2.624

2020影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
显示方式:
目录
2022, 48(5).  
[封面浏览] [PDF 8018KB](9)
综述
集群机器人系统特性评价研究综述
武文亮, 周兴社, 沈博, 赵月
2022, 48(5): 1153-1172.   doi: 10.16383/j.aas.c200964
[摘要](741) [HTML全文](437) [PDF 1278KB](209)
摘要:
集群机器人系统是群体智能的一个重要应用研究领域, 也是机器人系统未来发展的重要方向之一. 集群机器人系统特性评价是一个极具挑战性的关键技术与理论问题, 对于集群机器人系统的研究与发展具有重要意义. 首先, 给出了对集群机器人系统基本概念的理解, 并且从多种不同角度作出了分类. 其次, 梳理了多个关键的集群机器人系统期望特性; 在此基础上, 分别从评价标准、评价指标体系和评价方法三方面对已有集群机器人系统特性评价研究成果进行了比较全面的评述. 最后, 分析总结了当前集群机器人系统特性评价研究工作的不足, 并对未来发展方向进行了展望.
眼动跟踪研究进展与展望
苟超, 卓莹, 王康, 王飞跃
2022, 48(5): 1173-1192.   doi: 10.16383/j.aas.c210514
[摘要](630) [HTML全文](638) [PDF 1488KB](250)
摘要:
眼动跟踪是指自动检测瞳孔中心位置或者识别三维视线方向及注视点的过程, 被广泛应用于人机交互、智能驾驶、人因工程等. 由于不同场景下的光照变化、个体眼球生理构造差异、遮挡、头部姿态多样等原因, 眼动跟踪的研究目前仍然是一个具有挑战性的热点问题. 针对眼动跟踪领域,首先概述眼动跟踪研究内容, 然后分别论述近年来瞳孔中心检测及视线估计领域的国内外研究进展, 综述目前眼动跟踪主要数据集、评价指标及研究成果, 接着介绍眼动跟踪在人机交互、智能驾驶等领域的应用, 最后对眼动跟踪领域的未来发展趋势进行展望.
论文与报告
基于自适应LASSO先验的稀疏贝叶斯学习算法
白宗龙, 师黎明, 孙金玮
2022, 48(5): 1193-1208.   doi: 10.16383/j.aas.c210022
[摘要](779) [HTML全文](298) [PDF 1442KB](114)
摘要:
为了提高稀疏信号恢复的准确性, 开展了基于自适应套索算子(Least absolute shrinkage and selection operator, LASSO)先验的稀疏贝叶斯学习(Sparse Bayesian learning, SBL)算法研究. 1) 在稀疏贝叶斯模型构建阶段, 构造了一种新的多层贝叶斯框架, 赋予信号中元素独立的LASSO先验. 该先验比现有稀疏先验更有效地鼓励稀疏并且该模型中所有参数更新存在闭合解. 然后在该多层贝叶斯框架的基础上提出了一种基于自适应LASSO先验的SBL算法. 2) 为降低提出的算法的计算复杂度, 在贝叶斯推断阶段利用空间轮换变元方法对提出的算法进行改进, 避免了矩阵求逆运算, 使参数更新快速高效, 从而提出了一种基于自适应LASSO先验的快速SBL算法. 本文提出的算法的稀疏恢复性能通过实验进行了验证, 分别针对不同大小测量矩阵的稀疏信号恢复以及单快拍波达方向(Direction of arrival, DOA)估计开展了实验. 实验结果表明: 提出基于自适应LASSO先验的SBL算法比现有算法具有更高的稀疏恢复准确度; 提出的快速算法的准确度略低于提出的基于自适应LASSO先验的SBL算法, 但计算复杂度明显降低.
一种脑肢融合的神经康复训练在线评价与调整方法
舒智林, 李思宜, 于宁波, 朱志中, 巫嘉陵, 韩建达
2022, 48(5): 1209-1219.   doi: 10.16383/j.aas.c200452
[摘要](601) [HTML全文](118) [PDF 4706KB](70)
摘要:
在神经康复训练中, 保持患者积极主动参与、提供适配其运动能力的训练难度, 对于取得良好的康复效果至关重要. 针对患者在长期康复训练过程中容易懈怠甚至出现惰性效应、运动能力有波动等挑战, 系统提出了一种脑肢融合的神经康复训练在线评价与调整方法. 首先, 从脑、肢体以及训练任务三个层面, 基于脑电(Electroencephalography, EEG)信号、肢体运动数据和任务评分, 建立了对患者神经参与程度、运动控制能力和任务完成情况的量化评价方法. 进而, 在任务操作难度、辅助或干扰力场以及视觉辅助等方面, 设计了康复训练任务内和任务间的在线调整方法. 通过一个针对手功能康复的灵巧操作任务, 实现了基于所提出的脑肢融合在线评价与调整方法的闭环神经康复训练. 开展实验, 招募16名受试者参加, 对比分析开环训练和闭环训练两种情况下的实验结果, 验证了所提出方法的可行性和有效性. 该工作可推广应用到脑功能障碍患者的运动康复训练, 进一步提高康复效果.
基于气压肌动图和改进神经模糊推理系统的手势识别研究
汪雷, 黄剑, 段涛, 伍冬睿, 熊蔡华, 崔雨琦
2022, 48(5): 1220-1233.   doi: 10.16383/j.aas.c200901
[摘要](661) [HTML全文](331) [PDF 1536KB](55)
摘要:
手势识别是人机交互领域的重要研究内容, 为截肢患者控制智能假肢手提供基础. 当前主流方法之一是利用表面肌电图(Electromyogram, EMG)识别手部运动意图, 但肌电信号存在信号弱和易受噪声、汗液、疲劳影响等缺点. 同时肌电图在识别准确率方面, 尤其是截肢患者手势识别方面仍然具有较大的提升空间. 针对这些问题, 设计了基于气压肌动图(Pressure-based mechanomyogram, pMMG)的穿戴式信号采集装置, 为手势识别提供了优质的信号源. 结合深度神经网络中全连接层结构、典型抽样和标准正则化技术, 提出了一种改进多类神经模糊推理系统(Improved multicalss neural fuzzy inference system, IMNFIS), 与传统自适应神经模糊推理系统(Adaptive neural fuzzy inference system, ANFIS)相比, 泛化能力得到显著提升. 招募了7名健康受试者和1名截肢受试者, 并用8种算法开展离线实验. 所提方法在残疾人手势识别实验中取得了97.25%的最高平均准确率, 在健康人手势识别实验中取得了98.18%的最高平均准确率. 与近年公开报道的多种手势识别研究相比, 所提方法的综合性能更优.
基于事件触发的离散 MIMO 系统自适应评判容错控制
王敏, 黄龙旺, 杨辰光
2022, 48(5): 1234-1245.   doi: 10.16383/j.aas.c200721
[摘要](599) [HTML全文](222) [PDF 1831KB](118)
摘要:
本文针对具有执行器故障的一类离散非线性多输入多输出(Multi-input multi-output, MIMO)系统, 提出了一种基于事件触发的自适应评判容错控制方案. 该控制方案包括评价和执行网络. 在评价网络里, 为了缓解现有的非光滑二值效用函数可能引起的执行网络跳变问题, 利用高斯函数构建了一个光滑的效用函数, 并采用评价网络近似最优性能指标函数. 在执行网络里, 通过变量替换将系统状态的将来信息转化成关于系统当前状态的函数, 并结合事件触发机制设计了最优跟踪控制器. 该控制器引入了动态补偿项, 不仅能够抑制执行器故障对系统性能的影响, 而且能够改善系统的控制性能. 稳定性分析表明所有信号最终一致有界且跟踪误差收敛于原点的有界小邻域内. 数值系统和实际系统的仿真结果验证了该方案的有效性.
基于多智能体强化学习的乳腺癌致病基因预测
刘健, 顾扬, 程玉虎, 王雪松
2022, 48(5): 1246-1258.   doi: 10.16383/j.aas.c210583
[摘要](260) [HTML全文](185) [PDF 2745KB](78)
摘要:
通过分析基因突变过程, 提出利用强化学习对癌症患者由正常状态至患病状态的过程进行推断, 发现导致患者死亡的关键基因突变. 首先, 将基因视为智能体, 基于乳腺癌突变数据设计多智能体强化学习环境; 其次, 为保证智能体探索到与专家策略相同的策略和满足更多智能体快速学习, 根据演示学习理论, 分别提出两种多智能体深度Q网络: 基于行为克隆的多智能体深度Q网络和基于预训练记忆的多智能体深度Q网络; 最后, 根据训练得到的多智能体深度Q网络进行基因排序, 实现致病基因预测. 实验结果表明, 提出的多智能体强化学习方法能够挖掘出与乳腺癌发生、发展过程密切相关的致病基因.
联合样本输出与特征空间的半监督概念漂移检测法及其应用
孙子健, 汤健, 乔俊飞
2022, 48(5): 1259-1272.   doi: 10.16383/j.aas.c200984
[摘要](634) [HTML全文](193) [PDF 2951KB](55)
摘要:
城市固废焚烧(Municipal solid waste incineration, MSWI)过程受垃圾成分波动、设备磨损与维修、季节交替变化等因素的影响而存在概念漂移现象, 这导致用于污染物排放浓度的建模数据具有时变性. 为此, 需要识别能够表征概念漂移的新样本对污染物测量模型进行更新, 但现有漂移检测方法难以有效应用于建模样本真值获取困难的工业过程. 针对上述问题, 提出一种联合样本输出与特征空间的半监督概念漂移检测方法. 首先, 采用基于主成分分析(Principal component analysis, PCA)的无监督机制识别特征空间内的概念漂移样本; 然后, 在样本输出空间采用基于时间差分(Temporal-difference, TD)学习的半监督机制对上述概念漂移样本进行伪真值标注后, 再用Page-Hinkley检测法确认能够表征概念漂移的样本; 最后, 采用上述步骤获得的新样本结合历史样本对模型进行更新. 基于合成和真实工业过程数据集的仿真结果表明所提方法具有优于已有方法的性能, 能够在加强模型漂移适应性的同时有效缩减样本标注成本.
支持数据隐私保护的联邦深度神经网络模型研究
张泽辉, 富瑶, 高铁杠
2022, 48(5): 1273-1284.   doi: 10.16383/j.aas.c200236
[摘要](178) [HTML全文](126) [PDF 1916KB](113)
摘要:
近些年, 人工智能技术已经在图像分类、目标检测、语义分割、智能控制以及故障诊断等领域得到广泛应用, 然而某些行业(例如医疗行业)由于数据隐私的原因, 多个研究机构或组织难以共享数据训练联邦学习模型. 因此, 将同态加密(Homomorphic encryption, HE)算法技术引入到联邦学习中, 提出一种支持数据隐私保护的联邦深度神经网络模型(Privacy-preserving federated deep neural network, PFDNN). 该模型通过对其权重参数的同态加密保证了数据的隐私性, 并极大地减少了训练过程中的加解密计算量. 通过理论分析与实验验证, 所提出的联邦深度神经网络模型具有较好的安全性, 并且能够保证较高的精度.
基于输出反馈线性化的多移动机器人目标包围控制
寇立伟, 项基
2022, 48(5): 1285-1291.   doi: 10.16383/j.aas.c200335
[摘要](231) [HTML全文](176) [PDF 1284KB](79)
摘要:
针对受非完整约束的多移动机器人系统的移动目标包围控制问题, 提出一种基于输出反馈线性化的局部协同控制方法. 利用机器人与邻居节点和目标的相对距离信息、角度信息以及机器人自身的方位角信息设计协同控制器. 该方法无需事先指定包围编队形状, 可实现对移动目标的速度估计, 且保证机器人之间的障碍规避. 严格的理论分析证明了移动目标指数收敛到多移动机器人构成的凸包内部. 最后, 仿真结果验证了所提控制方法的有效性.
一种改进的特征子集区分度评价准则
谢娟英, 吴肇中, 郑清泉, 王明钊
2022, 48(5): 1292-1306.   doi: 10.16383/j.aas.c200704
[摘要](460) [HTML全文](148) [PDF 1062KB](34)
摘要:
针对特征子集区分度准则(Discernibility of feature subsets, DFS)没有考虑特征测量量纲对特征子集区分能力影响的缺陷, 引入离散系数, 提出GDFS (Generalized discernibility of feature subsets)特征子集区分度准则. 结合顺序前向、顺序后向、顺序前向浮动和顺序后向浮动4种搜索策略, 以极限学习机为分类器, 得到4种混合特征选择算法. UCI数据集与基因数据集的实验测试, 以及与DFS、Relief、DRJMIM、mRMR、LLE Score、AVC、SVM-RFE、VMInaive、AMID、AMID-DWSFS、CFR和FSSC-SD的实验比较和统计重要度检测表明: 提出的GDFS优于DFS, 能选择到分类能力更好的特征子集.
多子群的共生非均匀高斯变异樽海鞘群算法
陈忠云, 张达敏, 辛梓芸
2022, 48(5): 1307-1317.   doi: 10.16383/j.aas.c190684
[摘要](75) [HTML全文](54) [PDF 1056KB](26)
摘要:
针对樽海鞘群算法求解精度不高和收敛速度慢等缺点, 提出一种多子群的共生非均匀高斯变异樽海鞘群算法. 根据不同适应度值将樽海鞘链群分为三个子种群, 各个子种群分别进行领导者位置更新、追随者共生策略和链尾者非均匀高斯变异等操作. 使用统计分析、收敛速度分析、Wilcoxon检验、经典基准函数和CEC 2014函数的标准差来评估改进樽海鞘群算法的效率. 结果表明, 改进算法具有更好的寻优精度和收敛速度. 尤其在求解高维和多峰测试函数上, 改进算法拥有更好性能.
