2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于预定义时间的舰载机抗干扰着舰控制

李钊星 蔡云鹏 刘茂汉 王霞 许斌

李钊星, 蔡云鹏, 刘茂汉, 王霞, 许斌. 基于预定义时间的舰载机抗干扰着舰控制. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240766
引用本文: 李钊星, 蔡云鹏, 刘茂汉, 王霞, 许斌. 基于预定义时间的舰载机抗干扰着舰控制. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240766
Li Zhao-Xing, Cai Yun-Peng, Liu Mao-Han, Wang Xia, Xu Bin. Predefined-time anti interference landing control for carrier-based aircraft. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240766
Citation: Li Zhao-Xing, Cai Yun-Peng, Liu Mao-Han, Wang Xia, Xu Bin. Predefined-time anti interference landing control for carrier-based aircraft. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240766

基于预定义时间的舰载机抗干扰着舰控制

doi: 10.16383/j.aas.c240766 cstr: 32138.14.j.aas.c240766
基金项目: 陕西省自然科学基础研究计划(2023JC-XJ-08), 深圳市科技计划项目(JCYJ20230807145500002), 西北工业大学博士论文创新基金(CX2024071) 资助
详细信息
    作者简介:

    李钊星:西北工业大学博士研究生. 分别于2019年和2022年获得西北工业大学学士和硕士学位. 主要研究方向为飞行控制和智能控制. E-mail: lzx_nwpu@163.com

    蔡云鹏:沈阳飞机设计研究所高级工程师. 主要研究方向为导航、制导与飞行控制. E-mail: jason415@163.com

    刘茂汉:沈阳飞机设计研究所高级工程师. 主要研究方向为飞行控制系统设计. E-mail: cjdtclmhatsy@163.com

    王霞:山东大学博士后. 分别于2017年, 2020年和2023年获得西北工业大学学士, 硕士和博士学位. 主要研究方向为智能控制, 自适应控制及其在飞行器中的应用. E-mail: wangxia_nwpu@163.com

    许斌:西北工业大学教授. 2006年获得西北工业大学学士学位. 2012年获得清华大学博士学位. 主要研究方向为智能控制, 自适应控制及其应用. 本文通信作者. E-mail: smileface.binxu@gmail.com

Predefined-time anti interference landing control for carrier-based aircraft

Funds: Supported by Natural Science Basic Research Plan in Shaanxi (2023JC-XJ-08), Science, Technology and Innovation Commission of Shenzhen Municipality (JCYJ20230807145500002), and Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University (CX2024071)
More Information
    Author Bio:

    LI Zhao-Xing Ph.D. candidate at Northwestern Polytechnical University. He received his bachelor and master degrees from Northwestern Polytechnical University in 2019 and 2022, respectively. His main research interest covers flight control and intelligent control

    CAI Yun-Peng Senior engineer at Shenyang Aircraft Design & Research Institute. His main research interest covers guidance、navigation and flight control

    LIU Mao-Han Senior engineer at Shenyang Aircraft Design & Research Institute. His main research interest is aircraft flight control system design

    WANG Xia Postdoctor at Shandong University. She received her bachelor, master and Ph.D. degrees from Northwestern Polytechnical University in 2017, 2020 and 2023, respectively. Her main research interest covers intelligent control and adaptive control with applications to flight dynamics

    Xu Bin Professor at Northwestern Polytechnical University. He received his bachelor degree from Northwestern Polytechnical University in 2006, and received his Ph.D. degree from Tsinghua University in 2012. His research interest covers intelligent control and adaptive control with applications. Corresponding author of this paper

  • 摘要: 考虑甲板运动和舰尾流等扰动影响下的舰载机着舰轨迹跟踪问题, 提出一种基于预定义时间的自适应抗干扰控制策略. 建立着舰轨迹生成、引导、控制和进近动力补偿等子系统, 将轨迹跟踪问题转换为子系统的稳定问题. 针对舰尾流引起的时变扰动和甲板运动对理想着舰点的变化影响, 采用长短记忆神经网络进行甲板运动预估并在引导指令中予以修正, 借助非线性扰动观测器估计未知干扰对模型集总外界扰动进行前馈补偿. 为提升着舰轨迹跟踪与姿态控制的精确性和快速性, 设计基于反步架构的预定义时间控制策略, 通过李雅普诺夫稳定性分析证明了系统能够在设定的时间内收敛. 数字和半实物仿真结果表明, 在甲板运动和舰尾流扰动影响下所设计的控制策略能够满足着舰轨迹的快速准确跟踪, 实现预定义时间稳定.
  • 图  1  着舰引导控制系统结构框图

