优先发表
优先发表栏目展示本刊经同行评议确定正式录用的文章,这些文章目前处在编校过程,尚未确定卷期及页码,但可以根据DOI进行引用。
显示方式:
摘要:
行人惯性定位通过惯性测量单元 (Inertial measurement unit, IMU) 的测量序列来估计行人的位置, 近年来已成为解决室内或卫星信号遮挡环境下行人自主定位的重要手段. 然而, 传统惯性定位方法在双重积分时易受误差源影响导致漂移问题, 一定程度上限制了行人惯性定位在长时间长距离实际运动中的应用. 幸运的是, 基于神经网络学习的方法能够仅从IMU历史数据中学习行人的运动模式并修正惯性测量值在积分时引起的漂移. 为此, 本文对近期基于深度神经网络的行人惯性定位进行全面综述. 首先对传统的惯性定位方法进行了简要介绍; 其次, 按照是否融入领域知识分别介绍了端到端的神经惯性定位方法和融合领域知识的神经惯性定位方法的研究动态; 然后, 概述了行人惯性定位的基准数据集、评价指标, 并分析比较了其中一些代表性方法的优势和不足; 最后, 对该领域需要解决的关键难点问题进行了总结, 并探讨基于深度神经网络的行人惯性定位未来所面临的关键挑战与发展趋势, 以期为后续的研究提供有益参考.
行人惯性定位通过惯性测量单元 (Inertial measurement unit, IMU) 的测量序列来估计行人的位置, 近年来已成为解决室内或卫星信号遮挡环境下行人自主定位的重要手段. 然而, 传统惯性定位方法在双重积分时易受误差源影响导致漂移问题, 一定程度上限制了行人惯性定位在长时间长距离实际运动中的应用. 幸运的是, 基于神经网络学习的方法能够仅从IMU历史数据中学习行人的运动模式并修正惯性测量值在积分时引起的漂移. 为此, 本文对近期基于深度神经网络的行人惯性定位进行全面综述. 首先对传统的惯性定位方法进行了简要介绍; 其次, 按照是否融入领域知识分别介绍了端到端的神经惯性定位方法和融合领域知识的神经惯性定位方法的研究动态; 然后, 概述了行人惯性定位的基准数据集、评价指标, 并分析比较了其中一些代表性方法的优势和不足; 最后, 对该领域需要解决的关键难点问题进行了总结, 并探讨基于深度神经网络的行人惯性定位未来所面临的关键挑战与发展趋势, 以期为后续的研究提供有益参考.
摘要:
现有的索引选择方法存在诸多局限性. 首先, 大多数方法考虑场景较为单一, 不能针对特定数据模态选择合适的索引结构, 进而无法有效应对海量多模态数据; 其次, 现有方法未考虑索引选择时索引构建的代价, 无法有效应对动态的工作负载. 针对上述问题, 提出一种面向多模态数据的智能高效索引选择模型 APE-X DQN (Distributed prioritized experience replay in deep Q-network), 称为 AP-IS (APE-X DQN for index selection). AP-IS 设计了新型索引集编码和 SQL 语句编码方法, 该方法使 AP-IS 在感知多模态数据同时兼顾索引结构本身的特性, 极大地降低索引的存储代价. AP-IS 集成新型索引效益评估方法, 在优化强化学习奖励机制的同时, 监控数据库工作负载的执行状态, 保证动态工作负载下 AP-IS 在时间和空间上的优化效果. 在真实多模态数据集上进行大量实验, 验证 AP-IS 模型在工作负载的时延、存储代价和训练效率等方面性能, 结果均明显优于最新索引选择方法.
现有的索引选择方法存在诸多局限性. 首先, 大多数方法考虑场景较为单一, 不能针对特定数据模态选择合适的索引结构, 进而无法有效应对海量多模态数据; 其次, 现有方法未考虑索引选择时索引构建的代价, 无法有效应对动态的工作负载. 针对上述问题, 提出一种面向多模态数据的智能高效索引选择模型 APE-X DQN (Distributed prioritized experience replay in deep Q-network), 称为 AP-IS (APE-X DQN for index selection). AP-IS 设计了新型索引集编码和 SQL 语句编码方法, 该方法使 AP-IS 在感知多模态数据同时兼顾索引结构本身的特性, 极大地降低索引的存储代价. AP-IS 集成新型索引效益评估方法, 在优化强化学习奖励机制的同时, 监控数据库工作负载的执行状态, 保证动态工作负载下 AP-IS 在时间和空间上的优化效果. 在真实多模态数据集上进行大量实验, 验证 AP-IS 模型在工作负载的时延、存储代价和训练效率等方面性能, 结果均明显优于最新索引选择方法.
摘要:
针对存在未知扰动的多四旋翼无人机协同吊挂系统(Multi-quadrotor cooperative supension system, MQCSS), 提出一种具有避碰和性能约束的分布式自适应积分反步跟踪控制(Distributed adaptive integral backstepping tracking control, DAIBC)方法. 首先, 设计新型的有限时间性能函数(Finite time performance function, FTPF)和人工势函数分别用于处理负载的跟踪约束和四旋翼无人机(Quadrotor unmanned aerial vehicle, QUAV)之间的避碰问题. 然后, 构造一种积分型的辅助变量并结合动态面技术设计反步控制器, 实现四旋翼无人机的分布式编队运输负载. 同时, 将动态面技术与自适应调节机制相结合, 对系统存在的未知干扰进行抑制. 接着, 给出严格的Lyapunov稳定性分析, 证明闭环系统所有信号的最终一致有界. 最后, 通过数值对比仿真和实飞实验结果验证了所提方法的有效性.
针对存在未知扰动的多四旋翼无人机协同吊挂系统(Multi-quadrotor cooperative supension system, MQCSS), 提出一种具有避碰和性能约束的分布式自适应积分反步跟踪控制(Distributed adaptive integral backstepping tracking control, DAIBC)方法. 首先, 设计新型的有限时间性能函数(Finite time performance function, FTPF)和人工势函数分别用于处理负载的跟踪约束和四旋翼无人机(Quadrotor unmanned aerial vehicle, QUAV)之间的避碰问题. 然后, 构造一种积分型的辅助变量并结合动态面技术设计反步控制器, 实现四旋翼无人机的分布式编队运输负载. 同时, 将动态面技术与自适应调节机制相结合, 对系统存在的未知干扰进行抑制. 接着, 给出严格的Lyapunov稳定性分析, 证明闭环系统所有信号的最终一致有界. 最后, 通过数值对比仿真和实飞实验结果验证了所提方法的有效性.
摘要:
深度学习是解决时间序列分类(Time series classification, TSC)问题的主要途径之一. 然而, 基于深度学习的TSC模型易受到对抗样本攻击, 从而导致模型分类准确率大幅度降低. 为此, 研究了TSC模型的对抗攻击防御问题, 设计了集成对抗训练(Adversarial training, AT)防御方法. 首先, 设计了一种针对TSC模型的集成对抗训练防御框架, 通过多种TSC模型和攻击方式生成对抗样本, 并用于训练目标模型. 其次, 在生成对抗样本的过程中, 设计了基于Shapelets的局部扰动算法, 并结合动量迭代的快速梯度符号法(Momentum iterative fast gradient sign method, MI-FGSM), 实现了有效的白盒攻击. 同时, 使用知识蒸馏(Knowledge distillation, KD)和基于沃瑟斯坦距离的生成对抗网络(Wasserstein generative adversarial network, WGAN)设计了针对替代模型的黑盒对抗攻击方法, 实现了攻击者对目标模型未知时的有效攻击. 在此基础上, 在对抗训练损失函数中添加Kullback-Leibler (KL)散度约束, 进一步提升了模型鲁棒性. 最后, 在多变量时间序列分类数据集UEA上验证了所提方法的有效性.