通信受限的多智能体系统二分实用一致性
陈世明, 姜根兰, 张正
2022, 48(5): 1318-1326.   doi: 10.16383/j.aas.c200600
[摘要](805) [HTML全文](276) [PDF 1572KB](131)
摘要:
针对存在量化数据、通信时滞等通信约束以及带有竞争关系的多智能体系统, 研究其二分实用一致性问题, 提出了一种基于量化器的分布式控制协议. 该协议基于结构平衡拓扑假设, 通过规范变换将具有竞争关系系统转变为具有非负连接权重系统, 使二分实用一致性问题转变为一般实用一致性问题. 利用微分包含理论、菲利波夫解的框架、代数图论以及Lyapunov稳定性理论, 证明了在本文所提控制策略下, 具有竞争关系的多智能体系统能实现二分实用一致, 即智能体状态收敛至模相同但符号不同的可控区间, 并给出了误差收敛上界值. 仿真试验进一步验证了理论结果的有效性.
基于分步子空间映射的无标记膈肌运动预测算法
余航, 李晨阳, 余绍德, 冯冬竹, 许录平
2022, 48(5): 1327-1342.   doi: 10.16383/j.aas.c200471
[摘要](511) [HTML全文](105) [PDF 3063KB](39)
摘要:
呼吸会引起体内器官和肿瘤的运动, 这会显著影响放射治疗的过程和效果. 人体内部膈肌和胸腹部外表面是当前两种与呼吸系统高度相关的结构, 本文对其进行系统研究, 提出了一种新的分步子空间映射(Two-step subspace mapping, TSSM)算法, 通过对体外胸腹部表面的测量, 来预测体内膈肌的运动. 首先采用三维图像分割技术对4D CT图像进行分割, 在不使用标记物的情况下, 准确测量体内膈肌和体外胸腹部表面的位移. 为了解决跨空间的预测问题, TSSM首先构造特征子空间, 并将膈肌数据和胸腹外表面数据分别映射到各自的子空间中, 以减少数据的相关性和冗余信息; 然后通过线性岭回归优化过程, 对两个子空间进行二次映射, 从而有效地捕获跨空间数据之间的相关性. 根据训练得到的相关模型, 通过体外胸腹部外表面的运动情况, 对体内膈肌的运动情况进行准确的预测. 为了研究数据之间的非线性关系, 进一步将TSSM推广到了基于核的TSSM (kTSSM)算法. 实验表明, 该方法可以根据腹腔外表面的运动情况, 准确地对体内膈肌位移进行预测, 优于经典的线性模型和ANN模型. 给出了优化算法的解析解, 其运算速度快, 将有助于提高放射治疗中门控技术和跟踪技术的效率和精度.
多级注意力传播驱动的生成式图像修复方法
曹承瑞, 刘微容, 史长宏, 张浩琛
2022, 48(5): 1343-1352.   doi: 10.16383/j.aas.c200485
[摘要](496) [HTML全文](166) [PDF 1445KB](71)
摘要:
现有图像修复方案普遍存在着结构错乱和细节纹理模糊的问题, 这主要是因为在图像破损区域的重建过程中, 修复网络难以充分利用非破损区域内的信息来准确地推断破损区域内容. 为此, 本文提出了一种由多级注意力传播驱动的图像修复网络. 该网络通过将全分辨率图像中提取的高级特征压缩为多尺度紧凑特征, 进而依据尺度大小顺序驱动紧凑特征进行多级注意力特征传播, 以期达到包括结构和细节在内的高级特征在网络中充分传播的目标. 为进一步实现细粒度图像修复重建, 本文还同时提出了一种复合粒度判别器, 以期实现对图像修复过程进行全局语义约束与非特定局部密集约束. 大量实验表明, 本文提出的方法可以产生更高质量的修复结果.
基于多节点拓扑重叠测度高阶MRF模型的图像分割
徐胜军, 周盈希, 孟月波, 刘光辉, 史亚
2022, 48(5): 1353-1369.   doi: 10.16383/j.aas.c190780
[摘要](35) [HTML全文](27) [PDF 2376KB](27)
摘要:
针对低阶马尔科夫随机场(Markov random field, MRF)模型难以有效表达自然图像中复杂的先验知识而造成误分割问题, 提出一种基于多节点拓扑重叠测度高阶MRF模型(Higher-order MRF model with multi-node topological overlap measure, MTOM-HMRF)的图像分割方法. 首先, 为描述图像局部区域内多像素蕴含的复杂空间拓扑结构信息, 利用多节点拓扑重叠测度建立图像局部区域的高阶先验模型; 其次, 利用较大的局部区域包含更多的标签节点信息能力, 基于Pairwise MRF模型建立基于局部区域的部分二阶Potts先验模型, 提高分割模型的抗噪能力; 再次, 为有效描述观察图像场与其标签场的似然特征分布, 研究利用局部区域内邻接像素的Hamming距离引入图像局部空间相关性, 建立局部空间一致性约束的高斯混合分布; 最后, 基于MRF框架建立用于图像分割的多节点拓扑重叠测度高阶MRF模型, 采用Gibbs采样算法对提出模型进行优化. 实验结果表明, 提出模型不仅能有效抵抗图像强噪声和复杂的纹理突变干扰, 鲁棒性更好, 而且具有更准确的图像分割结果.
基于分布式有限感知网络的多伯努利目标跟踪
吴孙勇, 王力, 李天成, 孙希延, 蔡如华
2022, 48(5): 1370-1384.   doi: 10.16383/j.aas.c200481
[摘要](603) [HTML全文](181) [PDF 2035KB](82)
摘要:
针对感知范围受限的分布式传感网多目标跟踪问题, 在多伯努利滤波跟踪理论基础上提出分布式视场互补多伯努利关联算术平均融合跟踪方法. 首先, 通过视场互补扩大传感器感知范围, 其中, 局部公共区域只互补一次以降低计算成本. 其次, 每个传感器分别运行局部多伯努利滤波器, 并将滤波后验结果与相邻传感器进行泛洪通信使得每个传感器获取多个相邻传感器的后验信息. 随后, 通过距离划分进行多伯努利关联, 将对应于同一目标的伯努利分量关联到同一个子集中, 并对每个关联子集进行算术平均融合完成融合状态估计. 仿真实验表明, 所提方法在有限感知范围的分布式传感器网络中能有效地进行多目标跟踪.
本刊经同行评议拟录用的文章,目前在编校阶段,尚未确定卷期及页码,已有DOI。
显示方式:
基于时变障碍李雅普诺夫函数的变体无人机有限时间控制
李新凯, 张宏立, 范文慧
当前状态:  doi: 10.16383/j.aas.c200712
[摘要](784) [HTML全文](402) [PDF 8486KB](81)
摘要:
针对复杂扰动下可执行多种任务的复合式变体无人机, 提出了一种基于浸入与不变理论和隐含系统状态受限条件的复合时变障碍Lyapunov函数的控制方案. 设计了一种基于浸入与不变理论的扰动观测器, 构建了一种基于监督因子的有限时间动态尺度调节器. 在此基础上, 设计了一种基于复合时变障碍Lyapunov函数和动态滑模面的控制器, 保证系统状态始终在约束条件之内. 通过衍生定理证明轨迹跟踪误差是有限时间稳定的. 最终仿真结果验证了所提方案的有效性.
量子线性卷积及其在图像处理中的应用
刘兴奥, 周日贵, 郭文宇
当前状态:  doi: 10.16383/j.aas.c210637
[摘要](244) [HTML全文](154) [PDF 9944KB](40)
摘要:
线性卷积在图像处理中发挥着重要作用, 但是在处理海量高分辨率图像时, 求解线性卷积会消耗许多计算资源. 为此, 本文就量子线性卷积及其在图像处理问题中的应用开展相关研究, 首先提出单通道, 单位步长, 零补充情况下的量子一维和二维线性卷积, 然后实现多通道, 非单位步长, 非零补充的情况, 最后将量子二维线性卷积应用于量子图像平滑, 量子图像锐化和量子图像边缘检测. 通过理论分析证明了量子线性卷积的空间复杂度\begin{document}${\rm{O}}(\mathrm{log}M)$\end{document}和时间复杂度\begin{document}${\rm{O}}({\mathrm{log}}^{2}M)$\end{document}较经典线性卷积有指数级下降, 且基于Qiskit的仿真实验成功验证了量子线性卷积和量子图像处理算法的正确性和可行性.
图像异常检测研究现状综述
吕承侃, 沈飞, 张正涛, 张峰
当前状态:  doi: 10.16383/j.aas.c200956
[摘要](2583) [HTML全文](1784) [PDF 3463KB](345)
摘要:
图像异常检测是计算机视觉领域的一个热门研究课题, 其目标是在不使用真实异常样本的情况下, 利用现有的正常样本构建模型以检测可能出现的各种异常图像, 在工业外观缺陷检测, 医学图像分析, 高光谱图像处理等领域有较高的研究意义和应用价值. 本文首先介绍了异常的定义以及常见的异常类型. 然后, 本文根据在模型构建过程中有无神经网络的参与, 将图像异常检测方法分为基于传统方法和基于深度学习两大类型, 并分别对相应的检测方法的设计思路、优点和局限性进行了综述与分析. 其次, 梳理了图像异常检测任务中面临的主要挑战. 最后, 对该领域未来可能的研究方向进行了展望.
欺骗攻击下具备隐私保护的多智能体系统均值趋同控制
应晨铎, 伍益明, 徐明, 郑宁, 何熊熊
当前状态:  doi: 10.16383/j.aas.c210889
[摘要](15) [HTML全文](7) [PDF 1410KB](6)
摘要:
针对通信网络遭受欺骗攻击的离散时间多智能体系统, 研究其均值趋同和隐私保护问题. 首先, 考虑链路信道存在窃听者的情形, 提出一种基于状态分解思想的分布式网络节点值重构方法, 以阻止系统初始信息的泄露. 其次, 针对所构建的欺骗攻击模型, 利用重构后节点状态信息并结合现有的安全接受广播算法, 提出一种适用于无向通信网络的多智能体系统均值趋同控制方法. 理论分析表明, 所提方法能够有效保护节点初始状态信息的隐私, 并能消除链路中欺骗攻击的影响, 实现分布式系统中所有节点以初始值均值趋同. 最后, 通过数值仿真实验验证了该方法的有效性.
基于遗传乌燕鸥算法的同步优化特征选择
贾鹤鸣, 李瑶, 孙康健
当前状态:  doi: 10.16383/j.aas.c200322
[摘要](940) [HTML全文](158) [PDF 1353KB](34)
摘要:
针对传统支持向量机(Support vector machine, SVM)方法用于数据分类存在分类精度低的不足问题, 将SVM分类方法与特征选择同步结合, 并利用智能优化算法对算法参数进行优化研究. 首先将遗传算法(Genetic algorithm, GA)和乌燕鸥优化算法(Sooty tern optimization algorithm, STOA)进行混合, 先通过对平均适应度值进行评估, 当个体的适应度函数值小于平均值时采用遗传算法对其进行局部搜索的加强, 否则进行乌燕鸥本体优化过程, 同时将SVM内核函数和特征选择目标共同作为优化对象, 利用改进后的STOA-GA寻找最适应解, 获得所选的特征分类结果. 其次, 通过十六组经典UCI数据集和实际乳腺癌数据集进行数据分类研究, 在最佳适应度值、所选特征个数、特异性、敏感性和算法耗时方面进行对比研究, 实验结果表明, 该算法可以更加准确地处理数据, 避免冗余特征干扰, 在数据挖掘领域具有更广阔的工程应用前景.
一种新颖的深度因果图建模及其故障诊断方法
唐鹏, 彭开香, 董洁
当前状态:  doi: 10.16383/j.aas.c200996
[摘要](737) [HTML全文](400) [PDF 1042KB](111)
摘要:
为了实现复杂工业过程故障检测和诊断一体化建模, 提出了一种新颖的深度因果图建模方法. 首先, 利用循环神经网络建立深度因果图模型, 将Group Lasso稀疏惩罚项引入到模型训练中, 自动地检测过程变量间的因果关系. 其次, 利用模型学习到的条件概率预测模型对每个变量建立监测指标, 并融合得到综合指标进行整体工业过程故障检测. 一旦检测到故障, 对故障样本构建变量贡献度指标, 隔离故障相关变量, 并通过深度因果图模型的局部因果有向图诊断故障根源, 辨识故障传播路径. 最后, 通过田纳西−伊斯曼过程进行仿真验证, 实验结果验证了所提方法的有效性.
基于多阶运动参量的四旋翼无人机识别方法
刘孙相与, 李贵涛, 詹亚锋, 高鹏
当前状态:  doi: 10.16383/j.aas.c200862
[摘要](471) [HTML全文](150) [PDF 3410KB](41)
摘要:
以小型多轴无人机为代表的低慢小目标, 通常难以被常规手段探测, 而此类目标又会严重威胁某些重要设施. 因此对该类目标的识别已经成为一个亟待解决的重要问题. 本文基于目标运动特征, 提出了一种无人机目标识别方法, 并揭示了二阶运动参量以及重力方向运动参量是无人机识别过程中的关键参数. 该方法首先提取候选目标的多阶运动参量, 建立梯度提升树(Gradient boosting decision tree, GBDT)和门控制循环单元(Gate recurrent unit, GRU)记忆神经网络分别完成短时和长期识别, 然后融合表观特征识别结果得到最终判别结果. 此外, 本文还建立了一个综合多尺度无人机数据集(Multi-scale UAV dataset, MUD), 本文所提出的方法在该数据集上相对于传统基于运动特征的方法, 其识别精度(Average precision, AP)提升103%, 融合方法提升26%.
