化混合优化的虚拟样本生成方法, 首先, 设计综合学习粒子群优化算法的种群表征机制, 使其能够同时编码用于映射模型超参数优化的连续变量和用于虚拟样本选择的离散变量; 然后, 定义具有多阶段多目标特性的综合学习粒子群优化算法适应度函数, 使其能够在确保模型泛化性能的同时最小化虚拟样本数量; 最后, 向虚拟样本生成多目标混合优化任务对综合学习粒子群优化算法进行改进, 使其能够适应虚拟样本优选过程的变维特性并提高优化过程的收敛速度. 同时, 首次借鉴度量学习的指标提出用于评价虚拟样本质量的综合评价指标和分布相似指标. 本文采用混凝土抗压强度和超导临界温度基准数据集验证了所提算法的合理性及有效性, 基于工业数据集构建了面向城市固废焚烧过程的二噁英排放浓度的软测量模型, 进一步验证了所提方法.
基于不确定性的多元时间序列分类算法研究
张旭, 张亮, 金博, 张红哲
当前状态:  doi: 10.16383/j.aas.c210302
[摘要](682) [HTML全文](490)
摘要:
多元时间序列(Multivariate time series, MTS)分类是许多领域中的重要问题, 准确的分类结果可以有效地帮助决策. 当前的MTS分类算法在个体的表征学习阶段难以自动建模多元变量之间复杂的交互关系, 并且无法评估分类结果的可信度, 这会导致模型性能受限, 以及缺乏具备统计意义的可靠性解释. 本文提出了一种基于不确定性的多元时间序列分类算法, 变分贝叶斯共享图神经网络, 即VBSGNN (Variational Bayes shared graph neural network). 首先通过图神经网络提取多元变量之间的交互特征, 然后利用贝叶斯神经网络为预测过程引入了不确定性. 最后在10个公开MTS数据集上进行了算法实验, 并与当前提出的7类算法进行了比较, 结果表明VBSGNN可有效学习多元变量之间的交互关系, 提升了分类效果, 并使得模型具备一定的可靠性评估能力.
基于单应性扩散约束的二步网格优化视差图像对齐
陈殷齐, 郑慧诚, 严志伟, 林峻宇
当前状态:  doi: 10.16383/j.aas.c210966
[摘要](50) [HTML全文](21)
摘要:
目前, 在带有视差场景的图像对齐中, 主要难点在某些无法找到足够匹配特征的区域, 这些区域称为匹配特征缺失区域. 现有算法往往忽略匹配特征缺失区域的对齐建模, 而只将有足够匹配特征区域中的部分单应变换系数(如相似性变换系数)传递给匹配特征缺失区域, 或者采用将匹配特征缺失区域转化为有足够匹配特征区域的间接方式, 因此对齐效果仍不理想. 在客观事实上, 位于相同平面的区域应该拥有相同的完整单应变换而非部分变换参数. 由此出发, 利用单应变换系数扩散的思想设计了一个二步网格优化的图像对齐算法. 该方法在第一步网格优化时获得有足够匹配特征区域的单应变换, 再基于提出的单应性扩散约束将这些单应变换系数扩散到邻域网格, 进行第二步网格优化, 在保证优化任务简洁高效的前提下实现单应变换系数的传播与图像对齐. 相较于现有的针对视差场景图像对齐算法, 所提方法在各项指标上都获得了更好的效果.
兵棋推演的智能决策技术与挑战
尹奇跃, 赵美静, 倪晚成, 张俊格, 黄凯奇
当前状态:  doi: 10.16383/j.aas.c210547
[摘要](2006) [HTML全文](1180)
摘要:
近年来, 以人机对抗为途径的智能决策技术取得了飞速发展, 人工智能技术AlphaGo、AlphaStar等分别在围棋、星际争霸等游戏环境中战胜了顶尖人类选手. 兵棋推演, 作为一种人机对抗策略验证环境, 由于其非对称环境决策、更接近真实环境的随机性与高风险决策等特点受到智能决策技术研究者的广泛关注. 通过梳理兵棋推演与目前主流人机对抗环境如围棋、德扑、星际争霸等对抗环境的区别, 阐述了兵棋推演智能决策技术的发展现状, 分析了当前主流技术的局限与瓶颈, 对兵棋推演中的智能决策技术研究进行了思考, 期望能对兵棋推演相关问题中的智能决策技术研究带来启发.