深度学习是解决时间序列分类(Time series classification, TSC)问题的主要途径之一. 然而, 基于深度学习的TSC模型易受到对抗样本攻击, 从而导致模型分类准确率大幅度降低. 为此, 研究了TSC模型的对抗攻击防御问题, 设计了集成对抗训练(Adversarial training, AT)防御方法. 首先, 设计了一种针对TSC模型的集成对抗训练防御框架, 通过多种TSC模型和攻击方式生成对抗样本, 并用于训练目标模型. 其次, 在生成对抗样本的过程中, 设计了基于Shapelets的局部扰动算法, 并结合动量迭代的快速梯度符号法(Momentum iterative fast gradient sign method, MI-FGSM), 实现了有效的白盒攻击. 同时, 使用知识蒸馏(Knowledge distillation, KD)和基于沃瑟斯坦距离的生成对抗网络(Wasserstein generative adversarial network, WGAN)设计了针对替代模型的黑盒对抗攻击方法, 实现了攻击者对目标模型未知时的有效攻击. 在此基础上, 在对抗训练损失函数中添加Kullback-Leibler (KL)散度约束, 进一步提升了模型鲁棒性. 最后, 在多变量时间序列分类数据集UEA上验证了所提方法的有效性.
摘要:
本文研究了卫星信号干扰下 RTK (Real-time kinematic) 整周模糊度固定问题, 提出了一种基于整数约束型渐进高斯滤波的 RTK 定位方法. 首先, 结合贝叶斯推理与同伦方法优势, 导出了一种兼容整数、浮点状态的渐进高斯滤波框架. 其次, 构造从先验分布到后验分布的同伦路径, 以目标浮点状态与模糊度固定的迭代求解, 来提高信号干扰情形下的整周模糊度固定率. 特别地, 通过渐进地融合卫星双差信息来降低线性化误差, 进而提升对目标状态后验分布的逼近精度. 最后, 通过车载 RTK 实验及后处理分析, 验证了所提方法的有效性和优越性.
本文研究了卫星信号干扰下 RTK (Real-time kinematic) 整周模糊度固定问题, 提出了一种基于整数约束型渐进高斯滤波的 RTK 定位方法. 首先, 结合贝叶斯推理与同伦方法优势, 导出了一种兼容整数、浮点状态的渐进高斯滤波框架. 其次, 构造从先验分布到后验分布的同伦路径, 以目标浮点状态与模糊度固定的迭代求解, 来提高信号干扰情形下的整周模糊度固定率. 特别地, 通过渐进地融合卫星双差信息来降低线性化误差, 进而提升对目标状态后验分布的逼近精度. 最后, 通过车载 RTK 实验及后处理分析, 验证了所提方法的有效性和优越性.
摘要:
随着感知技术的不断发展以及智能交通基础设施的完善, 智能网联汽车应用在自动驾驶领域的地位逐渐提升. 自动驾驶感知从单车智能向车路协同迈进, 近年来涌现了一批新的协同感知技术与方法. 本文旨在全面阐述面向智能网联汽车的车路协同感知技术, 并总结相关可利用数据及该方向发展趋势. 首先对智能网联汽车的协同感知策略进行划分, 并总结了不同感知策略具备的优势与不足; 其次, 对智能网联汽车协同感知的关键技术进行阐述, 包括车路协同感知过程中的感知技术与通信技术; 然后对车路协同感知方法进行归纳, 总结了近年来解决协同感知中感知融合、感知信息选择与压缩等问题相关研究; 最后对车路协同感知的大规模数据集进行了整理, 并对智能网联汽车协同感知的发展趋势进行了分析.
随着感知技术的不断发展以及智能交通基础设施的完善, 智能网联汽车应用在自动驾驶领域的地位逐渐提升. 自动驾驶感知从单车智能向车路协同迈进, 近年来涌现了一批新的协同感知技术与方法. 本文旨在全面阐述面向智能网联汽车的车路协同感知技术, 并总结相关可利用数据及该方向发展趋势. 首先对智能网联汽车的协同感知策略进行划分, 并总结了不同感知策略具备的优势与不足; 其次, 对智能网联汽车协同感知的关键技术进行阐述, 包括车路协同感知过程中的感知技术与通信技术; 然后对车路协同感知方法进行归纳, 总结了近年来解决协同感知中感知融合、感知信息选择与压缩等问题相关研究; 最后对车路协同感知的大规模数据集进行了整理, 并对智能网联汽车协同感知的发展趋势进行了分析.
摘要:
得益于近期具有世界知识的大规模预训练模型的迅速发展, 基于大模型的具身智能在各类任务中取得了良好的效果, 展现出了强大的泛化能力与在各领域内广阔的应用前景. 基于此, 对基于大模型的具身智能的工作进行了综述, 首先, 介绍了大模型在具身智能系统中起到的感知与理解作用; 其次, 对大模型在具身智能中参与的需求级、任务级、规划级和动作级的控制进行了较为全面的总结; 然后, 对不同具身智能系统架构进行介绍, 并总结了目前具身智能模型的数据来源, 包括模拟器、模仿学习以及视频学习; 最后, 对基于大语言模型(Large language model, LLM)的具身智能系统的面临的挑战与发展方向进行讨论与总结.
得益于近期具有世界知识的大规模预训练模型的迅速发展, 基于大模型的具身智能在各类任务中取得了良好的效果, 展现出了强大的泛化能力与在各领域内广阔的应用前景. 基于此, 对基于大模型的具身智能的工作进行了综述, 首先, 介绍了大模型在具身智能系统中起到的感知与理解作用; 其次, 对大模型在具身智能中参与的需求级、任务级、规划级和动作级的控制进行了较为全面的总结; 然后, 对不同具身智能系统架构进行介绍, 并总结了目前具身智能模型的数据来源, 包括模拟器、模仿学习以及视频学习; 最后, 对基于大语言模型(Large language model, LLM)的具身智能系统的面临的挑战与发展方向进行讨论与总结.
摘要:
针对执行器饱和的离散时间线性多智能体系统有限时域一致性控制问题, 将低增益反馈方法与Q学习相结合, 提出采用后向时间迭代的模型无关控制方法. 首先, 将执行器饱和的有限时域一致性控制问题的求解转变为执行器饱和的单智能体有限时域最优控制问题的求解, 并证明可以通过求解修正的时变黎卡提方程 (Modified time-varying Riccati equation, MTVRE) 以实现有限时域最优控制. 随后, 引入参数化时变Q函数, 并提出基于Q学习的模型无关后向时间迭代算法, 可以更新低增益参数, 同时实现逼近求解修正的时变黎卡提方程. 另外, 证明所提迭代求解算法得到的低增益反馈控制矩阵收敛于修正的时变黎卡提方程的最优解, 也可以实现全局有限时域一致性控制. 最后, 通过仿真实验结果验证该方法的有效性.
针对执行器饱和的离散时间线性多智能体系统有限时域一致性控制问题, 将低增益反馈方法与Q学习相结合, 提出采用后向时间迭代的模型无关控制方法. 首先, 将执行器饱和的有限时域一致性控制问题的求解转变为执行器饱和的单智能体有限时域最优控制问题的求解, 并证明可以通过求解修正的时变黎卡提方程 (Modified time-varying Riccati equation, MTVRE) 以实现有限时域最优控制. 随后, 引入参数化时变Q函数, 并提出基于Q学习的模型无关后向时间迭代算法, 可以更新低增益参数, 同时实现逼近求解修正的时变黎卡提方程. 另外, 证明所提迭代求解算法得到的低增益反馈控制矩阵收敛于修正的时变黎卡提方程的最优解, 也可以实现全局有限时域一致性控制. 最后, 通过仿真实验结果验证该方法的有效性.