切换拓扑下动态事件触发多智能体系统固定时间一致性
孙梦薇, 任璐, 刘剑, 孙长银
当前状态:  doi: 10.16383/j.aas.c211123
[摘要](18) [HTML全文](4) [PDF 2278KB](7)
摘要:
针对有扰动的一阶非线性多智能体系统在切换拓扑下的实际固定时间平均一致性问题, 提出了基于动态事件触发机制的固定时间一致性协议. 该一致性协议在节约更多资源的情况下, 使多智能体系统以更快的速度达到一致. 相对于有限时间一致性控制算法, 固定时间一致性控制算法的收敛时间不依赖于初始状态, 并且可以通过选择合适的控制器参数设定相应的收敛时间上界. 通过设计一个包含双曲正切函数的测量误差, 证明系统不存在Zeno行为. 由于内部动态变量的引入, 大量不必要的触发被取消, 从而节省能量损耗. 最后, 通过仿真实验验证算法的可行性和有效性.
基于轮胎状态刚度预测的极限工况路径跟踪控制研究
王国栋, 刘洋, 李绍松, 卢晓晖, 张邦成
当前状态:  doi: 10.16383/j.aas.c190349
[摘要](34) [HTML全文](31) [PDF 2211KB](2)
摘要:
为解决高速极限工况下自动驾驶车辆紧急避撞时传统路径跟踪控制方法因轮胎力表达不精确导致的路径跟踪失败问题, 提出一种基于轮胎状态刚度预测的模型预测路径跟踪控制方法. 首先, 基于非线性UniTire轮胎模型求解的轮胎状态刚度对非线性轮胎力进行线性化处理. 其次, 基于期望路径信息提出状态刚度预测方法, 实现预测时域内轮胎力的预测和线性化. 最后, MATLAB和CarSim联合仿真实验表明: 所提出的方法能够明显改善高速极限工况下的避撞控制效果.
基于多源数据的电网一次调频能力平行计算研究
张江丰, 王飞跃, 苏烨, 陈波, 汪自翔, 孙坚栋, 尹峰
当前状态:  doi: 10.16383/j.aas.c190512
[摘要](45) [HTML全文](16) [PDF 2954KB](7)
摘要:
为解决电网一次调频性能难以估计的问题, 本文提出了基于多源数据的电网一次调频性能平行计算平台. 通过采集整合OMS (Operations management system)、WAMS (Wide area measurement system)、SCADA (Supervisory control and data acquisition)等系统的各类型一次调频数据, 以极大似然估计、数值拟合等方法构建机组一次调频性能功频图谱. 采用均方差分析建立电网一次调频性能数学模型, 基于并网运行机组的一次调频性能功频图谱, 估算出当前电网的实际一次调频性能. 算例计算表明, 本文所提出的计算方法能够有效兼顾机组类型的静态特性和运行工况的动态特性, 并以平行执行方式完成人工估算系统与实际电力系统的滚动优化, 实现了电网一次调频性能的在线全面估计, 为电网频率管理与控制提供数据决策支持.
基于改进YOLOv3算法的公路车道线检测方法
崔文靓, 王玉静, 康守强, 谢金宝, 王庆岩, MIKULOVICHVladimir Ivanovich
当前状态:  doi: 10.16383/j.aas.c190178
[摘要](158) [HTML全文](76) [PDF 1273KB](41)
摘要:
针对YOLOv3算法在检测公路车道线时存在准确率低和漏检概率高的问题, 提出一种改进YOLOv3网络结构的公路车道线检测方法.该方法首先将图像划分为多个网格, 利用K-means++聚类算法, 根据公路车道线宽高固有特点, 确定目标先验框数量和对应宽高值; 其次根据聚类结果优化网络Anchor参数, 使训练网络在车道线检测方面具有一定的针对性; 最后将经过Darknet-53网络提取的特征进行拼接, 改进YOLOv3算法卷积层结构, 使用GPU进行多尺度训练得到最优的权重模型, 从而对图像中的车道线目标进行检测,并选取置信度最高的边界框进行标记.使用Caltech Lanes数据库中的图像信息进行对比试验, 实验结果表明, 改进的YOLOv3算法在公路车道线检测中平均准确率(Mean average precision, mAP)为95%, 检测速度可达50帧/s, 较YOLOv3原始算法mAP值提升了11%, 且明显高于其他车道线检测方法.
污水处理过程出水水质稀疏鲁棒建模
闻超垚, 周平
当前状态:  doi: 10.16383/j.aas.c200707
[摘要](450) [HTML全文](181) [PDF 2447KB](35)
摘要:
污水处理过程中, 出水水质参数是衡量污水处理性能的最重要指标, 需要进行严格监测, 但现有传感技术难以对其进行实时准确地在线测量. 因此, 提出一种新型的基于随机权神经网络(Random vector functional-link networks, RVFLNs)与Schweppe型广义M估计(Generalized M-estimation, GM-estimation)的稀疏鲁棒建模方法, 用于水质指标的在线鲁棒预测. 首先, 针对常规RVFLNs隐含层矩阵存在多重共线性而导致最小二乘估计失效的问题, 利用稀疏偏最小二乘(Sparse partial least squares, SPLS)代替RVFLNs输出权值求解的最小二乘估计, 从而提出SPLS-RVFLNs. 该算法不仅可有效解决传统RVFLNs的多重共线性问题, 还可以进行建模变量选择, 提高模型的可解释性和最终的预测精度. 同时, 考虑到SPLS-RVFLNs在求解输出权值时会同时受到隐含层矩阵和输出层矩阵两个方向离群点的影响, 进一步采用Schweppe型广义M估计对SPLS-RVFLNs进行鲁棒改进, 从而提出GM-SPLS-RVFLNs, 可显著提高模型的稀疏鲁棒性能. 最后, 将提出的GM-SPLS-RVFLNs用于污水处理过程出水水质指标预测建模, 数据实验结果表明所提方法不仅解决了常规RVFLNs多重共线性和鲁棒性差的问题, 而且具有很好的预测精度和泛化性能.
基于FPSO的电力巡检机器人的广义二型模糊逻辑控制
吴庆, 赵涛, 佃松宜, 郭锐, 李胜川, 方红帏, 韩吉霞
当前状态:  doi: 10.16383/j.aas.c190306
[摘要](168) [HTML全文](86) [PDF 2750KB](11)
摘要:
针对电力巡检机器人(Power-line inspection robot, PLIR)的平衡调节问题, 设计了广义二型模糊逻辑控制器(General type-2 fuzzy logic controller, GT2FLC); 针对GT2FLC中隶属函数参数难以确定的问题, 通过模糊粒子群(Fuzzy particle swarm optimization, FPSO)算法来优化隶属函数参数. 将GT2FLC的控制性能与区间二型模糊逻辑控制器(Interval type-2 fuzzy logic controller, IT2FLC)和一型模糊逻辑控制器(Type-1 fuzzy logic controller, T1FLC) 的控制性能进行对比. 除此之外, 还考虑了外部干扰对三种控制器控制效果的影响. 仿真结果表明, GT2FLC具有更好的性能和处理不确定性的能力.
基于信息几何的高超声速飞行器搜索方法
罗艺, 谭贤四, 王红, 曲智国
当前状态:  doi: 10.16383/j.aas.c200738
[摘要](460) [HTML全文](93) [PDF 1723KB](22)
摘要:
由于地面雷达受视距限制无法对高超声速飞行器进行连续观测, 针对高超声速飞行器飞出雷达视距盲区后难以搜索的问题, 提出了一种基于信息几何的雷达搜索方法. 本文利用非参数概率密度估计法对高超声速飞行器的出现位置的概率密度进行估计, 并将估计的位置概率密度作为雷达搜索的引导信息; 根据引导信息确定搜索区域, 以区域覆盖率最大化作为优化目标在搜索区域内进行波位编排; 基于信息几何理论, 将搜索策略建模为统计流形, 利用KL (Kullback-Leibler)散度来度量搜索策略与引导信息之间的差异, 通过最小化KL散度获得最优搜索策略. 通过仿真实验验证了本文所提方法的有效性和可行性, 并验证了相比其他搜索方法具有较明显的优势.
一致性约束下末制导系统最大可容许模式决策延迟
项盛文, 范红旗, 达凯, 付强
当前状态:  doi: 10.16383/j.aas.c200717
[摘要](563) [HTML全文](77) [PDF 1092KB](10)
摘要:
对于大机动目标拦截问题, 模式决策器是基于逻辑的集成估计导引系统(Integrated estimation and guidance, IEG)中的一个重要组件. 为了保证系统的估计精度和制导性能, 模式决策器的模式延迟应尽可能小. 本文针对末制导场景, 首先推导了离散时间系统零控脱靶量的估计误差模型, 然后在一致性约束条件下给出了系统最大可容许模式决策延迟的数值计算方法. 本文的研究结果可为IEG系统中模式决策器的设计提供指标参考.
基于自注意力模态融合网络的跨模态行人再识别方法研究
杜鹏, 宋永红, 张鑫瑶
当前状态:  doi: 10.16383/j.aas.c190340
[摘要](69) [HTML全文](37) [PDF 1857KB](22)
摘要:
行人再识别是实现多目标跨摄像头跟踪的核心技术, 该技术能够广泛应用于安防、智能视频监控、刑事侦查等领域. 一般的行人再识别问题面临的挑战包括摄像机的低分辨率、行人姿态变化、光照变化、行人检测误差、遮挡等. 跨模态行人再识别相比于一般的行人再识别问题增加了相同行人不同模态的变化. 针对跨模态行人再识别中存在的模态变化问题, 本文提出了一种自注意力模态融合网络. 首先是利用CycleGAN生成跨模态图像. 在得到了跨模态图像后利用跨模态学习网络同时学习两种模态图像特征, 对于原始数据集中的图像利用SoftMax 损失进行有监督的训练, 对生成的跨模态图像利用LSR (Label smooth regularization) 损失进行有监督的训练. 之后, 使用自注意力模块将原始图像和CycleGAN生成的图像进行区分, 自动地对跨模态学习网络的特征在通道层面进行筛选. 最后利用模态融合模块将两种筛选后的特征进行融合. 通过在跨模态数据集SYSU-MM01上的实验证明了本文提出的方法和跨模态行人再识别其他方法相比有一定程度的性能提升.
迭代学习模型预测控制研究现状与挑战
马乐乐, 刘向杰, 高福荣
当前状态:  doi: 10.16383/j.aas.c210818
[摘要](198) [HTML全文](135) [PDF 1222KB](90)
摘要:
历经20多年的发展, 迭代学习模型预测控制在理论和应用方面都取得了长足的进步. 但由于批次工业过程复杂多样、结构各异、精细化程度较高, 现有的迭代学习模型预测控制理论仍面临着巨大挑战. 本文简要回顾了迭代学习模型预测控制理论的产生及发展, 阐述了二维预测模型、控制律迭代优化及二维稳定性等基本理论问题; 分析了现有方法在理论及应用方面的局限性, 说明了迭代学习模型预测控制在迭代建模、高效优化、变工况适应等方面面临的难点问题, 提出了可行的解决方案. 简要综述了近年来迭代学习模型预测控制理论和应用层面的发展动态, 指出了研究复杂非线性系统、快速系统、变工况系统对进一步完善其理论体系和拓宽其应用前景的意义, 展望了成品质量控制和动态经济控制等重要的未来研究方向.
大幅面DLP3D打印机错位均摊接缝消除方法研究
张蓉, 王宜怀, 彭涛, 徐昕, 王绍丹
当前状态:  doi: 10.16383/j.aas.c190670
[摘要](6) [HTML全文](3) [PDF 2315KB](0)
摘要:
针对面曝光模式的数字光处理(Digital light processing, DLP)型3D打印机成型幅面较小问题, 提出一种移动拼接与错位均摊消除接缝痕迹相结合的大幅面技术方案. 该方案首先对三维模型进行均匀切片形成N层切面, 再对切面位图进行错位切分, 使得相邻层的拼接位置错开, 每张切面位图形成M张单元位图, 构成3D打印的数据源; 其次根据错位参数沿着X轴移动投影仪到达对应曝光位, 每层成型M张单元位图, 拼接构成一层切面薄片, 切面薄片的拼接位置逐层错开, 叠加生成三维模型实体. 实际打印结果表明, 该方案能够以较小的附加成本扩大成型尺寸, 提高模型整体质量.
参考点自适应调整下评价指标驱动的高维多目标进化算法
何江红, 李军华, 周日贵
当前状态:  doi: 10.16383/j.aas.c200975
[摘要](48) [HTML全文](3) [PDF 1335KB](2)
摘要:
在具有不同Pareto前沿形状的优化问题上, 基于参考点的高维多目标进化算法表现出较差的通用性. 为了解决这个问题, 提出参考点自适应调整下评价指标驱动的高维多目标进化算法(Many-objective evolutionary algorithm driven by evaluation indicator under adaptive reference point adjustment, MaOEA-IAR). MaOEA-IAR提出Pareto前沿形状监测基础上的参考点自适应策略, 利用该策略选择一组候选解作为初始参考点; 然后通过曲线参数对参考点位置进行调整; 将最终得到的能够适应不同Pareto前沿的参考点用于计算增强的反世代距离指标, 基于指标值设计适应度函数作为选择标准. 实验证明提出的算法在处理各种Pareto前沿形状的优化问题时能获得较好的性能, 算法通用性高.