基于区块链的策略隐藏大数据访问控制方法
林莉, 储振兴, 刘子萌, 郭馥宾, 解晓宇, 张建标
当前状态:  doi: 10.16383/j.aas.c211178
[摘要](156) [HTML全文](54)
摘要:
针对大数据应用中用户共享数据的访问控制由半可信云服务商实施所带来的隐私泄露、策略和访问日志易被篡改等问题, 提出一种基于区块链的策略隐藏大数据访问控制方法. 该方法采用区块链技术实施访问控制以减少对服务商的信任依赖, 引入属性基加密以及双线性映射技术去实现在不泄露访问控制策略的前提下, 通过智能合约正确执行访问控制策略; 同时, 解耦访问控制策略, 简化用户策略的发布、更新和执行; 并应用链上和链下存储相结合方式解决智能合约和访问控制策略占用区块链节点资源不断增大的问题. 最后对该方法进行了理论分析和HyperLedger Fabric环境下的实验评估, 结果表明该方法能在策略隐藏情况下有效实现访问控制, 但不会给数据拥有者、区块链节点增加过多额外计算和存储开销.
端边云协同的氧化铝生产过程苛性碱浓度智能预报方法
高愫婷, 柴天佑
当前状态:  doi: 10.16383/j.aas.c220227
[摘要](210) [HTML全文](91)
摘要:
苛性碱溶液浓度是氧化铝生产过程中的重要运行指标, 由于苛性碱溶液的温度和浓度频繁波动, 导致目前的浓度检测仪表检测精度低, 只能采用人工化验获得苛性碱浓度值, 化验结果的严重滞后导致无法实现苛性碱浓度的自动控制, 影响氧化铝产品质量. 在分析苛性碱溶液浓度控制过程动态特性的基础上建立了由线性模型和未知非线性动态系统描述的苛性碱浓度预报模型, 将参数辨识与自适应深度学习相结合, 提出端边云协同的氧化铝生产过程苛性碱浓度智能预报方法, 并采用氧化铝生产企业的实际生产数据对本文所提方法进行应用验证. 应用结果表明, 所提的苛性碱浓度智能预报方法可以实时、准确预报苛性碱浓度, 为实现苛性碱浓度的闭环运行优化控制创造了条件.
基于组-信息蒸馏残差网络的轻量级图像超分辨率重建
王云涛, 赵蔺, 刘李漫, 陶文兵
当前状态:  doi: 10.16383/j.aas.c211089
[摘要](167) [HTML全文](110)
摘要:
目前, 基于深度学习的超分辨算法已经取得了很好的性能. 但是这些方法通常具有较大的内存消耗和较高的计算复杂度, 很难应用到低算力或便携式设备上. 为了解决这一问题, 设计了一种轻量级的组-信息蒸馏残差网络用于快速且精确的单图像超分辨率. 具体来说, 提出一个更加有效的组-信息蒸馏模块, 作为网络特征提取基本块. 同时, 引入密集快捷连接对多个基本块进行组合, 构建组-信息蒸馏残差组, 捕获多层级信息和有效重利用特征. 另外, 还提出一个轻量的非对称残差Non-local模块对长距离依赖关系进行建模, 进一步提升超分的性能. 最后, 设计一个高频损失函数去解决像素损失带来图片细节平滑的问题. 大量的实验证明了该算法相较于其他先进方法, 可以在图像超分辨率性能和模型复杂度之间取得更好的平衡, 其在公开测试数据集B100上4倍超分速率达到56FPS, 比残差注意力网络快15倍.