摘要:
本文针对无领航者多智能体系统以及领航-跟随多智能体系统执行器故障问题,设计了基于比例-积分结构的容错控制律. 考虑到传统的比例型控制律无法消除加性干扰影响下的稳态误差,本文引入积分环节,在一致性控制律中融入状态的积分项,用于改善多智能体系统一致性过程的稳态性能. 针对领航者输入不为零的情况,设计非线性的一致性控制律,并借助黎卡提方程以及Lyapunov函数,进行多智能体系统在故障情况下的一致性分析和控制律设计. 最后,通过一系列对比仿真,说明了所设计控制律在改善系统稳态性能方面的优势.
本文针对无领航者多智能体系统以及领航-跟随多智能体系统执行器故障问题,设计了基于比例-积分结构的容错控制律. 考虑到传统的比例型控制律无法消除加性干扰影响下的稳态误差,本文引入积分环节,在一致性控制律中融入状态的积分项,用于改善多智能体系统一致性过程的稳态性能. 针对领航者输入不为零的情况,设计非线性的一致性控制律,并借助黎卡提方程以及Lyapunov函数,进行多智能体系统在故障情况下的一致性分析和控制律设计. 最后,通过一系列对比仿真,说明了所设计控制律在改善系统稳态性能方面的优势.
摘要:
提出并解决一种饱和脉冲多智能体系统在拒绝服务(Denial of service, DOS)攻击环境中的安全定制化一致性控制问题. 首先引入微分机制和加权策略, 构建一种带可调参数一致性模式项的系统模型, 以满足复杂场景对一致性的定制化需求. 其次结合饱和效应和脉冲机制, 为系统设计一种满足执行器功率受限约束的饱和脉冲控制协议. 再次采用切换拓扑分析DOS攻击下系统的网络拓扑结构, 并采用李雅普洛夫稳定性和矩阵测度理论, 得到系统实现安全定制化一致性的充分条件. 最后通过仿真实验和对比分析, 验证了所提理论的有效性和优越性.
提出并解决一种饱和脉冲多智能体系统在拒绝服务(Denial of service, DOS)攻击环境中的安全定制化一致性控制问题. 首先引入微分机制和加权策略, 构建一种带可调参数一致性模式项的系统模型, 以满足复杂场景对一致性的定制化需求. 其次结合饱和效应和脉冲机制, 为系统设计一种满足执行器功率受限约束的饱和脉冲控制协议. 再次采用切换拓扑分析DOS攻击下系统的网络拓扑结构, 并采用李雅普洛夫稳定性和矩阵测度理论, 得到系统实现安全定制化一致性的充分条件. 最后通过仿真实验和对比分析, 验证了所提理论的有效性和优越性.
摘要:
连续体机器人通常由柔性材料制成, 能够承受大幅度形变, 在各领域具有广阔的应用前景. 然而, 其软体结构和非传统的驱动机制也带来了诸多非线性因素, 使得其状态和运动难以被精确建模. 因此, 为连续体机器人设计了一种无模型控制方案. 该方案一方面通过变参递归神经网络求解连续体机器人的逆运动学, 以实现高精度运动控制, 另一方面使用递归最小二乘法基于实时数据估计和更新机器人雅可比矩阵伪逆, 以避免机器人的解析建模. 最后, 通过仿真模拟和实物实验验证了所提出控制方案的可行性、精确性和鲁棒性, 并通过一系列对比实验突出了所提出方法的优势. 该方法率先研究基于递归最小二乘法的连续体机器人雅可比矩阵伪逆估计, 对未来的连续体机器人研究具有一定的启示作用.
连续体机器人通常由柔性材料制成, 能够承受大幅度形变, 在各领域具有广阔的应用前景. 然而, 其软体结构和非传统的驱动机制也带来了诸多非线性因素, 使得其状态和运动难以被精确建模. 因此, 为连续体机器人设计了一种无模型控制方案. 该方案一方面通过变参递归神经网络求解连续体机器人的逆运动学, 以实现高精度运动控制, 另一方面使用递归最小二乘法基于实时数据估计和更新机器人雅可比矩阵伪逆, 以避免机器人的解析建模. 最后, 通过仿真模拟和实物实验验证了所提出控制方案的可行性、精确性和鲁棒性, 并通过一系列对比实验突出了所提出方法的优势. 该方法率先研究基于递归最小二乘法的连续体机器人雅可比矩阵伪逆估计, 对未来的连续体机器人研究具有一定的启示作用.
摘要:
针对非线性多智能体系统, 提出基于混合双端事件触发机制的模糊跟踪控制策略. 首先, 相比于现存状态事件触发机制, 构建了一种灵活可调的阈值设计方法以满足系统实时性需求; 其次, 改进的状态触发机制将状态估计值作为触发信号, 可有效降低现存机制的保守性并提高阈值设计的灵活性; 随后, 针对控制器-执行器环节和传感器-控制器环节, 设计了混合双端事件触发机制来同时缓解双信道的通讯负担. 此外, 为了解决未知不可测状态的问题, 构造了一种仅基于相对输出信息的状态观测器. 最后, 在闭环系统内, 所有信号都是半全局一致最终稳定的, 并用一个实际的仿真例子证明了提出控制策略的有效性.
针对非线性多智能体系统, 提出基于混合双端事件触发机制的模糊跟踪控制策略. 首先, 相比于现存状态事件触发机制, 构建了一种灵活可调的阈值设计方法以满足系统实时性需求; 其次, 改进的状态触发机制将状态估计值作为触发信号, 可有效降低现存机制的保守性并提高阈值设计的灵活性; 随后, 针对控制器-执行器环节和传感器-控制器环节, 设计了混合双端事件触发机制来同时缓解双信道的通讯负担. 此外, 为了解决未知不可测状态的问题, 构造了一种仅基于相对输出信息的状态观测器. 最后, 在闭环系统内, 所有信号都是半全局一致最终稳定的, 并用一个实际的仿真例子证明了提出控制策略的有效性.
摘要:
针对复杂多约束条件下异构无人机集群系统的任务分配问题, 提出一种基于联盟形成博弈的分布式任务预分配和重分配方法. 考虑时效性、同时性等耦合约束条件, 引入准确的能耗模型建立任务分配模型, 利用联盟形成博弈将任务分配问题转化为联盟划分问题, 并设计一种无故障条件下的分布式任务预分配方法, 降低任务分配求解的复杂度, 同时提高最终解的平均质量; 进一步, 针对无人机故障问题, 准确分析健康无人机的运动模型, 合理划分重分配范围, 基于任务预分配结果设计重分配算法. 仿真结果表明了所提分布式任务预分配与重分配方法在不同场景下的实时性和有效性.
针对复杂多约束条件下异构无人机集群系统的任务分配问题, 提出一种基于联盟形成博弈的分布式任务预分配和重分配方法. 考虑时效性、同时性等耦合约束条件, 引入准确的能耗模型建立任务分配模型, 利用联盟形成博弈将任务分配问题转化为联盟划分问题, 并设计一种无故障条件下的分布式任务预分配方法, 降低任务分配求解的复杂度, 同时提高最终解的平均质量; 进一步, 针对无人机故障问题, 准确分析健康无人机的运动模型, 合理划分重分配范围, 基于任务预分配结果设计重分配算法. 仿真结果表明了所提分布式任务预分配与重分配方法在不同场景下的实时性和有效性.
摘要:
针对一类严格反馈系统的安全控制问题, 提出一种基于滤波控制障碍函数(Filtered control barrier functions, FCBF)的优化控制方法. 首先引入一阶低通滤波器, 构建滤波控制障碍函数. 然后结合控制李雅普诺夫函数(Control Lyapunov functions, CLF)及离线优化技术, 提出一种新颖的安全反推控制算法. 与现有文献相比, 所提控制算法通过运用滤波控制障碍函数, 有效克服了安全反推过程中的“计算膨胀”问题. 仿真结果验证了所提控制算法的有效性与正确性.