多层异构生物网络候选疾病基因识别
丁苍峰, 王君, 张紫芸
当前状态:  doi: 10.16383/j.aas.c210577
[摘要](43) [HTML全文](19) [PDF 5492KB](15)
摘要:
现有大多数用于识别候选疾病基因的随机游走方法通常优先访问高度连接的基因, 而可能与已知疾病有关的不知名或连接性差的基因易被忽略或难以识别. 此外, 这些方法仅访问单个基因网络或各种基因数据的聚合网络, 导致偏差和不完整性. 因此, 设计一种能控制随机游走运动方向和整合多种数据源的候选疾病基因识别方法将是一个迫切需要解决的问题. 为此, 本文首先构建多层网络和多层异构基因网络. 然后, 提出了一种游走于多层和多层异构网络的拓扑偏置随机游走(Biased random walk with restart, BRWR)算法来识别疾病基因. 实验结果表明, 游走于不同类型网络上的识别候选疾病基因的BRWR算法优于现有的算法. 最后, 应用于多层异构网络上的BRWR算法能预测未诊断的新生儿类早衰综合征中涉及的疾病基因.
不确定性环境下维纳模型的随机变分贝叶斯学习
刘切, 李俊豪, 王浩, 曾建学, 柴毅
当前状态:  doi: 10.16383/j.aas.c210925
[摘要](38) [HTML全文](6) [PDF 1486KB](15)
摘要:
多重不确定性环境下的非线性系统辨识是一个开放问题.贝叶斯学习在描述、处理不确定性方面具有显著优势, 已在线性系统辨识方面得到广泛应用, 但在非线性系统辨识的应用较少, 面临概率估计复杂、计算量大等困难.本文针对上述问题, 以典型维纳非线性过程为对象, 提出基于随机变分贝叶斯的非线性系统辨识方法.首先对过程噪声、测量噪声以及参数不确定性进行概率描述;然后利用随机变分贝叶斯方法对模型参数进行后验估计.在估计过程中, 利用随机优化思想, 仅利用部分中间变量概率信息估计模型参数分布的自然梯度期望, 与利用所有中间变量概率信息估计模型参数比较, 显著降低了计算复杂性.该方法是首次在系统辨识领域中的应用.本文利用一个仿真实例和一个维纳模型的Benchmark问题, 证明了该方法在对大规模数据系统辨识时的有效性.
基于RAGAN的工业过程运行指标前馈 − 反馈多步校正
杨宇晴, 王德睿, 丁进良
当前状态:  doi: 10.16383/j.aas.c210408
[摘要](17) [HTML全文](8) [PDF 1997KB](5)
摘要:
针对工业过程运行指标反馈校正存在滞后及一步校正模型可解释性差的问题, 提出了基于递归注意力生成对抗网络(RAGAN)的运行指标前馈-反馈多步校正方法. 该方法采用基于负相关正则化的集成随机权神经网络建立综合生产指标预报模型为校正提供前馈信息补偿反馈校正的滞后性. 所提的RAGAN校正采用多步校正实现一次调整的思想, 将当前时刻运行指标映射到低维潜变量空间简化数据复杂度, 利用长短期记忆(LSTM)模型实现数据的分步输入, 提高模型可解释性; 采用分布式注意力机制构建数据读入网络, 使校正环节获取任务相关性更高的数据, 降低任务复杂度, 减小噪声干扰, 利用校正后的运行指标保证系统的综合指标尽可能的跟随设定值运行. 采用我国西部地区最大选矿厂实际数据的仿真实验验证了所提方法的有效性.
城市污水处理过程自适应滑模控制
韩红桂, 秦晨辉, 孙浩源, 乔俊飞
当前状态:  doi: 10.16383/j.aas.c210798
[摘要](32) [HTML全文](11) [PDF 1701KB](5)
摘要:
针对城市污水处理过程时滞导致难以稳定控制的问题, 文中提出了一种自适应滑模控制方法. 首先, 分析了推流时滞对城市污水处理生化反应过程的影响, 建立了时滞影响下的城市污水处理运行控制模型; 其次, 设计了一种基于模糊神经网络的预估补偿模型, 完成了滞后变量的准确预测, 实现了控制模型中变量时刻的统一; 最后, 设计了一种具有自适应开关增益系数的滑模控制器, 实现了溶解氧和硝态氮的稳定控制. 将提出的自适应滑模控制方法应用于城市污水处理过程基准仿真平台, 实验结果显示该方法能够实现城市污水处理运行过程稳定控制.
城市固废焚烧过程烟气含氧量自适应预测控制
孙剑, 蒙西, 乔俊飞
当前状态:  doi: 10.16383/j.aas.c210935
[摘要](17) [HTML全文](7) [PDF 1484KB](2)
摘要:
在城市固废焚烧过程中, 烟气含氧量是影响焚烧效果的重要工艺参数. 由于固废焚烧过程的复杂性, 实际应用过程中难以实现烟气含氧量的有效控制. 面向城市固废焚烧过程烟气含氧量控制的实际需求, 文中提出了一种基于数据驱动的烟气含氧量自适应预测控制方法. 首先, 采用自适应模糊C均值 (Fuzzy C-means, FCM) 算法辅助确定径向基函数 (Radial basis function, RBF) 神经网络隐含层神经元个数及初始中心, 建立基于FCM算法的RBF神经网络预测模型, 并在控制过程中通过自适应更新策略在线调节预测模型参数; 然后, 利用梯度下降算法求解控制律, 并基于李亚普诺夫理论分析了所提控制方法的稳定性; 最后, 基于城市固废焚烧厂实际数据, 验证了所提控制方法的有效性.
一种基于条件梯度的加速分布式在线学习算法
吴庆涛, 朱军龙, 葛泉波, 张明川
当前状态:  doi: 10.16383/j.aas.c210830
[摘要](25) [HTML全文](7) [PDF 1505KB](7)
摘要:
由于容易实施, 基于投影梯度的分布式在线优化模型逐渐成为一种主流的在线学习方法. 然而, 在处理大数据应用时, 投影步骤成为了该方法的计算瓶颈. 近年来, 研究者提出了面向凸代价函数的分布式在线条件梯度算法, 其悔界为\begin{document}${\rm O}(T^{3/4})$\end{document}, 其中\begin{document}$T$\end{document}是一个时间范围. 该算法存在两方面的问题, 一是其悔界劣于公认的悔界\begin{document}${\rm O}(\sqrt{T})$\end{document}; 二是没有分析非凸代价函数的收敛性能, 而实际应用中代价函数大部分是非凸函数. 因此, 本文提出了一种基于条件梯度的加速分布式在线学习算法, 使用Frank-Wolfe 步骤替代投影步骤, 避免了昂贵的投影计算. 文中证明了当局部代价函数为凸函数时, 所提算法达到公认的悔界\begin{document}${\rm O}(\sqrt{T})$\end{document}; 当局部代价函数为潜在非凸函数时, 所提算法以速率\begin{document}${\rm O}(\sqrt{T})$\end{document}收敛到平稳点. 最后, 仿真实验验证了所提算法的性能与理论证明的结论.
通信延时环境下基于观测器的智能网联车辆队列分层协同纵向控制
朱永薪, 李永福, 朱浩, 于树友
当前状态:  doi: 10.16383/j.aas.c210311
[摘要](661) [HTML全文](117) [PDF 14335KB](96)
摘要:
考虑通信延时影响的车辆队列控制问题, 提出了一种基于观测器的分布式车辆队列纵向控制器. 首先, 基于分层控制策略分别设计上下层控制器, 通过上层控制器优化期望加速度, 下层控制器克服车辆模型非线性实现期望加速度和实际加速度的一致, 上层控制器设计过程中, 基于三阶线性化车辆模型, 考虑观测器、车辆动态耦合特性和通信延时, 提出一种通信延时环境下基于观测器的车辆队列控制器, 利用观测器估计领导车辆加速度信息从而减轻通信负担. 然后利用Lyapunov-Krasovskii方法分析了车辆队列的稳定性, 并得出了通信延时上界, 同时利用传递函数方法分析了串稳定性. 最后通过数值仿真验证上层控制器的有效性和稳定性, 在此基础上, 利用PreScan软件中高保真车辆动态模型, 验证了所提分层控制策略的有效性.
高超声速飞行器指定时间时变高增益反馈跟踪控制
张康康, 周彬, 蔡光斌, 侯明哲
当前状态:  doi: 10.16383/j.aas.c210895
[摘要](23) [HTML全文](15) [PDF 1606KB](9)
摘要:
研究了高超声速飞行器控制通道存在未知环境干扰时的指定时间跟踪控制问题. 基于高超声速飞行器的输入输出线性化模型, 借助参量 Lyapunov方程的一些性质, 设计一种光滑、有界的时变高增益控制律. 相比于现有的高超声速飞行器有限/固定时间控制方法, 该算法不会出现抖振现象, 同时收敛时间不依赖于初始状态且可以事先设定. 当高超声速飞行器存在未知的有界环境匹配干扰时, 该控制器能使高度和速度在指定时间跟踪上参考信号. 最后仿真结果验证了方法的有效性.
基于单字符注意力的全品类鲁棒车牌识别
穆世义, 徐树公
当前状态:  doi: 10.16383/j.aas.c211210
[摘要](24) [HTML全文](7) [PDF 4418KB](2)
摘要:
复杂场景下的高精度车牌识别仍然存在着许多挑战, 除了光照、分辨率不可控和运动模糊等因素导致的车牌图像质量低之外, 还包括车牌品类多样产生的行数不一和字数不一等困难, 以及因拍摄角度多样出现的大倾角等问题. 针对这些挑战, 提出了一种基于单字符注意力的场景鲁棒的高精度车牌识别算法, 在无单字符位置标签信息的情况下, 使用注意力机制对车牌全局特征图进行单字符级特征分割, 以处理多品类车牌和倾斜车牌中的二维字符布局问题. 另外, 该算法通过使用共享参数的多分支结构代替现有算法的串行解码结构, 降低了分类头参数量并实现了并行化推理. 实验结果表明, 该算法在公开车牌数据集上实现了超越现有算法的精度, 同时具有较快的识别速度.
路网约束下异构机器人系统路径规划方法
陈梦清, 陈洋, 陈志环, 赵新刚
当前状态:  doi: 10.16383/j.aas.c200806
[摘要](613) [HTML全文](81) [PDF 23939KB](50)
摘要:
由无人机和地面移动机器人组成的异构机器人系统在协作执行任务时, 可以充分发挥两类机器人各自的优势. 无人机运动灵活, 但通常续航能力有限; 地面机器人载荷多, 适合作为无人机的着陆平台和移动补给站, 但运动受路网约束. 本文研究这类异构机器人协作路径规划问题. 为了降低完成任务的时间代价, 本文提出一种由蚁群算法和遗传算法相结合的两步法对地面机器人和无人机的路线进行解耦, 同时规划地面机器人和无人机的路线. 第一步使用蚁群算法为地面机器人搜索可行路线. 第二步对无人机的最优路径建模, 采用遗传算法求解并将无人机路径长度返回至第一步中, 用于更新路网的信息素参数, 从而实现异构协作系统路径的整体优化. 为了进一步降低无人机的飞行时间代价, 还研究了无人机在其续航能力内连续完成多任务的协作路径规划问题. 最后通过大量仿真实验验证了所提方法的有效性.
考虑输出约束的冗余驱动绳索并联机器人预设性能控制
陈正升, 程玉虎, 王雪松
当前状态:  doi: 10.16383/j.aas.c210949
[摘要](24) [HTML全文](8) [PDF 4543KB](9)
摘要:
本文提出一种考虑输出约束的冗余驱动绳索并联机器人预设性能有限时间控制算法. 首先, 采用Newton-Euler方程推导系统动力学模型, 并建立绳索拉力优化模型保证系统正常工作; 其次, 将输出约束问题转化为位置跟踪误差的坐标变换问题, 设计给定时间衰减函数与非对称变换函数, 将约束形式的跟踪误差转化为无约束变量, 实现给定时间的输出约束; 然后, 针对滑模控制的抖振问题, 在预设性能控制中采用模型不确定与扰动估计器进行扰动估计, 并通过自适应方法对扰动估计误差进行补偿; 以此为基础, 提出一种基于精度驱动且在分段点处三阶连续的终端滑模面进行控制算法设计; 最后, 采用Lyapunov函数证明算法的有限时间收敛特性, 并以7自由度冗余驱动绳索并联机器人为控制对象进行仿真研究对算法进行验证.
RFNet: 用于三维点云分类的卷积神经网络
单铉洋, 孙战里, 曾志刚
当前状态:  doi: 10.16383/j.aas.c210532
[摘要](14) [HTML全文](12) [PDF 1707KB](8)
摘要:
由于点云的非结构性和无序性, 目前已有的点云分类网络在精度上仍然需要进一步提高. 通过考虑局部结构的构建、全局特征聚合和损失函数改进三个方面, 本文构造了一个有效的点云分类网络. 首先, 针对点云的非结构性,通过学习中心点特征与近邻点特征之间的关系, 为不规则的近邻点分配不同的权重, 以此构建局部结构. 此外,使用注意力的思想, 提出了加权平均池化, 通过自注意力的方式, 学习每个高维特征的注意力分数, 在应对点云无序性的同时, 可以有效地聚合冗余的高维特征. 另外,利用了交叉熵损失与中心损失之间的互补关系, 提出了联合损失, 在增大类间距离的同时减小了类内距离, 进一步提高了网络的分类能力. 本文在合成数据集ModelNet40、ShapeNetCore和真实世界数据集ScanObjectNN上进行了实验, 与目前性能最好的多个网络相比较, 验证了本文整体网络结构的优越性.