面向高比例新能源电网的重大耗能企业需求响应调度
李远征, 倪质先, 段钧韬, 徐磊, 杨涛, 曾志刚
当前状态:  doi: 10.16383/j.aas.c220034
[摘要](128) [HTML全文](61)
摘要:
随着国家“双碳”重大战略的提出, 高比例新能源并网将成为我国电力能源转型的重要态势. 针对火电机组、配电网和需求侧关联的系列运行约束制约了电网对高比例新能源的有效消纳这一问题, 本文提出重大耗能企业这一主要电力负荷参与网需求响应(Demand response, DR)的研究思路, 通过重大耗能企业与电网协调调度促进新能源消纳, 并获得经济补偿以减少运行成本. 研究首先基于混合需求侧响应机制, 提出以重大耗能企业、新能源、火电机组为核心的协调调度方法, 并根据新能源预测值-预测误差的信息依存顺序提出了两步调度策略. 在此基础上, 进行生产过程行为建模以实现重大耗能企业需求侧响应决策描述, 并建立高比例新能源并网的重大耗能企业需求响应与电网协调调度优化模型. 最后, 基于烟台电网实际系统进行算例分析, 验证了重大耗能企业通过需求响应参与电网协调调度以及两步调度策略的有效性.
基于Petri网的组合设备建模与调度综述
袁凤连, 黄波, 王际鹏, 潘春荣
当前状态:  doi: 10.16383/j.aas.c210951
[摘要](147) [HTML全文](36)
摘要:
组合设备是半导体晶圆制造的核心装备, 其调度与控制优化是半导体制造领域极具挑战性的课题. Petri网因其强大的建模能力和简约的图形化表达优势, 被广泛地应用于组合设备的建模与调度. 对基于Petri网的组合设备建模与调度方法进行综述, 归纳总结了组合设备的结构类型、晶圆流程模式、调度策略及Petri网建模方法, 并系统阐述组合设备的七类典型调度问题, 包括驻留时间约束、作业时间波动、晶圆重入加工、多品种晶圆加工、加工模块故障、加工模块清洗和组合设备群. 最后讨论了当前组合设备调度存在的挑战及后续可能的研究方向.
考虑电网线路传输安全的分布式电力市场交易模式研究
李远征, 张虎, 刘江平, 赵勇, 连义成
当前状态:  doi: 10.16383/j.aas.c211244
[摘要](104) [HTML全文](30)
摘要:
分布式电力市场交易模式可以有效缓解传统集中模式下市场主体的隐私安全等问题, 但难以在保障市场主体收益和电力系统安全稳定运行的同时实现社会福利最大化. 因此, 考虑电网线路传输约束, 首先以社会福利最大化为目标构建了集中式交易模型, 并采用拉格朗日乘子法和对偶理论将其等价分解为各市场主体自身利益最大化的分布式交易模型. 在此基础上, 设计了两种适用于不同场景的分布式交易方法, 并构造电网安全成本影响市场主体的决策, 从而保证电网线路传输安全. 最后, 基于算例分析验证了两种方法的有效性.
n比特随机量子系统实时状态估计及其反馈控制
张骄阳, 丛爽, 匡森
当前状态:  doi: 10.16383/j.aas.c210916
[摘要](156) [HTML全文](23)
摘要:
对于连续弱测量过程存在高斯噪声的情况, 基于在线交替方向乘子法推导出一种适用于n比特随机量子系统实时状态估计的算法QSE-OADM; 运用李雅普诺夫方法设计控制律, 实现基于实时量子状态估计的反馈控制, 并证明所提控制律的收敛性. 以2比特随机量子系统为例进行数值仿真实验, 通过与基于QST-OADM算法和OPG-ADMM算法的实时量子状态估计及其反馈控制方案的性能对比, 显示出所提控制方案的优越性.