针对一类严格反馈系统的安全控制问题, 提出一种基于滤波控制障碍函数(Filtered control barrier functions, FCBF)的优化控制方法. 首先引入一阶低通滤波器, 构建滤波控制障碍函数. 然后结合控制李雅普诺夫函数(Control Lyapunov functions, CLF)及离线优化技术, 提出一种新颖的安全反推控制算法. 与现有文献相比, 所提控制算法通过运用滤波控制障碍函数, 有效克服了安全反推过程中的“计算膨胀”问题. 仿真结果验证了所提控制算法的有效性与正确性.
摘要:
多机协同围捕作为多机器人协同领域的一项重要分支, 着重研究多个机器人通过相互协作对动态可疑目标实现有效的追踪与围捕, 在军事侦查、紧急救援、协同探测等领域具有重要的研究意义与实际应用价值. 首先通过国内外科学引文数据库对多机协同围捕领域相关的文献进行全面检索, 深入剖析目前该领域前沿技术的发展现状与研究热点. 接下来从理论与技术层面分别针对多机协同围捕领域中的目标协同搜索、多机任务分配、协同围捕控制等方面进行全面总结, 重点阐述各研究内容常用方法与技术的工作原理、优缺点及适用范围等. 最后对该领域的发展现状进行总结, 并分析探讨目前尚未解决的难点, 对未来的发展方向提出展望.
多机协同围捕作为多机器人协同领域的一项重要分支, 着重研究多个机器人通过相互协作对动态可疑目标实现有效的追踪与围捕, 在军事侦查、紧急救援、协同探测等领域具有重要的研究意义与实际应用价值. 首先通过国内外科学引文数据库对多机协同围捕领域相关的文献进行全面检索, 深入剖析目前该领域前沿技术的发展现状与研究热点. 接下来从理论与技术层面分别针对多机协同围捕领域中的目标协同搜索、多机任务分配、协同围捕控制等方面进行全面总结, 重点阐述各研究内容常用方法与技术的工作原理、优缺点及适用范围等. 最后对该领域的发展现状进行总结, 并分析探讨目前尚未解决的难点, 对未来的发展方向提出展望.
摘要:
针对一类不确定非线性系统, 提出一种保证系统状态满足预设边界性能函数的新型性能驱动控制(Performance-driven control, PDC)方法. 不同于传统预设性能控制(Prescribed performance control, PPC) 方法中对误差与边界性能函数的比值进行非线性变换的思路, 本文基于保证状态量与上下边界的两个误差量均始终非负这一思想, 引入基于Metzler矩阵的正系统分析理论, 并结合切换控制技术, 以最终保证系统状态始终在预设性能函数之内. 系统的稳定性取决于边界性能函数的选取, 而不改变控制器的形式. 给出针对一类不确定非线性系统的控制设计、稳定性分析和方法讨论, 数值仿真例子验证了所提出方法的有效性.
针对一类不确定非线性系统, 提出一种保证系统状态满足预设边界性能函数的新型性能驱动控制(Performance-driven control, PDC)方法. 不同于传统预设性能控制(Prescribed performance control, PPC) 方法中对误差与边界性能函数的比值进行非线性变换的思路, 本文基于保证状态量与上下边界的两个误差量均始终非负这一思想, 引入基于Metzler矩阵的正系统分析理论, 并结合切换控制技术, 以最终保证系统状态始终在预设性能函数之内. 系统的稳定性取决于边界性能函数的选取, 而不改变控制器的形式. 给出针对一类不确定非线性系统的控制设计、稳定性分析和方法讨论, 数值仿真例子验证了所提出方法的有效性.
摘要:
针对可能由不确定干扰和网络攻击引起的通信链路故障的航天器编队控制系统, 提出了一种基于零和微分博弈的最优容错控制方法. 该方法通过构建描述编队协同控制的性能函数, 将通信链路故障容错控制问题等效转换为零和微分博弈模型. 采用Hamilton-Jacobi-Isaacs(HJI)方程和极小极大原则设计博弈中的优化解, 并利用自适应动态规划算法对其进行在线逼近, 以获得编队的最优容错控制策略, 保证航天器通信链路故障下的在轨稳定性和最优性能. 仿真结果表明了本文设计的分布式最优容错控制律的有效性.
针对可能由不确定干扰和网络攻击引起的通信链路故障的航天器编队控制系统, 提出了一种基于零和微分博弈的最优容错控制方法. 该方法通过构建描述编队协同控制的性能函数, 将通信链路故障容错控制问题等效转换为零和微分博弈模型. 采用Hamilton-Jacobi-Isaacs(HJI)方程和极小极大原则设计博弈中的优化解, 并利用自适应动态规划算法对其进行在线逼近, 以获得编队的最优容错控制策略, 保证航天器通信链路故障下的在轨稳定性和最优性能. 仿真结果表明了本文设计的分布式最优容错控制律的有效性.
摘要:
针对三维空间中多航天器协同捕获机动目标问题, 提出一种具有终端角度约束和时间一致性约束的设定时间协同制导律, 将视线角误差和齐射攻击的收敛时间作为一个可提前设定的参数, 实现对收敛时间进行设置. 构建三维场景航天器-目标运动学模型, 在沿视线(Line-of-sight, LOS)方向将同时攻击问题转化为一致性问题, 提出一种分布式协同制导律, 设定时间内使得多个航天器剩余飞行时间相等; 在垂直视线方向利用滑模控制方法对制导律进行设计, 使得每个航天器的视线角在设定时间内达到期望值. 上述制导律中, 设计了一种设定时间扩展状态观测器对未知的目标加速度进行估计. 数值仿真结果验证了方法的有效性.
针对三维空间中多航天器协同捕获机动目标问题, 提出一种具有终端角度约束和时间一致性约束的设定时间协同制导律, 将视线角误差和齐射攻击的收敛时间作为一个可提前设定的参数, 实现对收敛时间进行设置. 构建三维场景航天器-目标运动学模型, 在沿视线(Line-of-sight, LOS)方向将同时攻击问题转化为一致性问题, 提出一种分布式协同制导律, 设定时间内使得多个航天器剩余飞行时间相等; 在垂直视线方向利用滑模控制方法对制导律进行设计, 使得每个航天器的视线角在设定时间内达到期望值. 上述制导律中, 设计了一种设定时间扩展状态观测器对未知的目标加速度进行估计. 数值仿真结果验证了方法的有效性.
摘要:
针对无人机集群系统, 提出了一种性能函数引导的深度强化学习控制方法, 同时评估性能函数的示范经验与学习策略的探索动作, 保证了高效可靠的策略更新, 实现了无人机集群系统的高性能控制. 首先, 利用领航-跟随集群框架, 将无人机集群的控制问题转化为领航-跟随框架下的跟踪问题, 进而提出了基于模型的跟踪控制方法, 利用性能函数将集群编队误差约束在给定范围内, 实现了无人机集群的模型驱动控制. 接下来, 为了解决复杂工况下性能函数极易失效难题, 将深度强化学习方法和性能函数驱动方法结合, 提出了性能函数引导的深度强化学习控制方法, 利用性能函数的示范经验辅助训练强化学习网络, 通过同时评估探索与示范动作, 保证学习策略显著优于性能函数驱动控制方法, 有效提高了无人机编队控制精度与鲁棒性. 实验结果表明, 该方法能够显著提升无人机集群的控制精度, 实现了兼顾鲁棒性与飞行精度的高性能集群控制.