一种基于区块链的DNSSEC公钥验证机制
陈闻宇, 李晓东, 杨学, 徐彦之
当前状态:  doi: 10.16383/j.aas.c201082
[摘要](420) [HTML全文](158) [PDF 1691KB](29)
摘要:
针对中心化域名安全扩展(Domain name system security extensions, DNSSEC)架构所导致的信任链复杂性和单边控制模式, 提出了一种去中心化的DNSSEC公钥验证机制. 该机制结合区块链结构、密码学累加器和共识算法设计, 创新性地实现使用区块链技术的密钥绑定、轮转和验证操作, 无需中心化权威节点即可使用可信公钥验证域名记录. 进一步的分析和实验表明, 所提出的机制在保证密钥管理安全性的同时, 提高了密钥验证的效率.
一种用于两人零和博弈对手适应的元策略演化学习算法
吴哲, 李凯, 徐航, 兴军亮
当前状态:  doi: 10.16383/j.aas.c211003
[摘要](32) [HTML全文](9) [PDF 2922KB](6)
摘要:
围绕两人零和博弈所开展的一系列研究, 近年来在围棋、德州扑克等问题中取得了里程碑式的突破. 现有的两人零和博弈求解方案大多在理性对手的假设下围绕纳什均衡解开展, 是一种力求不败的保守型策略, 但在实际博弈中由于对手非理性等原因并不能保证收益最大化. 对手建模为最大化博弈收益提供了一种新途径, 但仍存在建模困难等问题. 结合元学习的思想提出了一种能够快速适应对手策略的元策略演化学习求解框架. 在训练阶段, 首先通过种群演化的方法不断生成风格多样化的博弈对手作为训练数据, 然后利用元策略更新方法来调整元模型的网络权重, 使其获得快速适应的能力. 在Leduc扑克、两人有限注德州扑克和RoboSumo上的大量实验结果表明, 本算法能够有效克服现有方法的弊端, 实现针对未知风格对手的快速适应, 从而为两人零和博弈收益最大化求解提供了一种新思路.
数字孪生驱动的长距离带式输送机运行优化方法
杨春雨, 卜令超, 陈斌
当前状态:  doi: 10.16383/j.aas.c210979
[摘要](32) [HTML全文](9) [PDF 8709KB](7)
摘要:
长距离带式输送机是矿山、港口等领域运输散装物料的主要工具. 针对长距离带式输送机的安全节能运行问题, 本文研究数字孪生驱动的运行优化方法. 首先, 构建由数字孪生模型、模型同步算法、控制策略和现实带式输送机组成的数字孪生驱动运行优化框架; 然后, 建立数字孪生模型, 包括基于变质量牛顿第二定律和有限元分析法的输送带动力学模型、物料流动态模型和动态能耗模型; 最后, 提出数字孪生驱动的“计算决策-仿真评估-优化校正”(Decision-Simulation-Correction, DSC)优化决策方法, 优化带式输送机的稳态和暂态运行带速, 形成可行带速设定曲线. 实验表明, 数字孪生驱动的带式输送机运行优化方法可以实现带式输送机安全节能运行. 与传统控制方法相比, 能够根据运行工况实时调速, 提高输送带填充率, 节能13.87%.
基于循环显著性校准网络的胰腺分割方法
邱成健, 刘青山, 宋余庆, 刘哲
当前状态:  doi: 10.16383/j.aas.c210865
[摘要](18) [HTML全文](5) [PDF 4968KB](4)
摘要:
胰腺的准确分割对于胰腺癌的识别和分析至关重要. 胰腺作为形态变异较大、空间走形复杂的小体积后腹膜腔器官, 其三维形状及位置变化极具个体化解剖差异, 这使得胰腺分割极具挑战性. 研究者提出通过第一阶段粗分割掩码的位置信息缩小第二阶段细分割网络输入的由粗到细分割方法, 尽管极大地提升了分割精度, 但是在胰腺分割过程中对于上下文信息的利用却存在以下两个问题: 1) 粗分割和细分割阶段分开训练, 细分割阶段缺少粗分割阶段分割掩码信息, 抑制了阶段间上下文信息的流动, 导致部分细分割阶段结果无法比粗分割阶段更准确; 2) 粗分割和细分割阶段单批次相邻预测分割掩码之间缺少信息互监督, 丢失切片上下文信息, 增加了误分割风险. 针对上述问题, 提出了一种基于循环显著性校准网络的胰腺分割方法. 通过循环使用前一阶段输出的胰腺分割掩码作为当前阶段输入的空间权重, 进行两阶段联合训练, 实现阶段间上下文信息的有效利用; 提出卷积自注意力校准模块进行胰腺预测分割掩码切片上下文信息跨顺序互监督, 显著改善了相邻切片误分割现象. 提出的方法在公开的数据集上进行了验证, 实验结果表明, 其改善误分割结果的同时提升了平均分割精度.
基于双模型交互学习的半监督医学图像分割
方超伟, 李雪, 李钟毓, 焦李成, 张鼎文
当前状态:  doi: 10.16383/j.aas.c210667
[摘要](29) [HTML全文](15) [PDF 1631KB](10)
摘要:
在医学图像中, 器官或病变区域的精准分割对疾病诊断等临床应用有着至关重要的作用, 然而分割模型的训练依赖于大量标注数据. 为减少对标注数据的需求, 本文主要研究针对医学图像分割的半监督学习任务. 现有半监督学习方法广泛采用平均教师模型, 其缺点在于, 基于指数移动平均的参数更新方式使得老师模型累积学生模型的错误知识. 为避免上述问题, 本文提出一种双模型交互学习方法, 引入像素稳定性判断机制, 利用一个模型中预测结果更稳定的像素监督另一个模型的学习, 从而缓解了单个模型的错误经验的累积和传播. 本文提出的方法在心脏结构分割、肝脏肿瘤分割和脑肿瘤分割三个数据集中取得优于前沿半监督方法的结果. 在仅采用30%的标注比例时, 我们的方法在三个数据集上的戴斯指标分别达到89.13%, 94.15%, 87.02%.
基于改进多隐层极限学习机的电网虚假数据注入攻击检测
席磊, 何苗, 周博奇, 李彦营
当前状态:  doi: 10.16383/j.aas.c211127
[摘要](90) [HTML全文](95) [PDF 2037KB](9)
摘要:
虚假数据注入攻击严重威胁了电力信息物理系统的状态估计, 而目前大多数检测方法侧重于攻击存在性检测, 无法获取准确的受攻击位置. 故本文提出了一种基于灰狼优化多隐层极限学习机的电力信息物理系统虚假数据注入攻击检测方法. 所提方法将攻击检测看作是一个多标签二分类问题, 不仅将用于特征提取与分类训练的极限学习机由单隐层变为多隐层, 以解决极限学习机特征表达能力有限的问题, 且融入了具有强全局搜索能力的灰狼优化算法以提高多隐层极限学习机分类精度和泛化性能. 进而自动识别系统各个节点状态量的异常, 获取受攻击的精确位置. 通过在不同场景下对IEEE-14和57节点测试系统上进行大量实验, 验证了所提方法的有效性, 且分别与极限学习机、未融入灰狼优化的多隐层极限学习机以及支持向量机相比, 所提方法具有更精确的定位检测性能.
基于干扰估计的非对称运动下飞机刹车系统模型预测控制
李繁飙, 杨皓月, 王鸿鑫, 阳春华, 廖力清
当前状态:  doi: 10.16383/j.aas.c210852
[摘要](49) [HTML全文](23) [PDF 1777KB](9)
摘要:
针对飞机在非对称运动下的双侧主轮协调控制问题, 本文提出一种基于滑模干扰估计的模型预测控制方法. 首先, 通过对飞机制动过程横纵方向力矩机理分析并分别考虑左右主轮对刹车性能的影响, 建立全面刻画系统动态的地面滑跑动力学模型. 在此基础上, 设计滑模观测器对侧风干扰进行实时估计, 利用补偿机制实现对侧风扰动的有效抑制. 此外, 提出基于前轮荷载状态门限特征和结合系数阈值范围特征的分析方法, 解决切换跑道环境辨识问题. 设计非线性模型预测算法, 实现飞机纵向防滑刹车和横向跑道纠偏的协调控制. 最后, 在侧风干扰、跑道切换以及不对称着陆等情况下进行仿真实验, 验证了本文所提出的控制策略能够有效提升刹车系统的防滑效率及纠偏性能.
异构集成代理辅助的区间多模态粒子群优化算法
季新芳, 张勇, 巩敦卫, 郭一楠, 孙晓燕
当前状态:  doi: 10.16383/j.aas.c210223
[摘要](396) [HTML全文](185) [PDF 1287KB](32)
摘要:
现实生活中的很多黑盒优化问题可归为高计算代价的多模态优化问题, 即昂贵多模态优化问题. 在处理该类问题时, 决策者希望以尽量少的计算代价(即尽量少的真实函数评价次数)找到多个高质量的最优解. 然而, 已有代理辅助的进化优化算法很少考虑问题的多模态属性, 运行一次仅可获得问题的一个最优解. 鉴于此, 研究一种异构集成代理辅助的区间多模态粒子群优化算法. 首先, 借助异构集成的思想构建一个由多个基础代理模型组成的模型池; 随后, 依据待评价粒子与已发现模态之间的匹配关系, 从模型池中自主选择部分基础代理模型进行集成, 并使用集成后的代理模型预测该粒子的适应值. 进一步, 为节约代理模型管理的代价, 设计一种增量式的代理模型管理策略; 为减少代理模型预测误差对算法性能的影响, 首次将区间排序关系引入到进化过程中. 将所提算法与当前流行的5种代理辅助进化优化算法和7 种经典的多模态优化算法进行对比, 在20个测试函数和1个建筑节能实际问题上的结果表明, 所提算法可以在较少计算代价下获得问题的多个高竞争最优解.
一种基于改进AOD-Net的航拍图像去雾算法
李永福, 崔恒奇, 朱浩, 张开碧
当前状态:  doi: 10.16383/j.aas.c210232
[摘要](368) [HTML全文](90) [PDF 1787KB](48)
摘要:
针对航拍图像易受雾气影响, AOD-Net (All in one dehazing network)算法对图像去雾后容易出现细节模糊、对比度过高和图像偏暗等问题, 本文提出了一种基于改进AOD-Net的航拍图像去雾算法. 本文主要从网络结构、损失函数、训练方式三个方面对AOD-Net进行改良. 首先在AOD-Net的第二个特征融合层上添加了第一层的特征图, 用全逐点卷积替换了传统卷积方式, 并用多尺度结构提升了网络对细节的处理能力. 然后用包含有图像重构损失函数、SSIM (Structural similarity)损失函数以及TV (Total variation)损失函数的复合损失函数优化去雾图的对比度、亮度以及色彩饱和度. 最后采用分段式的训练方式进一步提升了去雾图的质量. 实验结果表明, 经该算法去雾后的图像拥有令人满意的去雾结果, 图像的饱和度和对比度相较于AOD-Net更自然. 与其它对比算法相比, 该算法在合成图像实验、真实航拍图像实验以及算法耗时测试的综合表现上更好, 更适用于航拍图像实时去雾.
基于不确定性的多元时间序列分类算法研究
张旭, 张亮, 金博, 张红哲
当前状态:  doi: 10.16383/j.aas.c210302
[摘要](443) [HTML全文](248) [PDF 3138KB](59)
摘要:
多元时间序列(Multivariate time series, MTS)分类是许多领域中的重要问题, 准确的分类结果可以有效地帮助决策. 当前的MTS分类算法在个体的表征学习阶段难以自动建模多元变量之间复杂的交互关系, 并且无法评估分类结果的可信度, 这会导致模型性能受限, 以及缺乏具备统计意义的可靠性解释. 本文提出了一种基于不确定性的多元时间序列分类算法, 变分贝叶斯共享图神经网络, 即VBSGNN (Variational bayes shared graph neural network). 首先通过图神经网络提取多元变量之间的交互特征, 然后利用贝叶斯神经网络为预测过程引入了不确定性. 最后在10个公开MTS数据集上进行了算法实验, 并与当前提出的7类算法进行了比较, 结果表明VBSGNN可有效学习多元变量之间的交互关系, 提升了分类效果, 并使得模型具备一定的可靠性评估能力.
基于扩展PI抗扰补偿器的高精度时间同步控制
代学武, 贾志安, 崔东亮, 柴天佑
当前状态:  doi: 10.16383/j.aas.c210676
[摘要](120) [HTML全文](65) [PDF 1613KB](19)
摘要:
高精度时间同步是任务关键型工业网络控制系统的核心支撑技术, 针对工业环境中普遍存在周期性振动等扰动信号导致晶振频率漂移, 影响时间同步精度的问题, 本文基于扩展比例积分(Proportional Integral, \begin{document}$ \mathrm{P}\mathrm{I} $\end{document})观测器, 提出了一种新型的抗扰补偿器结构, 用于消除周期性扰动的影响, 并构建了相应的精细抗干扰反馈控制方法, 用于实现高精度时间同步. 与传统的扰动观测器相比, 所提出的扩展\begin{document}$ \mathrm{P}\mathrm{I} $\end{document}抗扰补偿器克服了传统扰动观测器零点不变局限性, 提出了零点配置方法, 以充分利用闭环系统的传递函数矩阵(Transfer Function Matrix, TFM)在系统零点处降秩的特性, 实现了对于特定频率扰动信号的补偿作用. 并给出了所提出的控制器和抗扰补偿器的稳定性证明和控制器参数的稳定域. 通过基于实测参数的无线网络仿真实验, 验证了在\begin{document}$ 5\mathrm{g} $\end{document}周期性振动干扰下, 本文提出的方法明显优于传统滤波器和补偿器, 达到了同步误差在4 \begin{document}$ \mu s $\end{document}以内, 实现了高精度时间同步.