    Fig.  1  Framework of the proposed landing strategy

    图  2  LSTM神经网络结构

    Fig.  2  Framework of the LSTM neural network

    图  3  甲板运动实际值与预测值 ((a)垂荡; (b)纵摇; (c)横摇)

    Fig.  3  Deck motion estimation and actual value ((a) Heaving; (b) Pitching; (c) Rolling)

    图  4  舰载机着舰轨迹

    Fig.  4  Landing trajectory of the carrier-based aircraft

    图  5  高度跟踪及其跟踪误差 ((a)指令跟踪; (b)跟踪误差)

    Fig.  5  Altitude tracking and tracking errors ((a)Command tracking; (b)Tracking error)

    图  6  侧偏距跟踪及其跟踪误差 ((a)指令跟踪; (b)跟踪误差)

    Fig.  6  Lateral performance tracking and tracking errors ((a) Command tracking; (b) Tracking error)

    图  7  不同方法的迎角与侧滑角 ((a)迎角; (b)侧滑角)

    Fig.  7  Angle of attack and sideslip of different methods ((a) Angle of attack; (b) Sideslip angle)

    图  8  不同方法的航迹滚转角, 俯仰角与航迹方位角 ((a)航迹滚转角; (b)俯仰角; (c)航迹方位角)

    Fig.  8  Roll, pitch and heading angle of different methods ((a) Roll angle; (b) Pitch angle; (c) Heading angle)

    图  9  执行机构偏转 ((a)升降舵; (b)副翼; (c)方向舵)

    Fig.  9  Actuators deflection ((a) Elevator; (b) Aileron; (c) Rudder)

    图  10  不同状态扰动实际值与干扰观测器观测值对比 ((a)迎角; (b)侧滑角; (c)航迹滚转角)

    Fig.  10  Different states actual disturbance values and disturbance observe ((a) Angle of attack; (b) Sideslip angle; (c) Roll angle)

    图  11  观测误差 ((a)迎角; (b)侧滑角; (c)航迹滚转角)

    Fig.  11  Disturbance observe errors ((a) Angle of attack; (b) Sideslip angle; (c) Roll angle)

    图  12  半实物仿真实验平台

    Fig.  12  Hardware-in-loop simulation platform

    图  13  实验设备

    Fig.  13  Experimental equipment

    图  14  半实物仿真实验下高度和侧偏距跟踪偏差 ((a)高度跟踪误差; (b)侧偏距跟踪误差)

    Fig.  14  Height and lateral movement tracking errors during hardware-in-loop simulation ((a) Height tracking errors; (b )L ateral movement tracking errors)

    图  15  着舰跟踪误差

    Fig.  15  Path following error at touchdown

  • [1] 刘东, 吴家仁, 周一舟, 刘振祥, 李瑜, 王铭泽. 舰载机综合保障技术实践及发展展望. 航空学报, 2021, 42(08): 106−123

    Liu Dong, Wu Jia-Ren, Zhou Yi-Zhou, Liu Zhen-Xiang, Li Yu, Wang Ming-Ze. Practice and prospects of comprehensive supporttechnol-ogies of carrier-based aircraft. Acta Aeronautica et Astronautica Sinica, 2021, 42(08): 106−123
    [2] 甄子洋, 王新华, 江驹, 杨一栋. 舰载机自动着舰引导与控制研究进展. 航空学报, 2017, 38(02): 127−148