针对无人机集群系统, 提出了一种性能函数引导的深度强化学习控制方法, 同时评估性能函数的示范经验与学习策略的探索动作, 保证了高效可靠的策略更新, 实现了无人机集群系统的高性能控制. 首先, 利用领航-跟随集群框架, 将无人机集群的控制问题转化为领航-跟随框架下的跟踪问题, 进而提出了基于模型的跟踪控制方法, 利用性能函数将集群编队误差约束在给定范围内, 实现了无人机集群的模型驱动控制. 接下来, 为了解决复杂工况下性能函数极易失效难题, 将深度强化学习方法和性能函数驱动方法结合, 提出了性能函数引导的深度强化学习控制方法, 利用性能函数的示范经验辅助训练强化学习网络, 通过同时评估探索与示范动作, 保证学习策略显著优于性能函数驱动控制方法, 有效提高了无人机编队控制精度与鲁棒性. 实验结果表明, 该方法能够显著提升无人机集群的控制精度, 实现了兼顾鲁棒性与飞行精度的高性能集群控制.
摘要:
针对水下图像的颜色偏差和低对比度等退化问题, 提出了一种基于颜色转移与自适应增益控制融合的水下图像增强方法. 首先, 根据颜色转移图像和最大衰减图引导的融合策略校正水下图像的颜色偏差. 其次, 利用一阶原始对偶方法对V通道进行滤波以有效地抑制噪声的干扰, 获得结构图像; 并且提出自适应增益控制, 根据图像的高频信息自适应调整增益, 以获得细节图像. 最后, 通过加权融合结构图像与细节图像, 得到高质量的水下图像. 实验结果表明, 针对不同自然和工业环境下的水下图像, 1) 所提方法可以有效地校正颜色失真现象; 2) 显著提高水下图像的对比度并且抑制噪声干扰; 3) 在定量评价指标和高级视觉任务(目标检测、图像分割、关键点检测和水下双目测距)中优于其它主流水下图像增强方法, 为水下目标抓取等工程应用提供了有益的参考.
针对水下图像的颜色偏差和低对比度等退化问题, 提出了一种基于颜色转移与自适应增益控制融合的水下图像增强方法. 首先, 根据颜色转移图像和最大衰减图引导的融合策略校正水下图像的颜色偏差. 其次, 利用一阶原始对偶方法对V通道进行滤波以有效地抑制噪声的干扰, 获得结构图像; 并且提出自适应增益控制, 根据图像的高频信息自适应调整增益, 以获得细节图像. 最后, 通过加权融合结构图像与细节图像, 得到高质量的水下图像. 实验结果表明, 针对不同自然和工业环境下的水下图像, 1) 所提方法可以有效地校正颜色失真现象; 2) 显著提高水下图像的对比度并且抑制噪声干扰; 3) 在定量评价指标和高级视觉任务(目标检测、图像分割、关键点检测和水下双目测距)中优于其它主流水下图像增强方法, 为水下目标抓取等工程应用提供了有益的参考.
摘要:
群组推荐(Group recommendation)在信息检索与数据挖掘领域近年来备受关注, 其旨在从海量候选集中挑选出一组用户可能感兴趣的项目. 随着深度学习技术的不断发展, 基于深度学习的群组推荐方法大量涌现. 鉴于此, 首先介绍了群组推荐问题的背景知识, 然后系统综述了数据获取方法, 全面评述了近年来基于深度学习的群组推荐算法, 并进行了系统分类与深入分析. 此外, 还归纳了适用于深度学习方法的群组推荐数据集和评价方法, 对各类推荐算法进行了对比实验分析与讨论. 最后, 针对本领域的研究难点进行了深入探讨, 并提出了未来有待深入研究的方向.
群组推荐(Group recommendation)在信息检索与数据挖掘领域近年来备受关注, 其旨在从海量候选集中挑选出一组用户可能感兴趣的项目. 随着深度学习技术的不断发展, 基于深度学习的群组推荐方法大量涌现. 鉴于此, 首先介绍了群组推荐问题的背景知识, 然后系统综述了数据获取方法, 全面评述了近年来基于深度学习的群组推荐算法, 并进行了系统分类与深入分析. 此外, 还归纳了适用于深度学习方法的群组推荐数据集和评价方法, 对各类推荐算法进行了对比实验分析与讨论. 最后, 针对本领域的研究难点进行了深入探讨, 并提出了未来有待深入研究的方向.
摘要:
针对一类系统动态未知且受互联项影响的非线性互联大规模系统, 提出一种新的在线分散式动态事件触发控制(Dynamic event-triggered control, DETC)方案. 首先, 构建基于神经网络的辨识器来重构互联系统的未知内部动态. 其次, 使用自适应评判网络在事件触发机制下学习近似最优控制策略. 在所设计的动态事件触发控制机制下, 各子系统独立地设计自己的控制策略, 且各控制策略的更新是异步进行的. 也就是说, 各个分散式事件触发条件和控制器仅依赖于各自子系统的局部状态信息, 而无需频繁获取相邻子系统的信息, 从而规避通过通信网络在子系统间传递状态信息的需求. 然后, 借助李雅普诺夫稳定性定理, 从理论上证明所提出的闭环控制系统状态和评判网络权值估计误差都是最终一致有界的. 最后, 通过一个数值仿真示例和一个实际工程示例验证所提出的动态事件触发控制方法的有效性和实用性.
针对一类系统动态未知且受互联项影响的非线性互联大规模系统, 提出一种新的在线分散式动态事件触发控制(Dynamic event-triggered control, DETC)方案. 首先, 构建基于神经网络的辨识器来重构互联系统的未知内部动态. 其次, 使用自适应评判网络在事件触发机制下学习近似最优控制策略. 在所设计的动态事件触发控制机制下, 各子系统独立地设计自己的控制策略, 且各控制策略的更新是异步进行的. 也就是说, 各个分散式事件触发条件和控制器仅依赖于各自子系统的局部状态信息, 而无需频繁获取相邻子系统的信息, 从而规避通过通信网络在子系统间传递状态信息的需求. 然后, 借助李雅普诺夫稳定性定理, 从理论上证明所提出的闭环控制系统状态和评判网络权值估计误差都是最终一致有界的. 最后, 通过一个数值仿真示例和一个实际工程示例验证所提出的动态事件触发控制方法的有效性和实用性.
摘要:
原油移动路径规划是原油调度中至关重要的子任务, 直接影响到生产过程中原油供给的稳定性和付油的高效性. 由于此任务需要考虑大规模罐区内复杂的设备条件, 并受到严格的工业生产约束, 同时需要兼顾途径阀门数量与泵机组运力, 导致目前依然倚重调度人员的人工经验来制定路径规划方案, 对传统算法和进化算法的应用提出了挑战. 据此, 本研究基于有向图结构对大规模原油罐区进行细致数学建模, 并提出一种基于偏好的原油移动路径多目标优化(Preference-based multi-objective optimization for crude oil movement path,PB-MOO)算法, 突破了过去高度依赖人工方法的局限性, 为原油移动路径规划提供智能化解决方案. 实验证明该算法能够在满足实际约束的条件下, 找到复杂任务的高质量候选解, 验证了其在此领域的可行性和有效性.
原油移动路径规划是原油调度中至关重要的子任务, 直接影响到生产过程中原油供给的稳定性和付油的高效性. 由于此任务需要考虑大规模罐区内复杂的设备条件, 并受到严格的工业生产约束, 同时需要兼顾途径阀门数量与泵机组运力, 导致目前依然倚重调度人员的人工经验来制定路径规划方案, 对传统算法和进化算法的应用提出了挑战. 据此, 本研究基于有向图结构对大规模原油罐区进行细致数学建模, 并提出一种基于偏好的原油移动路径多目标优化(Preference-based multi-objective optimization for crude oil movement path,PB-MOO)算法, 突破了过去高度依赖人工方法的局限性, 为原油移动路径规划提供智能化解决方案. 实验证明该算法能够在满足实际约束的条件下, 找到复杂任务的高质量候选解, 验证了其在此领域的可行性和有效性.