基于i向量和变分自编码相对生成对抗网络的语音转换
李燕萍, 曹盼, 左宇涛, 张燕, 钱博
当前状态:  doi: 10.16383/j.aas.c190733
[摘要](448) [HTML全文](41) [PDF 1713KB](12)
摘要:
提出一种基于i 向量和变分自编码相对生成对抗网络的语音转换方法, 实现了非平行文本条件下高质量的多对多语音转换. 性能良好的语音转换系统, 既要保持重构语音的自然度, 又要兼顾转换语音的说话人个性特征是否准确. 首先为了改善合成语音自然度, 利用生成性能更好的相对生成对抗网络代替基于变分自编码生成对抗网络模型中的Wasserstein生成对抗网络, 通过构造相对鉴别器的方式, 使得鉴别器的输出依赖于真实样本和生成样本间的相对值, 克服了Wasserstein生成对抗网络性能不稳定和收敛速度较慢等问题. 进一步为了提升转换语音的说话人个性相似度, 在解码阶段, 引入含有丰富个性信息的i-vector, 以充分学习说话人的个性化特征. 客观和主观实验表明, 转换后的语音平均梅尔倒谱失真距离 (Mel-cepstral distortion, MCD)值较基准模型降低4.80%, 平均意见得分 (Mean opinion score, MOS) 值提升5.12%, ABX 值提升8.60%, 验证了该方法在语音自然度和个性相似度两个方面均有显著的提高, 实现了高质量的语音转换.
基于改进SAE和双向LSTM的滚动轴承RUL预测方法
康守强, 周月, 王玉静, 谢金宝, MIKULOVICHV.I.
当前状态:  doi: 10.16383/j.aas.c190796
[摘要](84) [HTML全文](63)
摘要:
针对稀疏自动编码器(Sparse auto encoder, SAE)采用sigmoid激活函数容易造成梯度消失的问题, 用一种新的Tan函数替代原有的sigmoid函数; 针对SAE采用Kullback-Leibler(KL) 散度进行稀疏性约束在回归预测方面的局限性, 以dropout机制替代KL散度实现网络的稀疏性. 利用改进SAE对滚动轴承振动信号进行无监督深层特征自适应提取, 无需人工设计标签进行有监督微调. 同时, 考虑到滚动轴承剩余使用寿命(Remaining useful life, RUL)预测方法一般仅考虑过去信息而忽略未来信息, 引入双向长短时记忆网络(Bi-directional long short-term memory, Bi-LSTM)构建滚动轴承RUL的预测模型. 在2个轴承数据集上的实验结果均表明, 所提基于改进SAE和Bi-LSTM的滚动轴承RUL预测方法不仅可以提高模型的收敛速度而且具有较低的预测误差.
基于滚动时域强化学习的智能车辆侧向控制算法
张兴龙, 陆阳, 李文璋, 徐昕
当前状态:  doi: 10.16383/j.aas.c210555
[摘要](199) [HTML全文](131) [PDF 2276KB](34)
摘要:
本文针对智能车辆的高精度侧向控制问题, 提出了一种基于滚动时域强化学习(Receding horizon reinforcement learning, RHRL)的侧向控制方法. 车辆的侧向控制量由前馈和反馈两部分构成, 前馈控制量由参考路径的曲率以及动力学模型直接计算得出; 而反馈控制量通过采用滚动时域强化学习算法求解最优跟踪控制问题得到. 本文提出的方法结合滚动时域优化机制, 将无限时域最优控制问题转化为若干有限时域控制问题进行求解. 与已有的有限时域执行器-评价器学习不同, 在每个预测时域采用时间独立型执行器-评价器网络结构学习最优值函数和控制策略. 与模型预测控制(Model predictive control, MPC)方法求解开环控制序列不同, RHRL控制器的输出是一个显式状态反馈控制律, 兼具直接离线部署和在线学习部署的能力. 此外, 本文从理论上证明了RHRL算法在每个预测时域的收敛性, 并分析了闭环系统的稳定性. 在仿真环境中完成了结构化道路下的车辆侧向控制测试, 仿真结果表明提出的RHRL方法在控制性能方面优于预瞄控制器和启发式动态规划算法, 在计算效率方面优于MPC; 与最近流行的软执行器-评价器(Soft actor-critic, SAC)算法和深度确定性策略梯度(Deep deterministic policy gradient, DDPG)算法相比控制性能更好, 且具有更低的样本复杂度和更高的学习效率. 最后, 以红旗E-HS3电动汽车作为实车平台, 在封闭结构化城市测试道路和乡村起伏砂石道路下进行了侧向控制实验. 实验结果显示, RHRL在结构化城市道路中的侧向控制性能优于预瞄控制, 在乡村道路中具有较强的路面适应能力和较好的控制性能.
基于混合数据增强的MSWI过程燃烧状态识别
郭海涛, 汤健, 丁海旭, 乔俊飞
当前状态:  doi: 10.16383/j.aas.c210843
[摘要](104) [HTML全文](90) [PDF 2074KB](8)
摘要:
国内城市固废焚烧(Municipal solid waste incineration, MSWI)过程通常依靠运行专家观察炉内火焰识别燃烧状态后再结合自身经验修正控制策略以维持稳定燃烧, 存在智能化水平低、识别结果具有主观性与随意性等问题. 因MSWI过程的火焰图像具有强污染、多噪声等特性, 并且存在异常工况数据较为稀缺等问题, 导致传统目标识别方法难以适用. 对此, 本文提出了一种基于混合数据增强的MSWI过程燃烧状态识别方法. 首先, 结合领域专家经验与焚烧炉排结构对燃烧状态进行标定; 接着, 设计由粗调和精调两级组成的深度卷积生成对抗网络(Deep convolutional generative adversarial network, DCGAN)以获取多工况火焰图像; 然后, 采用弗雷歇距离(Fréchet inception distance, FID)对生成式样本进行自适应选择; 最后, 通过非生成式数据增强对样本进行再次扩充, 获得混合增强数据构建卷积神经网络以识别燃烧状态. 基于某MSWI电厂实际运行数据实验, 表明该方法有效地提高了识别网络的泛化性与鲁棒性, 具有良好的识别精度.
基于序列注意力和局部相位引导的骨超声图像分割网络
陈芳, 张道强, 廖洪恩, 赵喆
当前状态:  doi: 10.16383/j.aas.c210298
[摘要](92) [HTML全文](58) [PDF 1215KB](12)
摘要:
在超声辅助的骨科手术导航中, 需要从采集的超声图像序列中精确分割出骨结构, 并展示给医生, 来辅助医生进行术中决策. 但是, 图像噪声、成像伪影以及模糊的骨边界导致从超声图像序列中精确分割提取骨结构十分困难. 为解决该问题, 本文提出了一种新的基于序列注意力与局部相位引导的骨超声图像分割网络. 该网络一方面自适应地利用了超声序列帧之间的关系即序列注意力来辅助骨结构的语义分割. 另一方面, 该网络通过引入局部相位引导模块, 突出骨边缘信息, 进一步提高分割精度. 利用包含19050张图像的骨超声数据集, 进行了交叉实验、消融实验并与最新的超声骨分割方法进行了比较. 实验结果表明本文方法对骨结构分割精度高, 优于现有的超声骨分割方法.
基于网格重构学习的染色体分类模型
张林, 易先鹏, 王广杰, 范心宇, 刘辉, 王雪松
当前状态:  doi: 10.16383/j.aas.c210303
[摘要](75) [HTML全文](45) [PDF 1257KB](15)
摘要:
染色体的分类识别是核型分析的重要任务之一. 因其柔软易弯曲, 且类间差异小、类内差异大等特点, 其精准分类已成为挑战性难题. 本文提出基于网格重构学习(GRid reConstruction learning, GRiCoL)的染色体分类模型. 该模型首先将染色体图像网格化, 提取局部分类特征; 再通过重构网络对全局特征进行二次提取, 最后完成分类. 相比于现有几种方法, GRiCoL同时兼顾局部和全局特征提取更有效的分类特征, 有效改善染色体弯曲导致的分类性能下降, 参数规模合理. 通过基于G带、荧光原位杂交、Q带染色体公开数据集的实验表明: GRiCoL能够更好地弱化染色体弯曲带来的影响, 在不同数据集上的分类准确度均优于现有分类方法.
多层异质复杂网络系统的能控性
曹连谦, 王立夫, 孔芝, 郭戈
当前状态:  doi: 10.16383/j.aas.c210654
[摘要](234) [HTML全文](108) [PDF 1356KB](27)
摘要:
本文研究了节点状态为高维的多层复杂网络系统的能控性问题. 讨论了节点的异质性、层间耦合、层内耦合对网络能控性的影响. 发现当节点状态由同质变为异质, 内耦合矩阵由相同变为不同, 对网络能控性均有影响(网络既可由能控变为不能控, 又可由不能控变为能控); 对层间耦合模式为驱动响应模式和相互依赖模式, 分别给出了网络系统能控的充分条件或必要条件. 相比于直接应用经典的能控性判据, 这些条件更易于验证, 且驱动响应模式比相互依赖模式实现系统完全能控所需的条件更弱.
融合属性偏好和多阶交互信息的可解释评分预测研究
郑建兴, 李沁文, 王素格, 李德玉
当前状态:  doi: 10.16383/j.aas.c210457
[摘要](218) [HTML全文](74) [PDF 3014KB](25)
摘要:
已有推荐系统主要基于用户-项目交互矩阵来学习用户和项目的向量表示, 而当交互矩阵稀疏时, 推荐系统的精度较低, 推荐的结果缺乏可解释性. 本文考虑了用户-项目交互行为中的评分标签信息, 提出了一种融合属性偏好和多阶交互信息的可解释评分预测方法, 并根据属性偏好对推荐结果进行了解释. 首先, 基于注意力机制分析了用户和项目属性信息与评分标签的关系, 建模了节点的属性偏好特征表示; 然后, 聚合了用户-项目交互矩阵中节点自身、交互邻居和评分标签信息, 通过图神经网络学习了节点的多阶交互行为特征表示; 最后, 融合了节点的属性偏好特征和交互行为特征, 在异质类型信息空间下学习了用户和项目的语义特征表示, 利用多层感知机实现了评分预测, 并在MovieLens和Douban数据集上验证了方法的有效性. 实验结果表明, 本文方法在MAE和RMSE指标上有效提高了推荐系统的精度, 缓解了数据稀疏场景下推荐模型性能较低的问题, 提升了推荐结果的可解释性.
基于预训练表示模型的英语词语简化方法
强继朋, 钱镇宇, 李云, 袁运浩, 朱毅
当前状态:  doi: 10.16383/j.aas.c200723
[摘要](113) [HTML全文](17) [PDF 1095KB](11)
摘要:
词语简化(Lexical simplification, LS)是将给定句子中的复杂词替换成意义相等的简单替代词,从而达到简化句子的目的. 已有的词语简化方法只依靠复杂词本身而不考虑其上下文信息来生成候选替换词, 这将不可避免地产生大量的虚假候选词. 为此, 提出了一种基于预训练表示模型BERT的词语简化方法BERT-LS, 利用BERT进行候选替换词的生成和排序. BERT-LS在候选词生成过程中, 不仅不需要任何语义词典和平行语料, 而且能够充分考虑复杂词本身和上下文信息产生候选替代词. 在候选替代词排序过程中, BERT-LS采用了五个高效的特征, 除了常用的词频和词语之间相似度特征之外, 还利用了BERT的预测排序、基于BERT的上下文产生概率和复述数据库PPDB这三个新特征. 通过三个基准数据集进行验证, BERT-LS取得了明显的进步, 整体性能平均比最先进的方法准确率高出29.8%.
高速公路无人驾驶的分层抽样多动态窗口轨迹规划算法
张琳, 薛建儒, 马超, 李庚欣, 李勇强
当前状态:  doi: 10.16383/j.aas.c210673
[摘要](196) [HTML全文](111) [PDF 2660KB](20)
摘要:
高速公路无人驾驶轨迹规划面临着实时性强、安全性高的挑战. 本文提出了一种分层抽样多动态窗口的轨迹规划算法(Stratied sampling based multi-dynamic window trajectory planner, SMWTP). 首先, 用多动态窗口表征可行轨迹的搜索空间, 并基于贝叶斯网络构建了车辆轨迹分布模型. 其次, 采用先速度后路径的分层抽样策略生成符合动态场景约束的候选轨迹集合. 最后, 利用引入障碍车辆速度估计不确定性的责任敏感安全模型(Responsibility sensitive safety, RSS)从中选择最优轨迹. 大量仿真实验和实际交通场景测试验证了算法的有效性, 对比实验结果表明所提算法性能显著优于人工势场最优轨迹规划算法和多动态窗口模拟退火轨迹规划算法.