    Zhen Zi-Yang, Wang Xin-Hua, Jiang Ju, Yang Yi-Dong. Research progress in guidance and control of automatic carrierlanding of carrier-based aircraft. Acta Aeronautica et Astronautica Sinica, 2017, 38(02): 127−148
    [3] 张志冰, 甄子洋, 江驹, 薛艺璇. 舰载机自动着舰引导与控制综述. 南京航空航天大学学报, 2018, 50(06): 734−744

    Zhang Zhi-Bing, Zhen Zi-Yang, Jiang Ju, Xue Yi-Xuan. Review on development in guidance and control of au-tomatic carrier landing of Carrier-Based aircraft. Journal of Nanjing University of Aeronautics and Astronautics, 2018, 50(06): 734−744
    [4] 汪节, 韩维, 尹大伟, 潘子双, 李常久. MAGIC CARPET着舰的舰尾流抑制. 电光与控制, 2024, 31(10): 58−63 doi: 10.3969/j.issn.1671-637X.2024.10.010

    Wang Jie, Han Wei, Yen Da-Wei, Pan Zi-Shuang, Li Chang-Jiu. Suppression of the Carrier Air Wake with MAGIC CARPET Carrier Landing. Electronics Optics and Control, 2024, 31(10): 58−63 doi: 10.3969/j.issn.1671-637X.2024.10.010
    [5] Lungu M, Dinu DA, Chen M, Florse G. Inverse optimal control for autonomous carrier landing with disturbances. Aerospace Science and Technology, 2023, 139: 1−20
    [6] Yuan Y, Duan H, Zeng Z. Automatic carrier landing con-trol with external disturbance and input constraint. IEEE Transactions on Aerospace and Electronic Systems, 2022, 59(2): 1426−1438
    [7] 段海滨, 袁洋, 张秀林. 干扰和执行器故障下的舰载机着舰容错控制系统. 南京航空航天大学学报, 2022, 54(05): 949−957

    Duan Hai-Bin, Yuan Yang, Zhang Xiu-Lin. Design of a Carrier-Based aircraft landing fault-tolerant control systemwith disturbances and actuator faults. Journal of Nanjing University of Aeronautics and Astro-nautics, 2022, 54(05): 949−957
    [8] 刘建伟, 宋志妍. 循环神经网络研究综述. 控制与决策, 2022, 37(11): 2753−2768

    Liu Jian-Wei, Song Zhi-Yan. Overview of recurrent neural networks. Control and Decision, 2022, 37(11): 2753−2768
    [9] Zhen Z, Jiang S, Jiang J. Preview control and particle filtering for automatic carrier landing. IEEE Transac-tions on Aerospace and Electronic Systems, 2018, 54(6): 2662−2674 doi: 10.1109/TAES.2018.2826398
    [10] 赵所, 林立, 李震, 侯中喜. 基于BP神经网络的甲板运动预报与补偿技术. 北京航空航天大学学报, 2024, 50(09): 2772−2780

    Zhao Suo, Lin Lim, Li Zhen, Hou Zhong-Xi. Research on deck motion prediction and compensation technology based on BP neural network. Jounal of Beijing University of Aeronautics and Astronautics, 2024, 50(09): 2772−2780
    [11] Geng X, Li Y, Sun Q. A novel short-term ship motion prediction algorithm based on EMD and adaptive PSO–LSTM with the sliding window approach. Journal of Marine Science and Engineering, 2023, 11(3): 466 doi: 10.3390/jmse11030466
    [12] 王可, 徐明亮, 李亚飞, 姜晓恒, 鲁爱国, 李鉴. 一种面向航空母舰甲板运动状态预估的鲁棒学习模型. 自动化学报, 2024, 50(09): 1785−1793

    Wang Ke, Xu Ming-Liang, Li Ya-Fei, Jiang Xiao-Heng, Lu Ai-Guo, Li Jian. A robust learning model for deck motion prediction of aircraft carrier. Acta Automatica Sinica, 2024, 50(09): 1785−1793
    [13] 王志刚, 王业光, 杨宁, 米禹丰, 曲晓雷. 基于LSTM的飞行数据挖掘模型构建方法. 航空学报, 2021, 42(08): 262−271