基于双模型交互学习的半监督医学图像分割
方超伟, 李雪, 李钟毓, 焦李成, 张鼎文
当前状态:  doi: 10.16383/j.aas.c210667
[摘要](261) [HTML全文](127)
摘要:
在医学图像中, 器官或病变区域的精准分割对疾病诊断等临床应用有着至关重要的作用, 然而分割模型的训练依赖于大量标注数据. 为减少对标注数据的需求, 本文主要研究针对医学图像分割的半监督学习任务. 现有半监督学习方法广泛采用平均教师模型, 其缺点在于, 基于指数移动平均(Exponential moving average, EMA)的参数更新方式使得老师模型累积学生模型的错误知识. 为避免上述问题, 提出一种双模型交互学习方法, 引入像素稳定性判断机制, 利用一个模型中预测结果更稳定的像素监督另一个模型的学习, 从而缓解了单个模型的错误经验的累积和传播. 提出的方法在心脏结构分割、肝脏肿瘤分割和脑肿瘤分割三个数据集中取得优于前沿半监督方法的结果. 在仅采用30%的标注比例时, 该方法在三个数据集上的戴斯相似指标(Dice similarity coefficient, DSC)分别达到89.13%, 94.15%, 87.02%.
数字孪生驱动的长距离带式输送机运行优化方法
杨春雨, 卜令超, 陈斌
当前状态:  doi: 10.16383/j.aas.c210979
[摘要](212) [HTML全文](50)
摘要:
长距离带式输送机是矿山、港口等领域运输散装物料的主要工具. 针对长距离带式输送机的安全节能运行问题, 本文研究数字孪生驱动的运行优化方法. 首先, 构建由数字孪生模型、模型同步算法、控制策略和现实带式输送机组成的数字孪生驱动运行优化框架; 然后, 建立数字孪生模型, 包括基于变质量牛顿第二定律和有限元分析法的输送带动力学模型、物料流动态模型和动态能耗模型; 最后, 提出数字孪生驱动的计算决策−仿真评估−优化校正优化决策方法, 优化带式输送机的稳态和暂态运行带速, 形成可行带速设定曲线. 实验表明, 数字孪生驱动的带式输送机运行优化方法可以实现带式输送机安全节能运行. 与传统控制方法相比, 能够根据运行工况实时调速, 提高输送带填充率, 节能13.87%.
基于广义PI观测器零点配置的抗扰残差评估和故障检测
胡宇翔, 代学武, 崔东亮, 周冬
当前状态:  doi: 10.16383/j.aas.c211235
[摘要](104) [HTML全文](17)
摘要:
针对一类存在周期性扰动的系统, 提出了一种新型的基于广义PI观测器零点配置的抗扰残差评估框架, 充分利用了广义PI观测器的零点可配置性, 通过调整传递函数矩阵在阻塞零点处的相位响应并利用该频点处矩阵的零特征向量对残差信号进行滤波, 实现了残差信号与周期性扰动的解耦. 此外, 还创新性地提出了一种基于矩阵条件数的优化目标函数, 改善了残差信号对故障的敏感性. 最后, 通过两轮自平衡小车的仿真对比实验和实物测试, 验证了所提方法在残差抑扰和故障检测方面的有效性.
面向非独立同分布数据的自适应联邦深度学习算法
张泽辉, 李庆丹, 富瑶, 何宁昕, 高铁杠
当前状态:  doi: 10.16383/j.aas.c201018
[摘要](1865) [HTML全文](1138)
摘要:
近些年, 联邦学习由于能够打破数据壁垒, 实现孤岛数据价值变现, 受到了工业界和学术界的广泛关注. 然而, 在实际工程应用中, 联邦学习存在着数据隐私泄露和模型性能损失的问题. 对此, 首先对这两个问题进行了数学描述与分析. 然后, 提出了一种自适应模型聚合方案, 该方案能够设定各参与者的mini-batch值和自适应调整全局模型聚合间隔, 旨在保证模型精度的同时, 提高联邦学习训练效率. 并且, 混沌系统被首次引入联邦学习领域中, 用于构建一种基于混沌系统和同态加密的混合隐私保护方案, 从而进一步提升系统的隐私保护水平. 理论分析与实验结果表明, 提出的联邦学习算法能够保证参与者的数据隐私安全. 并且, 在非独立同分布数据的场景下, 该算法够在保证模型精度的前提下提高训练效率, 降低系统通信成本, 具备实际工业场景应用的可行性.