摘要:
本文研究了柔性关节机械臂信息物理融合系统 (Cyber-physical systems, CPS) 在传感器测量和执行器输入受到网络攻击时的安全控制问题. 首先, 用T-S 模糊模型描述柔性关节机械臂 CPS, 描述后的模型可能存在不可测量或可测量但受传感器攻击影响的前件变量(Premise variables, PVs), 这些 PVs 直接用于构建模糊控制器会影响控制器的控制效果. 因此, 提出一类模糊协同交互观测器来构造新的、可靠的、可利用的 PVs. 同时, 该观测器能够与包含攻击估计误差(Attack estimation error, AEE)信息的辅助系统进行协同交互. 与已有结果相比, 所提出的观测器通过协同交互结构, 充分利用了 AEE 信息, 提高了攻击信号的重构精度. 在此基础上, 提出了一种具有攻击补偿结构的安全控制方案, 从而消除了传感器和执行器攻击对柔性关节机械臂CPS 性能的影响. 仿真结果验证了所提出的安全控制方案的有效性.
本文研究了柔性关节机械臂信息物理融合系统 (Cyber-physical systems, CPS) 在传感器测量和执行器输入受到网络攻击时的安全控制问题. 首先, 用T-S 模糊模型描述柔性关节机械臂 CPS, 描述后的模型可能存在不可测量或可测量但受传感器攻击影响的前件变量(Premise variables, PVs), 这些 PVs 直接用于构建模糊控制器会影响控制器的控制效果. 因此, 提出一类模糊协同交互观测器来构造新的、可靠的、可利用的 PVs. 同时, 该观测器能够与包含攻击估计误差(Attack estimation error, AEE)信息的辅助系统进行协同交互. 与已有结果相比, 所提出的观测器通过协同交互结构, 充分利用了 AEE 信息, 提高了攻击信号的重构精度. 在此基础上, 提出了一种具有攻击补偿结构的安全控制方案, 从而消除了传感器和执行器攻击对柔性关节机械臂CPS 性能的影响. 仿真结果验证了所提出的安全控制方案的有效性.
摘要:
具身智能强调大脑、身体及环境三者的相互作用, 旨在基于机器与物理世界的交互, 创建软硬件结合、可自主学习进化的智能体. 当前, 机器学习、机器人学、认知科学等多学科技术的快速发展极大地推动了具身智能的研究与应用. 已有的具身智能文献更多从技术和方法分类的角度入手, 本文以具身智能在研究和应用过程中面临的关键挑战为角度切入, 分析具身智能研究的一般性框架, 围绕具身感知与执行、具身学习与进化两个方面提出具体的研究思路, 并针对其中涉及的关键问题详细梳理相关技术及研究进展. 此外, 以移动机器人、仿生机器人、平行机器人三方面应用为例, 介绍具身智能在感知与理解、控制与决策、交互与学习等方面给实际机器人系统设计带来的启发. 最后, 对具身智能的发展前景进行展望, 探索虚实融合数据智能、基础模型与基础智能、数字孪生与平行智能在其中的重要作用和应用潜力, 希望为相关领域学者和从业人员提供新的启示和思路. 论文相关项目详见https://github.com/BUCT-IUSRC/Survey__EmbodiedAI .
具身智能强调大脑、身体及环境三者的相互作用, 旨在基于机器与物理世界的交互, 创建软硬件结合、可自主学习进化的智能体. 当前, 机器学习、机器人学、认知科学等多学科技术的快速发展极大地推动了具身智能的研究与应用. 已有的具身智能文献更多从技术和方法分类的角度入手, 本文以具身智能在研究和应用过程中面临的关键挑战为角度切入, 分析具身智能研究的一般性框架, 围绕具身感知与执行、具身学习与进化两个方面提出具体的研究思路, 并针对其中涉及的关键问题详细梳理相关技术及研究进展. 此外, 以移动机器人、仿生机器人、平行机器人三方面应用为例, 介绍具身智能在感知与理解、控制与决策、交互与学习等方面给实际机器人系统设计带来的启发. 最后, 对具身智能的发展前景进行展望, 探索虚实融合数据智能、基础模型与基础智能、数字孪生与平行智能在其中的重要作用和应用潜力, 希望为相关领域学者和从业人员提供新的启示和思路. 论文相关项目详见
摘要:
随着工业4.0的发展, 移动智能体系统 (Mobile agent system, MAS) 与多回路无线控制系统 (Wireless control system, WCS) 被部署到工厂中, 构成异构工业物联网(Industrial internet of things, IIoT)系统, 协作执行智能制造任务. 在协作过程中, MAS与WCS紧密耦合, 导致状态相关衰落, 两者性能相互制约. 为解决这一问题, 研究异构工业物联网系统的最优控制问题, 满足WCS控制性能约束与MAS安全生产约束的同时, 最小化系统平均通信成本. 首先, 利用有限域系统描述MAS在不同阴影衰落程度工作区间的转移, 刻画MAS与WCS耦合下的状态相关衰落信道模型. 基于此, 利用矩阵半张量积理论, 通过构建受限跟随者状态转移图(Follower state transition graph, FSTG), 建立最优控制问题可行性图判据, 给出关于受限集合镇定的充分必要条件. 其次, 基于加权跟随者状态转移图的最小平均环理论, 建立领航−跟随MAS最优控制序列的构造算法, 并证明其最优性. 最后, 通过仿真验证算法的有效性.
随着工业4.0的发展, 移动智能体系统 (Mobile agent system, MAS) 与多回路无线控制系统 (Wireless control system, WCS) 被部署到工厂中, 构成异构工业物联网(Industrial internet of things, IIoT)系统, 协作执行智能制造任务. 在协作过程中, MAS与WCS紧密耦合, 导致状态相关衰落, 两者性能相互制约. 为解决这一问题, 研究异构工业物联网系统的最优控制问题, 满足WCS控制性能约束与MAS安全生产约束的同时, 最小化系统平均通信成本. 首先, 利用有限域系统描述MAS在不同阴影衰落程度工作区间的转移, 刻画MAS与WCS耦合下的状态相关衰落信道模型. 基于此, 利用矩阵半张量积理论, 通过构建受限跟随者状态转移图(Follower state transition graph, FSTG), 建立最优控制问题可行性图判据, 给出关于受限集合镇定的充分必要条件. 其次, 基于加权跟随者状态转移图的最小平均环理论, 建立领航−跟随MAS最优控制序列的构造算法, 并证明其最优性. 最后, 通过仿真验证算法的有效性.
摘要:
基于视觉的人体动作质量评价利用计算机视觉相关技术自动分析个体运动完成情况, 并为其提供相应的动作质量评价结果. 这已成为运动科学和人工智能交叉领域的一个热点研究问题, 在竞技体育、运动员选材、健身锻炼、运动康复等领域具有深远的理论研究意义和很强的实用价值. 本文将从数据获取及标注、运动特征表示、运动质量评价3个方面对涉及到的技术进行回顾分析, 对相关方法进行分类, 并比较分析不同方法在AQA-7、JIGSAWS、EPIC-Skills 2018三个数据集上的性能. 最后讨论未来可能的研究方向.
基于视觉的人体动作质量评价利用计算机视觉相关技术自动分析个体运动完成情况, 并为其提供相应的动作质量评价结果. 这已成为运动科学和人工智能交叉领域的一个热点研究问题, 在竞技体育、运动员选材、健身锻炼、运动康复等领域具有深远的理论研究意义和很强的实用价值. 本文将从数据获取及标注、运动特征表示、运动质量评价3个方面对涉及到的技术进行回顾分析, 对相关方法进行分类, 并比较分析不同方法在AQA-7、JIGSAWS、EPIC-Skills 2018三个数据集上的性能. 最后讨论未来可能的研究方向.