基于事件相机的机器人感知与控制综述
粟傈, 杨帆, 王向禹, 郭川东, 童良乐, 胡权
当前状态:  doi: 10.16383/j.aas.c210263
[摘要](330) [HTML全文](242) [PDF 2248KB](51)
摘要:
事件相机作为一种新型动态视觉传感器, 通过各个像素点独立检测光照强度变化并异步输出“事件流”信号, 它具有数据量小、延迟低、动态范围高等优秀特性, 给机器人控制带来新的可能. 本文主要介绍了近年来涌现的一系列事件相机与无人机、机械臂和人形机器人等机器人感知与运动控制结合的研究成果, 同时聚焦基于事件相机的控制新方法、新原理以及控制效果, 并指出基于事件相机的机器人控制的应用前景和发展趋势.
基于事件触发的直流微电网无差拍预测控制
王本斐, 张荣辉, 冯国栋, ManandharUjjal, 郭戈
当前状态:  doi: 10.16383/j.aas.c210585
[摘要](126) [HTML全文](46) [PDF 2603KB](27)
摘要:
本文针对光伏-电池-超级电容直流微电网系统中光伏发电间歇性造成的功率失配, 提出了一种基于事件触发的无差拍预测控制(Event-triggered deadbeat predictive control, ETDPC)方法, 实现有效的能量管理. ETDPC控制方法结合事件触发控制策略和无差拍预测控制策略的优点, 该方法根据微电网的拓扑结构构建状态空间模型, 用于设计适用于微电网能量管理的触发条件: 当ETDPC的触发条件满足时, ETDPC中无差拍预测控制模块被激活, 可以在一个控制周期内产生最优控制信号, 实现对于扰动的快速响应, 减小母线电压纹波; 当系统状态不满足ETDPC中的触发条件时, 无差拍预测控制模块被挂起, 从而消除非必要运算, 以减轻实现能量管理的运算负担. 因此, 基于电池-超级电容器混合储能系统, ETDPC控制能够缓解间歇性光伏发电同负荷需求之间的功率失衡, 以稳定母线电压. 最后, 数字仿真和硬件在环实验结果表明, 相较于传统事件触发无差拍控制方法, 运算负担减小了50.63%, 母线电压纹波小于0.73%, 验证了ETDPC控制方法的有效性与性能优势, 为直流微电网的能量管理提供了一种参考.
基于RRT森林算法的高层消防无人机室内协同路径规划
陈锦涛, 李鸿一, 任鸿儒, 鲁仁全
当前状态:  doi: 10.16383/j.aas.c210368
[摘要](273) [HTML全文](208) [PDF 1603KB](42)
摘要:
在多无人机协同执行高层消防救援任务的场景中, 室内复杂火场环境下路径规划是亟待解决难题之一. 本文针对快速搜索随机树算法 (Rapidly-exploring random tree, RRT) 搜索区域受限、耗时较长、结果可行性差等问题, 提出RRT森林算法. 通过随机选取根节点、生成随机树、连接合并随机树, 使高层消防多无人机在复杂室内环境下协同路径规划效率显著提高. 此外, 采用两次动态规划以及改进障碍物接近检测方法, 进一步提高路径的可行性. 最终, 通过仿真验证算法的有效性.
基于非凸复合函数的稀疏信号恢复算法
周洁容, 李海洋, 凌军, 陈浩, 彭济根
当前状态:  doi: 10.16383/j.aas.c200666
[摘要](740) [HTML全文](92) [PDF 1617KB](92)
摘要:
基于泛函深度作用的思想, 通过将两种非凸稀疏泛函进行复合, 构造了一种新的稀疏信号重构模型, 实现了对0范数的深度逼近. 综合运用MM (Majorize minimization)技术、外点罚函数法和共轭梯度法, 提出一种求解该模型的算法, 称为NCCS (Non-convex composite sparse)算法. 为降低重构信号陷入局部极值的可能性, 提出在算法的每步迭代中以BP (Basis pursuit)模型的解作为初始迭代值. 为验证所建模型和所提算法的有效性, 进行了多项数值实验. 实验结果表明, 相较于SL0 (Smoothed \begin{document}$L_0$\end{document})算法、IRLS (Iterative reweighed least squares)算法、SCSA (Successive concave sparsity approximation)算法以及BP 算法等经典算法, 提出的算法在重构误差、信噪比、归一化均方差、支撑集恢复成功率等方面都有更优的表现.
F范数度量下的鲁棒张量低维表征
王肖锋, 石乐岩, 杨璐, 刘军, 周海波
当前状态:  doi: 10.16383/j.aas.c210375
[摘要](265) [HTML全文](150) [PDF 1848KB](17)
摘要:
张量主成分分析(Tensor principle component analysis, TPCA)在彩色图像低维表征领域得到广泛深入研究, 采用\begin{document}$\textit{F}$\end{document}范数平方作为低维投影的距离度量方式, 表征含离群数据和噪声图像的鲁棒性较弱. \begin{document}$\textit{L}_{1}$\end{document}范数能够抑制噪声的影响, 但所获的低维投影数据缺乏重构误差约束, 其局部表征能力也较弱. 针对上述问题, 本文利用\begin{document}$\textit{F}$\end{document}范数作为目标函数的距离度量方式, 提出一种基于\begin{document}$\textit{F}$\end{document}范数的分块张量主成分分析算法(Block TPCA with \begin{document}$\textit{F}$\end{document}-norm, BlockTPCA-\begin{document}$\textit{F}$\end{document}), 提高张量低维表征的鲁棒性. 考虑到同时约束投影距离与重构误差, 提出一种基于比例\begin{document}$\textit{F}$\end{document}范数的分块张量主成分分析算法(Block TPCA with proportional \begin{document}$\textit{F}$\end{document}-norm, BlockTPCA-P\begin{document}$\textit{F}$\end{document}), 其最大化投影距离与最小化重构误差均得到了优化. 然后, 给出了其贪婪的求解算法, 并对其收敛性进行了理论证明. 最后, 对包含不同噪声块和具有实际遮挡的彩色人脸数据集进行实验, 结果表明, 本文所提算法在平均重构误差、图像重构与分类率等方面均得到了明显提升, 在张量低维表征中具有较强的鲁棒性.
目标跟踪中基于IoU和中心点距离预测的尺度估计
李绍明, 储珺, 冷璐, 涂序继
当前状态:  doi: 10.16383/j.aas.c210356
[摘要](183) [HTML全文](73) [PDF 1482KB](21)
摘要:
目标跟踪中基于IoU (Intersection over union, IoU)预测的尺度估计方法, 通过估计视频帧中候选框与真实目标框的重叠度训练尺度回归模型, 推理阶段通过最大化IoU对初始化边界框进行微调, 取得目标的尺度. 本文详细分析了基于IoU预测的尺度估计模型的梯度更新过程, 发现其在训练和推理过程仅将IoU作为度量, 缺乏对预测框和真实目标框中心点距离的约束, 导致外观模型更新过程中模板受到污染, 前景和背景分类时定位出现偏差. 基于此发现, 本文构建了一种结合IoU和中心点距离的新度量NDIoU (Normalization distance IoU), 在此基础上提出一种新的尺度估计方法, 并将其嵌入判别式跟踪框架. 即在训练阶段以NDIoU为标签, 设计了具有中心点距离约束的损失函数监督网络的学习, 在线推理期间通过最大化NDIoU微调目标尺度, 以帮助外观模型更新时获得更加准确的样本. 在七个数据上与相关主流方法进行对比, 本文方法在七个数据集上的综合性能优于所有对比算法. 特别是在GOT-10k数据集上, 本文方法的AO、\begin{document}$ S{R}_{0.5} $\end{document}\begin{document}$ S{R}_{0.75} $\end{document}三个指标达到了65.4%、78.7%和53.4%, 分别超过基线模型4.3%、7.0%和4.2%.
一种面向航空母舰甲板运动状态预估的鲁棒学习模型
王可, 徐明亮, 李亚飞, 姜晓恒, 鲁爱国, 李鉴
当前状态:  doi: 10.16383/j.aas.c210064
[摘要](246) [HTML全文](36) [PDF 1404KB](29)
摘要:
航母甲板在风、浪、流等因素影响下做六自由度不规则运动, 影响舰载机着舰精度. 航母甲板运动预估与补偿是自动着舰系统的重要功能之一, 也是提高舰载机着舰安全性与成功率的关键技术之一. 本文提出一种面向甲板运动预估的鲁棒学习模型, 通过基本构建单元自适应演化出复杂学习系统. 构建单元的训练采用非梯度的伪逆学习策略, 提高了训练效率, 简化了学习控制超参数调优;构建单元的架构设计采用数据驱动的策略, 简化了架构超参数调优;采用图拉普拉斯正则化方法提高了模型的鲁棒性. 通过某型航母在中等海况条件下以典型航速巡航时的仿真实验, 验证了所提方法在甲板纵摇、横摇以及垂荡运动预估问题中的有效性及鲁棒性.
Event-Triggered Tracking Control for a Class of Nonlinear Systems With Observer and Prescribed Performance
YOU Xing-Xing, YANG Dao-Wen, GUO Bin, LIU Kai, DIAN Song-Yi, ZHU Yu-Qi
当前状态:  doi: 10.16383/j.aas.c210387
[摘要](299) [HTML全文](251) [PDF 1908KB](64)
摘要:
This paper investigates an adaptive fuzzy tracking control method for a class of nonlinear systems with external disturbances. Firstly, fuzzy logic systems and the fuzzy state observer are implemented to approximate unknown nonlinear functions and estimate the unmeasured states of systems, respectively. Then, the tracking error can be constrained within the specified range by means of the performance function. Furthermore, an event-triggered adaptive fuzzy controller is designed by employing the backstepping method and Lyapunov functional with logarithm function. The proposed control strategy can ensure that all the signals of the closed-loop system are semiglobally uniformly ultimately bounded based on the Lyapunov stability theory and the properties of\begin{document}$\tanh$\end{document}function. Finally, a numerical simulation example is provided to verify the effectiveness of proposed method.
具有不确定控制增益严格反馈系统的自适应命令滤波控制
吴锦娃, 刘勇华, 苏春翌, 鲁仁全
当前状态:  doi: 10.16383/j.aas.c210553
[摘要](366) [HTML全文](169) [PDF 1258KB](36)
摘要:
针对一类具有不确定控制增益的严格反馈系统, 提出了一种基于命令滤波反推技术的自适应神经网络控制方法. 该方法采用神经网络对系统中的未知非线性函数进行逼近, 并引入命令滤波反推技术克服“计算膨胀”的问题. 与现有的命令滤波反推控制文献相比, 本文通过构造自适应误差补偿系统, 同时消除了滤波器产生的边界层误差和不确定控制增益对系统性能造成的影响. 仿真结果验证了所提控制方法的有效性.
基于改进高斯混合模型的机器人运动状态估计
葛泉波, 王贺彬, 杨秦敏, 张兴国, 刘华平
当前状态:  doi: 10.16383/j.aas.c200660
[摘要](484) [HTML全文](214) [PDF 2166KB](39)
摘要:
针对复杂环境下机器人运动状态估计的精度改善问题, 提出一种面向非线性非高斯系统的改进高斯和容积Kalman滤波估计方法. 首先, 引入加权信息量概念来改进EM算法目标函数惩罚项, 使得在优化过程中能考虑更全面的参数信息, 以达到减少EM算法的迭代次数和提高收敛速度的目的. 此外, 以基于Mahalanobis距离和KL距离的高斯项合并方法为基础, 提出一种能有效联合两类高斯项合并方式的融合模式. 先单独使用Mahalanobis距离和KL距离进行高斯混合项合并, 再对获得的高斯混合项进行加权融合处理, 以改善高斯和滤波中多高斯项的合并性能和保真度. 最后, 应用非线性非高斯系统的高斯和容积Kalman滤波框架实现对复杂环境下机器人的运动状态估计. 理论分析与仿真结果表明, 本文提出的方法能实现对机器人运动更好的状态估计精度, 并具有更强的鲁棒性能, 同时两种不同的高斯项合并融合模式具有相当的估计性能.
基于动态注意力深度迁移网络的高炉铁水硅含量在线预测方法
蒋珂, 蒋朝辉, 谢永芳, 潘冬, 桂卫华
当前状态:  doi: 10.16383/j.aas.c210524
[摘要](357) [HTML全文](149) [PDF 1878KB](35)
摘要:
铁水硅含量是反映高炉冶炼过程中热状态变化的灵敏指示剂, 但无法实时在线检测, 造成铁水质量调控盲目. 为此, 本文提出一种基于动态注意力深度迁移网络的高炉铁水硅含量在线预测方法. 首先, 针对传统深度网络静态建模思路无法准确描述过程变量与铁水硅含量之间的关系, 提出了一种基于注意力机制模块的输入过程变量与输出硅含量之间的动态关系描述方法; 其次, 为降低硅含量预测模型训练时对标签数据的依赖, 考虑到铁水温度跟硅含量数据之间的正相关性, 利用小时级硅含量标签数据微调基于分钟级铁水温度数据预训练好的深度模型的结构, 进而提高基于动态注意力深度迁移网络的硅含量预测精度; 同时, 为了增强预测网络的可解释性, 实时地给出了基于动态注意力机制模块计算的每个样本各过程变量对铁水硅含量的贡献度. 最后, 基于某钢铁厂2#高炉的工业实验验证了本文所提方法的准确性、有效性和先进性.