具有类万有引力的有界置信观点动力学分析与应用
刘青松, 习晓苗, 柴利
当前状态:  doi: 10.16383/j.aas.c211134
[摘要](121) [HTML全文](18)
摘要:
在社会网络中, Hegselmann-Krause模型描述了置信阈值内不同邻居对个体的观点影响权重都是相同的, 且邻居对个体的吸引力与他们的观点差值成正比, 这是不切实际的. 为了克服经典Hegselmann-Krause模型的不足, 提出了具有类万有引力的有界置信观点动力学模型, 描述个体观点的更新依赖于观点之间的差值和邻居的权威性, 且不同邻居对个体的观点影响权重不同. 根据置信矩阵的性质证明观点的收敛性, 并分析具有衰减置信阈值的观点动力学行为, 给出观点收敛速率的显式解. 最后, 利用本文提出的观点动力学模型研究社会心理学中的“权威效应”和“非零和效应”. 仿真分析表明, 邻居的权威性有利于观点达成一致.
基于关系网络的轴承剩余使用寿命预测方法
赵志宏, 张然, 孙诗胜
当前状态:  doi: 10.16383/j.aas.c211195
[摘要](268) [HTML全文](66)
摘要:
针对轴承全寿命周期数据获取困难、训练样本少的问题, 提出一种基于关系网络的轴承剩余使用寿命(Remaining useful life,RUL)预测方法. 关系网络是一种基于度量的元学习方法, 在少量训练样本下, 具有快速学习新任务的优点. 设计了一种基于关系网络的轴承健康评估模型, 利用关系网络的嵌入模块提取轴承状态特征, 利用关系模块度量轴承状态特征之间的相似性, 基于相似性构建轴承健康指标;对健康指标进行Savitzky-golay滤波平滑处理, 降低振荡对预测结果的影响;最后利用线性函数对健康指标进行拟合, 得到轴承RUL预测值. 为验证所提方法的有效性, 在PHM2012轴承实测数据集上进行实验. 结果表明所得健康指标能够反映轴承的退化趋势, 所得RUL预测结果与ConvLSTM、Transformer、RNN、LSTM、Attention mechanism方法相比, 误差百分比分别减少了1.68%、3.41%、9.03%、13.72%、30.49%. 方法在少量训练样本的基础上可以取得较好的预测结果, 具有一定的应用价值.
切换拓扑下动态事件触发多智能体系统固定时间一致性
孙梦薇, 任璐, 刘剑, 孙长银
当前状态:  doi: 10.16383/j.aas.c211123
[摘要](345) [HTML全文](107)
摘要:
针对有扰动的一阶非线性多智能体系统在切换拓扑下的实际固定时间平均一致性问题, 提出了基于动态事件触发机制的固定时间一致性协议. 该一致性协议在节约更多资源的情况下, 使多智能体系统以更快的速度达到一致. 相对于有限时间一致性控制算法, 固定时间一致性控制算法的收敛时间不依赖于初始状态, 并且可以通过选择合适的控制器参数设定相应的收敛时间上界. 通过设计一个包含双曲正切函数的测量误差, 证明系统不存在Zeno行为. 由于内部动态变量的引入, 大量不必要的触发被取消, 从而节省能量损耗. 最后, 通过仿真实验验证算法的可行性和有效性.
多层异构生物网络候选疾病基因识别
丁苍峰, 王君, 张紫芸
当前状态:  doi: 10.16383/j.aas.c210577
[摘要](166) [HTML全文](81)
摘要:
现有大多数用于识别候选疾病基因的随机游走方法通常优先访问高度连接的基因, 而可能与已知疾病有关的不知名或连接性差的基因易被忽略或难以识别. 此外, 这些方法仅访问单个基因网络或各种基因数据的聚合网络, 导致偏差和不完整性. 因此, 设计一种能控制随机游走运动方向和整合多种数据源的候选疾病基因识别方法将是一个迫切需要解决的问题. 为此, 本文首先构建多层网络和多层异构基因网络. 然后, 提出了一种游走于多层和多层异构网络的拓扑偏置随机游走(Biased random walk with restart, BRWR)算法来识别疾病基因. 实验结果表明, 游走于不同类型网络上的识别候选疾病基因的BRWR算法优于现有的算法. 最后, 应用于多层异构网络上的BRWR算法能预测未诊断的新生儿类早衰综合征中涉及的疾病基因.