摘要:
多智能体强化学习作为博弈论、控制论和多智能体学习的交叉研究领域, 是多智能体系统研究中的前沿方向, 赋予了智能体在动态多维的复杂环境中通过交互和决策完成多样化任务的能力. 多智能体强化学习正在向应用对象开放化、应用问题具身化、应用场景复杂化的方向发展, 并逐渐成为解决现实世界中博弈决策问题的最有效工具. 本文对基于多智能体强化学习的博弈进行了系统性综述. 首先, 介绍了多智能体强化学习的基本理论, 梳理了多智能体强化学习算法与基线测试环境的发展进程. 其次, 针对合作、对抗以及混合三种多智能体强化学习任务, 从提高智能体合作效率、提升智能体对抗能力的维度来介绍多智能体强化学习的最新进展, 并结合实际应用探讨了混合博弈的前沿研究方向. 最后, 对多智能体强化学习的应用前景和发展趋势进行了总结与展望.
多智能体强化学习作为博弈论、控制论和多智能体学习的交叉研究领域, 是多智能体系统研究中的前沿方向, 赋予了智能体在动态多维的复杂环境中通过交互和决策完成多样化任务的能力. 多智能体强化学习正在向应用对象开放化、应用问题具身化、应用场景复杂化的方向发展, 并逐渐成为解决现实世界中博弈决策问题的最有效工具. 本文对基于多智能体强化学习的博弈进行了系统性综述. 首先, 介绍了多智能体强化学习的基本理论, 梳理了多智能体强化学习算法与基线测试环境的发展进程. 其次, 针对合作、对抗以及混合三种多智能体强化学习任务, 从提高智能体合作效率、提升智能体对抗能力的维度来介绍多智能体强化学习的最新进展, 并结合实际应用探讨了混合博弈的前沿研究方向. 最后, 对多智能体强化学习的应用前景和发展趋势进行了总结与展望.
摘要:
从攻击者的角度探讨信息物理系统(Cyber-physical system, CPS)中隐蔽虚假数据注入攻击的最优策略. 选取K-L(Kullback-Leibler)散度作为攻击隐蔽性的评价指标, 设计攻击信号使得攻击保持隐蔽的同时能够最大程度地降低CPS远程状态估计的性能. 首先, 利用残差的统计特征计算远程状态估计误差协方差, 将问题转化为二次约束优化问题. 其次, 在攻击隐蔽性的约束下, 运用拉格朗日乘子法及半正定规划推导出最优策略. 最后, 通过仿真实验验证本文提出的方法与现有的方法相比在隐蔽性方面具有显著的优势.
从攻击者的角度探讨信息物理系统(Cyber-physical system, CPS)中隐蔽虚假数据注入攻击的最优策略. 选取K-L(Kullback-Leibler)散度作为攻击隐蔽性的评价指标, 设计攻击信号使得攻击保持隐蔽的同时能够最大程度地降低CPS远程状态估计的性能. 首先, 利用残差的统计特征计算远程状态估计误差协方差, 将问题转化为二次约束优化问题. 其次, 在攻击隐蔽性的约束下, 运用拉格朗日乘子法及半正定规划推导出最优策略. 最后, 通过仿真实验验证本文提出的方法与现有的方法相比在隐蔽性方面具有显著的优势.
摘要:
城市固废焚烧(Municipal solid waste incineration, MSWI)技术因兼具减量化、无害化、资源化等特点, 已成为治理固废污染的主要方式. 由于城市固废成分复杂, 含水率、热值动态波动, 固废燃烧、余热利用、烟气净化等环节耦合冲突, 实际工业过程难以高效运行. 为此, 本文提出了一种基于多目标粒子群算法的城市固废焚烧过程智能操作优化方法, 以期实现燃烧效率和烟气净化效率的协同优化. 首先, 设计自组织径向基函数(Self-organizing radial basis function, SORBF)神经网络建立运行指标模型, 实现城市固废焚烧过程运行性能的在线评价; 其次, 引入区域拥挤度指标提出了一种改进的多目标粒子群优化算法, 以获取操作变量的Pareto解集; 然后, 利用熵权法确定操作变量最佳设定值, 实现城市固废焚烧过程高效运行; 最后, 通过北京某城市固废焚烧厂的实际运行数据对所提方法进行验证, 实验结果表明基于多目标粒子群算法的智能操作优化方法可以实现燃烧效率与脱硝效率的协同提升.
城市固废焚烧(Municipal solid waste incineration, MSWI)技术因兼具减量化、无害化、资源化等特点, 已成为治理固废污染的主要方式. 由于城市固废成分复杂, 含水率、热值动态波动, 固废燃烧、余热利用、烟气净化等环节耦合冲突, 实际工业过程难以高效运行. 为此, 本文提出了一种基于多目标粒子群算法的城市固废焚烧过程智能操作优化方法, 以期实现燃烧效率和烟气净化效率的协同优化. 首先, 设计自组织径向基函数(Self-organizing radial basis function, SORBF)神经网络建立运行指标模型, 实现城市固废焚烧过程运行性能的在线评价; 其次, 引入区域拥挤度指标提出了一种改进的多目标粒子群优化算法, 以获取操作变量的Pareto解集; 然后, 利用熵权法确定操作变量最佳设定值, 实现城市固废焚烧过程高效运行; 最后, 通过北京某城市固废焚烧厂的实际运行数据对所提方法进行验证, 实验结果表明基于多目标粒子群算法的智能操作优化方法可以实现燃烧效率与脱硝效率的协同提升.
摘要:
现有视觉缺陷检测技术通常基于传统电荷耦合器件(Charge-coupled device, CCD)或互补金属氧化物半导体(Complementary metal-oxide-semiconductor, CMOS)相机进行缺陷成像和后端检测算法开发. 然而, 现有技术存在成像速度慢、动态范围小、背景干扰大等问题, 难以实现对高反光产品表面弱小瑕疵的快速检测. 针对上述挑战, 创新性地提出了一套基于动态视觉传感器(Dynamic vision sensor, DVS)的缺陷检测新模式, 以实现对具有高反光特性的铝基盘片表面缺陷的高效检测. DVS是一种新型的仿生视觉传感器, 具有成像速度快、动态范围大、运动目标捕捉能力强等优势. 首先开展了面向铝基盘片高反光表面弱小瑕疵的DVS成像实验, 并分析总结了DVS缺陷成像的特性与优势. 随后, 构建了第一个基于DVS的缺陷检测数据集(Event-based defect detection dataset, EDD-10k), 包含划痕、点痕、污渍三类常见缺陷类型. 最后, 针对缺陷形态多变、纹理稀疏、噪声干扰等问题, 提出了一种基于时序不规则特征聚合框架的DVS缺陷检测算法(Temporal irregular feature aggregation framework for event-based defect detection, TIFF-EDD), 实现对缺陷目标的有效检测.
现有视觉缺陷检测技术通常基于传统电荷耦合器件(Charge-coupled device, CCD)或互补金属氧化物半导体(Complementary metal-oxide-semiconductor, CMOS)相机进行缺陷成像和后端检测算法开发. 然而, 现有技术存在成像速度慢、动态范围小、背景干扰大等问题, 难以实现对高反光产品表面弱小瑕疵的快速检测. 针对上述挑战, 创新性地提出了一套基于动态视觉传感器(Dynamic vision sensor, DVS)的缺陷检测新模式, 以实现对具有高反光特性的铝基盘片表面缺陷的高效检测. DVS是一种新型的仿生视觉传感器, 具有成像速度快、动态范围大、运动目标捕捉能力强等优势. 首先开展了面向铝基盘片高反光表面弱小瑕疵的DVS成像实验, 并分析总结了DVS缺陷成像的特性与优势. 随后, 构建了第一个基于DVS的缺陷检测数据集(Event-based defect detection dataset, EDD-10k), 包含划痕、点痕、污渍三类常见缺陷类型. 最后, 针对缺陷形态多变、纹理稀疏、噪声干扰等问题, 提出了一种基于时序不规则特征聚合框架的DVS缺陷检测算法(Temporal irregular feature aggregation framework for event-based defect detection, TIFF-EDD), 实现对缺陷目标的有效检测.