    Wang Zhi-Gang, Wang Ye-Guang, Yang Ning, Mi Yu-Feng, Qu Xiao-Lei. Construction method of flight data mining model based on LSTM. Acta Aeronautica et Astronautica Sinica, 2021, 42(08): 262−271
    [14] 赵琦, 许志远, 葛佳薇, 董婕. 基于SW-BiConvLSTM的船舶轨迹预测. 船海工程, 2024, 53(04): 36−42

    Zhao Qi, Xu Zhi-Yuan, Ge Jia-Wei, Dong Jie. Ship trajectory prediction based on SW-BiConvLSTM. Ship and Ocean Engineering, 2024, 53(04): 36−42
    [15] 陈占阳, 占正勇, 常绍平, 徐绍峰, 刘兴云. 长短期记忆神经网络在船舶迎浪运动多时间尺度实时预测中的应用研究. 船舶力学, 2024, 28(12): 1803−1819 doi: 10.3969/j.issn.1007-7294.2024.12.001

    Chen Zhan-Yang, Zhan Zheng-Yong, Chang Shao-Yun, Xu Shao-Feng, Liu Xing-Yun. A framework of LSTM neural network model in multi-time scale real-time prediction of ship motions in head waves. Journal of Ship Mechanics, 2024, 28(12): 1803−1819 doi: 10.3969/j.issn.1007-7294.2024.12.001
    [16] Guan Z, Ma Y, Zheng Z. Moving path following with prescribed performance and its application on automatic carrier landing. IEEE Transactions on Aerospace and Electronic Systems, 2019, 56(4): 2576−2590
    [17] Guan Z, Ma Y, Zheng Z. Prescribed performance control for automatic carrier landing with disturbance. Nonlinear Dynamics, 2018, 94: 1335−1349 doi: 10.1007/s11071-018-4427-3
    [18] Wu Q, Zhu Q, Han S. Elman neural network-based direct lift automatic carrier landing nonsingular terminal sliding mode fault-tolerant control system design. Computational Intelligence and Neuroscience, 2023(1): 3560441
    [19] 张志冰, 张秀林, 王家兴, 史静平. 一种基于多操纵面控制分配的IDLC人工着舰精确控制方法. 航空学报, 2021, 42(08): 142−157 doi: 10.7527/S1000-6893.2021.25840

    Zhang Zhi-Bing, Zhang Xiu-Lin, Wang Jia-Xing, Shi Jing-Ping. An lDLC landing control method of carrier-based aircraft based on control allocation of multiple control surfaces. Acta Aeronautica et Astronautica Sinica, 2021, 42(08): 142−157 doi: 10.7527/S1000-6893.2021.25840
    [20] 罗飞, 张军红, 王博, 唐瑞琳, 唐炜. 基于直接升力与动态逆的舰尾流抑制方法. 航空学报, 2021, 42(12): 193−208

    Luo Fei, Zhang Jun-Hong, Wang Bo, Tang Rui-Lin, Tang Wei. Air wake suppression method based on direct lift and-nonlinear dynamic inversion control. Acta Aeronautica et Astronautica Sinica, 2021, 42(12): 193−208
    [21] 柳仁地, 江驹, 张哲, 刘翔. 基于强化学习的舰载机着舰直接升力控制技术. 北京航空航天大学学报, DOI: 10.13700/j.bh.1001-5965.2023.0403