基于运动引导的高效无监督视频目标分割网络
赵子成, 张开华, 樊佳庆, 刘青山
当前状态:  doi: 10.16383/j.aas.c210626
[摘要](274) [HTML全文](92) [PDF 1196KB](17)
摘要:
大量基于深度学习的无监督视频目标分割算法存在模型参数量与计算量较大的问题, 这显著地限制了算法在实际中的应用. 本文提出了基于运动引导的视频目标分割网络, 在大幅降低模型参数量与计算量的同时提升视频目标分割性能.整个模型由双流网络、运动引导模块、多尺度渐进融合模块三部分组成. 具体地,RGB图像与光流估计输入双流网络提取物体外观特征与运动特征. 然后,运动引导模块通过局部注意力提取运动特征中的语义信息,用于引导外观特征学习丰富的语义信息.最后,多尺度渐进融合模块获取双流网络的各个阶段输出的特征,将深层特征渐进地融入浅层特征, 最终提升边缘分割效果. 本文在三个标准数据集上进行了大量评测, 实验结果证明了本文方法的优越性能.
一种用于目标跟踪边界框回归的光滑IoU损失
李功, 赵巍, 刘鹏, 唐降龙
当前状态:  doi: 10.16383/j.aas.c210525
[摘要](375) [HTML全文](158) [PDF 2984KB](18)
摘要:
边界框回归分支是深度目标跟踪器的关键模块, 其性能直接影响跟踪器的精度. 评价精度的指标之一是交并比(Intersection over Union, IoU). 基于 IoU 的损失函数取代了\begin{document}$ \ell_n $\end{document}-norm 损失成为目前主流的边界框回归损失函数, 然而 IoU 损失函数存在两个固有缺陷: 一个是当预测框与真值框不相交时 IoU 为常量 0, 无法梯度下降更新边界框的参数; 另一个是在 IoU 取得最优值时其梯度不存在, 边界框很难收敛到 IoU 最优处. 本文揭示了在回归过程中 IoU 最优的边界框各参数之间蕴含的定量关系, 指出在边界框中心处于特定位置时存在多种尺寸不同的边界框使 IoU 损失最优的情况, 这增加了边界框尺寸回归的不确定性. 本文从优化两个统计分布之间散度的视角看待边界框回归问题, 提出了光滑 IoU 损失, 即构造了在全局上光滑 (即连续可微) 且极值唯一的损失函数, 该损失函数自然蕴含边界框各参数之间特定的最优关系, 其唯一取极值的边界框可使 IoU 达到最优. 光滑性确保了在全局上梯度存在使得边界框更容易回归到极值处, 而极值唯一确保了在全局上可梯度下降更新参数, 从而避开了 IoU 损失的固有缺陷. 提出的光滑 IoU 损失可以很容易取代 IoU 损失集成到现有的深度目标跟踪器上训练边界框回归, 在 LaSOT, GOT-10k, TrackingNet 和 OTB2015 等测试基准上所取得的结果验证了光滑 IoU 损失的易用性和有效性.
基于语义引导特征聚合的显著性目标检测网络
王正文, 宋慧慧, 樊佳庆, 刘青山
当前状态:  doi: 10.16383/j.aas.c210425
[摘要](294) [HTML全文](165) [PDF 1203KB](41)
摘要:
在显著性目标检测网络的设计中, U型结构使用广泛. 但是U型结构显著性检测方法中普遍存在空间位置细节丢失和边缘难以细化的问题, 针对这些问题, 本文提出了一个基于语义信息引导特征聚合的网络, 通过高效的特征聚合来获得精细的显著性图. 网络由3部分组成, 分别是混合注意力模块, 增大感受野模块以及多层次聚合模块. 首先, 利用增大感受野模块处理特征提取网络提取出的低层特征, 使其在保留原有边缘细节的同时增大感受野, 以获得更加丰富的空间上下文信息. 然后, 利用混合注意力模块处理特征提取网络的最后一层特征, 以增强其表征力, 并作为解码过程中的语义指导, 不断指导特征聚合. 最后, 多层次聚合模块对来自不同层次的特征进行有效聚合, 得到最终精细的显著性图. 本文在6个基准数据集上进行了广泛的实验, 结果证明了该方法能够有效的定位显著特征, 并且对边缘细节的细化也很有效.
信息能源系统的信-物融合稳定性分析
王睿, 孙秋野, 张化光
当前状态:  doi: 10.16383/j.aas.c210480
[摘要](227) [HTML全文](181) [PDF 1575KB](46)
摘要:
尽管信息物理系统的稳定性已经得到了广泛的研究, 但大部分的学者皆关注于通信网络延时或攻击下的信息物理系统的稳定性问题, 无网络通信的信息物理系统的信物融合稳定性分析策略亟待提出. 其中, 内嵌数字控制系统的并网逆变器系统是一种最简单、最典型的信息能源系统. 同时, 从效率的角度出发, 逆变器的开关/采样频率总是选择尽可能低的频率, 其势必产生系统固有延迟时间(控制理论中称为时间延迟). 这种延迟时间往往容易引起系统的低频/次同步振荡, 弱电网将加剧此现象. 为此, 本文提出了一种信息能源系统的信-物融合稳定性分析技术. 首先, 基于柏德近似方法, 建立了具有等效延迟时间的信息物理系统阻抗模型. 该等效延迟时间由三部分组成, 即信息/物理层的采样延迟时间、信息层的计算延迟时间和物理层的脉宽调制(Pulsewidth modulation, PWM)延迟时间, 其有效地反映了信息-物理相互融合作用的影响. 进而设计了稳定禁止区域判据, 利用空间映射使开关/采样频率求解过程转化为Hurwitz矩阵辨识问题. 在这些空间映射的基础上, 最小开关/采样频率通过自适应步长搜索算法获得. 最后, 仿真和实验结果验证了该方法的有效性.
基于误差回传机制的多尺度去雾网络
杨爱萍, 李晓晓, 张腾飞, 王朝臣, 王建
当前状态:  doi: 10.16383/j.aas.c210264
[摘要](220) [HTML全文](89) [PDF 1505KB](13)
摘要:
针对现有图像去雾方法因空间上下文信息丢失而无法准确估计大尺度目标特征, 导致图像结构被破坏或去雾不彻底等问题, 本文提出了一种基于误差回传机制的多尺度去雾网络. 网络由误差回传多尺度去雾群组(Error-backward Multi-scale Dehazing Group, EMDG)、门控融合模块和优化模块组成. 其中EMDG包括误差回传模块和雾霾感知单元, 误差回传模块度量相邻尺度网络特征图之间的差异, 并将生成的差值图回传至上一尺度, 实现对结构信息和上下文信息的有效复用; 雾霾感知单元是各尺度子网络的核心, 其由残差密集块和雾浓度自适应检测块组成, 可充分提取局部信息并能够根据雾浓度实现自适应去雾. 不同于已有融合方法直接堆叠各尺度特征, 提出的门控融合模块逐像素学习每个子网络特征图对应的最优权重, 有效避免了干扰信息对图像结构和细节信息的破坏. 再经优化模块, 可得最终的无雾图像. 在合成数据集和真实数据集上的大量实验表明, 本文方法优于目前的主流去雾方法, 尤其是对远景雾气去除效果更佳.
基于事件相机的连续光流估计
付婧祎, 余磊, 杨文, 卢昕
当前状态:  doi: 10.16383/j.aas.c210242
[摘要](465) [HTML全文](145) [PDF 1202KB](28)
摘要:
事件相机对场景的亮度变化进行成像, 输出异步的事件流, 具有极低的延时, 受运动模糊问题影响较少. 因此, 可以利用事件相机解决高速运动场景下的光流估计问题. 本文基于亮度恒定假设和事件产生模型, 利用事件相机输出事件流的低延时性质, 融合存在运动模糊的亮度图像帧, 提出了基于事件相机的连续光流估计算法, 提升了高速运动场景下的光流估计精度. 实验结果表明, 相比于现有的基于事件相机的光流估计算法, 本文提出的算法在平均端点误差(AEE)、平均角度误差(AAE)和均方误差(MSE)三个指标上分别提升11%、45% 和8%. 在高速运动场景下, 本文的算法能够准确重建出高速运动目标的连续光流, 从而保证了存在运动模糊情况时光流估计的精度.
兵棋推演的智能决策技术与挑战
尹奇跃, 赵美静, 倪晚成, 张俊格, 黄凯奇
当前状态:  doi: 10.16383/j.aas.c210547
[摘要](1014) [HTML全文](492) [PDF 1502KB](132)
摘要:
近年来, 以人机对抗为途径的智能决策技术取得了飞速发展, 人工智能技术AlphaGo、AlphaStar等分别在围棋、星际争霸等游戏环境中战胜了顶尖人类选手. 兵棋推演, 作为一种人机对抗策略验证环境, 由于其非对称环境决策、更接近真实环境的随机性与高风险决策等特点受到智能决策技术研究者的广泛关注. 本文将梳理兵棋推演与目前主流人机对抗环境如围棋、德扑、星际争霸等对抗环境的区别, 阐述兵棋推演智能决策技术的发展现状, 并分析当前主流技术的局限与瓶颈, 对兵棋推演中的智能决策技术研究进行了思考, 期望能对兵棋推演相关研究人员的智能决策技术研究带来启发.
基于 PID 自整定功能的自适应双路输出的黑体温度控制
张海弟
当前状态:  doi: 10.16383/j.aas.c190277
[摘要](270) [HTML全文](57) [PDF 1412KB](30)
摘要:
首先, 通过分析黑体温度控制系统的物理模型, 推演出黑体传递函数的表达式.推演过程中得知黑体易受环境温度和空气散热的影响, 所以黑体温度控制系统是个非线性时变系统.结合实验黑体的阶跃响应数据, 采用阶跃响应法对传递函数进行近似计算, 得出黑体温控系统的传递函数是极点在左半轴的二阶系统, 该系统等效于二阶低通滤波器.经过低通滤波器的信号, 会滤除高频部分, 当用继电器法进行参数自整定时, 仅需计算能量较大的基波信号.通过对基波信号进行比较, 得出继电器法的整定公式, 并参照Ziegler-Nichols整定法则计算出PID参数.同时, 本文针对黑体加热器具有双路输出的特点, 提出了一种双路动态输出法, 通过理论分析了该方法可以消除环境对黑体温度的影响.对于环境温度变化较大的, 采用继电器法PID参数自整定的方式来消除; 对于黑体运行过程中环境温度变化较小的, 采用双路动态输出法来减少影响.最后, 结合实验数据, 引入性能指标, 验证了本文所述方法对黑体的温度控制性能有一定的提升.
面向多智能体协作的注意力意图与交流学习方法
俞文武, 杨晓亚, 李海昌, 王瑞, 胡晓惠
当前状态:  doi: 10.16383/j.aas.c210430
[摘要](297) [HTML全文](199) [PDF 2169KB](44)
摘要:
对于部分可观测环境下的多智能体交流协作任务, 现有工作大多只利用了当前时刻的网络隐藏层信息, 限制了信息的来源. 本文研究如何使用团队奖励训练一组独立的策略以及如何提升这组独立策略的协同表现, 提出了多智能体注意力意图交流算法, 增加了意图信息模块来扩大交流信息的来源, 并且改善了交流模式. 本文将智能体历史上表现最优的网络作为意图网络, 且从中提取策略意图信息, 按时间顺序保留成一个向量, 最后结合注意力机制推断出更为有效的交流信息. 本文在星际争霸环境上通过实验对比分析, 验证了算法的有效性.
无人机反应式扰动流体路径规划
吴健发, 王宏伦, 王延祥, 刘一恒
当前状态:  doi: 10.16383/j.aas.c210231
[摘要](496) [HTML全文](235) [PDF 2962KB](54)
摘要:
针对复杂三维障碍环境, 提出一种基于深度强化学习的无人机反应式扰动流体路径规划架构. 该架构以一种受约束扰动流体动态系统算法作为路径规划的基本方法, 根据无人机与各障碍的相对状态以及障碍物类型, 通过经深度确定性策略梯度算法训练得到的动作网络在线生成对应障碍的反应系数和方向系数, 继而可计算相应的总和扰动矩阵并以此修正无人机的飞行路径, 实现反应式避障. 此外, 还研究了与所提路径规划方法相适配的深度强化学习训练环境规范性建模方法. 仿真结果表明, 在路径质量大致相同的情况下, 所提方法在实时性方面明显优于基于预测控制的在线路径规划方法.
融合多策略的黄金正弦黑猩猩优化算法
刘成汉, 何庆
当前状态:  doi: 10.16383/j.aas.c210313
[摘要](498) [HTML全文](185) [PDF 3338KB](39)
摘要:
针对黑猩猩优化算法(Chimp optimization algorithm, ChOA)存在收敛速度慢、精度低和易陷入局部最优值的问题, 提出一种融合多策略的黄金正弦黑猩猩优化算法(IChOA). 引入Halton序列初始化种群, 提高初始化种群的多样性, 加快算法收敛, 提高收敛精度; 考虑到收敛因子和权重因子对于平衡算法勘探和开发能力的重要作用, 引入改进的非线性收敛因子和自适应权重因子, 平衡算法的搜索能力; 结合黄金正弦算法相关思想更新个体位置, 提高算法对于局部极值的处理能力. 通过对23个基准测试函数的寻优对比分析和Wilcoxon秩和统计检验以及部分CEC2014测试函数寻优结果对比可知, 改进的算法具有更好的鲁棒性, 最后, 通过2个实际工程优化问题的实验对比分析, 进一步验证了IChOA在处理现实优化问题上的优越性.