    Liu Ren-Di, Jiang Ju, Zhang Zhe, Liu Xiang. Direct lift control technology of carrier aircraft landing based on reinforcement learning. Jounal of Beijing University of Aeronautics and Astronautics, DOI: 10.13700/j.bh.1001-5965.2023.0403
    [22] Zhang S, Nan Y, Li Z. Moving path following with adaptive neural network finite-time recursive sliding mode control for carrier landing with uncertain dynamics and saturation. Aerospace Science and Technology, 2024, 17: 109220
    [23] Xue Y, Zhen Z, Zhang Z, Cao T, Wan T. Automatic carrier landing for UAV based on integrated disturbance ob-server and fault-tolerant control. Aircraft Engineering and Aerospace Technology, 2023, 95(8): 1247−1256 doi: 10.1108/AEAT-02-2023-0047
    [24] Duan H, Yuan Y, Zeng Z. Automatic carrier landing system with fixed time control. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(4): 3586−3600 doi: 10.1109/TAES.2022.3156070
    [25] Zhou D, Zheng Z, Guan Z. Barrier Lyapunov function based fixed-time control for automatic carrier landing with disturbances. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2023, 37(1): 177−190
    [26] Sánchez-Torres JD, Defoort M, Munoz-Vázquez AJ. Predefined-time stabilisation of a class of nonholonomic systems. International Journal of Control, 2020, 3(12): 291−2948
    [27] Wu C, Yan J, Shen J, Wu X, Xiao B. Predefined-time attitude stabilization of receiver aircraft in aerial refueling. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68(10): 3321−3325
    [28] Pan Y, Ji W, Liang H. Adaptive predefined-time control for Lü chaotic systems via backstepping approach. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(12): 5064−5068
    [29] Ferrara A, Incremona G P. Predefined-time output stabilization with second order sliding mode generation. IEEE Transactions on Automatic Control, 2020, 66(3): 1445−1451
    [30] Pan Y, Ji W, Lam H K, Cao L. An improved predefined-time adaptive neural control approach for nonlinear multiagent systems. IEEE Transactions on Automation Science and Engineering, 20236311−6320
    [31] Munoz-Vázquez AJ, Sánchez-Torres JD, Jimenez-Rodriguez E, Loukianov AG. Predefined-time robust stabilization of robotic manipulators. IEEE/ASME Transactions on Mechatronics, 2019, 24(3): 1033−1040 doi: 10.1109/TMECH.2019.2906289
    [32] Munoz-Vázquez AJ, Sánchez-Torres JD, Gutiérrez-Alcalá S, Jimenez-Rodriguez E, Loukianov AG. Predefined-time robust contour tracking of robotic manipulators. Journal of the Franklin Institute, 2019, 356(5): 2709−2722 doi: 10.1016/j.jfranklin.2019.01.041
    [33] 吴慈航, 闫建国, 钱先云, 郭一鸣, 屈耀红. 受油机指定时间姿态稳定控制. 航空学报, 2022, 43(02): 373−381 doi: 10.7527/j.issn.1000-6893.2022.2.hkxb202202030

    Wu Ci-Hang, Yan Jian-Guo, Qian Xian-Yun, Guo Yi-Ming, Qu Yao-Hong. Predefined-time attitude stabilization control of receiver aircraft. Acta Aeronautica et Astronautica Sinica, 2022, 43(02): 373−381 doi: 10.7527/j.issn.1000-6893.2022.2.hkxb202202030
    [34] Chakraborty A, Seiler P, Balas GJ. Susceptibility of F/A-18 flight controllers to the falling-leaf mode: Nonlinear analysis. Journal of guidance, control, and dynamics, 2011, 34(1): 73−85 doi: 10.2514/1.50675
    [35] Han J. From PID to active disturbance rejection control. IEEE transactions on Industrial Electronics, 2009, 56(3): 900−906 doi: 10.1109/TIE.2008.2011621
    [36] Chakraborty A, Seiler P, Balas GJ. Susceptibility of F/A-18 flight controllers to the falling-leaf mode: Linear analysis. Journal of guidance, control, and dynamics, 2011, 34(1): 57−72 doi: 10.2514/1.50674
    [37] Yue L, Liu G, Hong G. Design and simulation of F/A-18A automatic carrier landing guidance controller. In AIAA Modeling and Simulation Technologies Conference, 2016, 3527: 1−11
    [38] Guo Y, Xu B. Finite-time deterministic learning command filtered control for hypersonic flight vehicle. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(5): 4214−4225 doi: 10.1109/TAES.2022.3160687
    [39] Zhen Z, Jiang S, Jiang J. Preview control and particle filtering for automatic carrier landing. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(6): 2662−2674 doi: 10.1109/TAES.2018.2826398
  • 加载中
计量
  • 文章访问数:  27
  • HTML全文浏览量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-28
  • 录用日期:  2025-02-14
  • 网络出版日期:  2025-03-23

目录

    /

    返回文章
    返回