, 最新更新时间
, doi: 10.16383/j.aas.c230762
摘要:
城市固废焚烧(Municipal solid waste incineration, MSWI) 过程因工业现场的安全要求和控制系统的封闭特性导致离线研究的各类智能算法难以在线验证. 此外, 已有的实验室仿真平台难以模拟领域专家基于多模态数据进行智能感知、认知、决策和控制的工业实际. 针对上述问题, 首先, 在综述现有面向工业过程的仿真平台研究现状和所面临挑战的基础上, 描述面向MSWI过程智能算法测试与验证平台的需求, 提出并构建由多模态历史数据驱动系统、安全隔离与优化控制系统和多入多出回路控制系统组成的模块化半实物平台. 然后, 在实验室环境中完成平台硬件搭建、工业软件开发、仿真功能实现和典型场景验证, 并移植部分模块至工业现场进行应用. 最后, 总结与展望模块化半实物平台的研究方向.
城市固废焚烧(Municipal solid waste incineration, MSWI) 过程因工业现场的安全要求和控制系统的封闭特性导致离线研究的各类智能算法难以在线验证. 此外, 已有的实验室仿真平台难以模拟领域专家基于多模态数据进行智能感知、认知、决策和控制的工业实际. 针对上述问题, 首先, 在综述现有面向工业过程的仿真平台研究现状和所面临挑战的基础上, 描述面向MSWI过程智能算法测试与验证平台的需求, 提出并构建由多模态历史数据驱动系统、安全隔离与优化控制系统和多入多出回路控制系统组成的模块化半实物平台. 然后, 在实验室环境中完成平台硬件搭建、工业软件开发、仿真功能实现和典型场景验证, 并移植部分模块至工业现场进行应用. 最后, 总结与展望模块化半实物平台的研究方向.
摘要:
物流作为现代经济的重要组成部分, 在国民经济和社会发展中发挥着重要作用. 物流中的三维装箱问题(Three-dimensional bin packing problem, 3D-BPP)是提高物流运作效率必须解决的关键难题之一. 深度强化学习(Deep reinforcement learning, DRL)具有强大的学习与决策能力, 基于DRL的三维装箱方法(Three-dimensional bin packing method based on DRL, DRL-3DBP)已成为智能物流领域的研究热点之一. 现有DRL-3DBP面对大尺寸容器3D-BPP时难以达成动作空间、计算复杂性与探索能力之间的平衡. 为此, 提出一种四向协同装箱(Four directional cooperative packing, FDCP)方法: 两阶段策略网络接收旋转后的容器状态, 生成4个方向的装箱策略; 根据由4个策略采样而得的动作更新对应的4个状态, 选取其中价值最大的对应动作为装箱动作. FDCP在压缩动作空间、减小计算复杂性的同时, 鼓励智能体对4个方向合理装箱位置的探索. 实验结果表明, FDCP在100 × 100大尺寸容器以及20、30、50箱子数量的装箱问题上实现了1.2% ~ 2.9%的空间利用率提升.
物流作为现代经济的重要组成部分, 在国民经济和社会发展中发挥着重要作用. 物流中的三维装箱问题(Three-dimensional bin packing problem, 3D-BPP)是提高物流运作效率必须解决的关键难题之一. 深度强化学习(Deep reinforcement learning, DRL)具有强大的学习与决策能力, 基于DRL的三维装箱方法(Three-dimensional bin packing method based on DRL, DRL-3DBP)已成为智能物流领域的研究热点之一. 现有DRL-3DBP面对大尺寸容器3D-BPP时难以达成动作空间、计算复杂性与探索能力之间的平衡. 为此, 提出一种四向协同装箱(Four directional cooperative packing, FDCP)方法: 两阶段策略网络接收旋转后的容器状态, 生成4个方向的装箱策略; 根据由4个策略采样而得的动作更新对应的4个状态, 选取其中价值最大的对应动作为装箱动作. FDCP在压缩动作空间、减小计算复杂性的同时, 鼓励智能体对4个方向合理装箱位置的探索. 实验结果表明, FDCP在100 × 100大尺寸容器以及20、30、50箱子数量的装箱问题上实现了1.2% ~ 2.9%的空间利用率提升.
摘要:
电力设施巡检对于加快电网基础设施智能化改造和智能微电网建设, 提高电力系统互补互济和智能调节能力的需求具有重要作用, 近年来, 智能巡检机器人开始在电力巡检中广泛应用. 在提高电力设施巡检效率和准确性、提升安全性、降低成本和促进电力智能化发展等方面发挥关键作用. 本文从电力巡检机器人的智能感知和导航技术出发, 重点介绍目标检测、语义分割、自主导航等共性关键技术的国内外发展现状. 然后以可见光红外双光融合、可见光图像和点云数据融合、声纹和可见光融合为例, 阐述电力场景多模态数据融合方式. 并进一步介绍电力部件精准分割和异物检测、线路点云杆塔倾斜检测、输电线路覆冰多模态检测和电力架空线路缺陷分析及台账异常检测等电力设施多模态机器人相关案例. 最后探讨电力设施多模态精细化机器人巡检关键技术的发展趋势和所面临的挑战.
电力设施巡检对于加快电网基础设施智能化改造和智能微电网建设, 提高电力系统互补互济和智能调节能力的需求具有重要作用, 近年来, 智能巡检机器人开始在电力巡检中广泛应用. 在提高电力设施巡检效率和准确性、提升安全性、降低成本和促进电力智能化发展等方面发挥关键作用. 本文从电力巡检机器人的智能感知和导航技术出发, 重点介绍目标检测、语义分割、自主导航等共性关键技术的国内外发展现状. 然后以可见光红外双光融合、可见光图像和点云数据融合、声纹和可见光融合为例, 阐述电力场景多模态数据融合方式. 并进一步介绍电力部件精准分割和异物检测、线路点云杆塔倾斜检测、输电线路覆冰多模态检测和电力架空线路缺陷分析及台账异常检测等电力设施多模态机器人相关案例. 最后探讨电力设施多模态精细化机器人巡检关键技术的发展趋势和所面临的挑战.
摘要:
无人机因其极高的灵活性, 在临地安防, 灾后救援, 地质勘测, 农业植保等领域发挥着重要作用, 因此受到了越来越多的关注. 定位导航作为无人机中的关键技术, 对于无人机是否能够顺利执行任务至关重要. 当前主要的定位导航算法包括全球卫星定位系统, 惯性定位以及景象匹配定位导航等. 其中, 景象匹配定位导航方法利用计算机视觉技术, 对无人机飞行时采集的航空影像进行数字化特征编码. 随后, 通过构建相似性度量与检索模型, 将航空影像特征与预先获取的遥感地图库特征进行相似性度量, 从而完成景象匹配. 最后, 根据无人机航空影像与遥感卫星地图的匹配结果, 获取相应的地理位置信息, 并更新为无人机的定位结果. 景象匹配定位导航方法摆脱了定位系统对定位信号的依赖, 实现了无人机飞行定位的自主化. 本文以景象匹配算法中的特征提取方式为线索, 分别针对基于模板匹配, 基于手工特征以及基于度量学习的景象匹配, 梳理其发展过程, 并总结了景象匹配定位导航方法中的关键问题. 最后, 针对景象匹配算法的发展现状, 总结了无人机景象匹配定位方法中亟待解决的问题.
无人机因其极高的灵活性, 在临地安防, 灾后救援, 地质勘测, 农业植保等领域发挥着重要作用, 因此受到了越来越多的关注. 定位导航作为无人机中的关键技术, 对于无人机是否能够顺利执行任务至关重要. 当前主要的定位导航算法包括全球卫星定位系统, 惯性定位以及景象匹配定位导航等. 其中, 景象匹配定位导航方法利用计算机视觉技术, 对无人机飞行时采集的航空影像进行数字化特征编码. 随后, 通过构建相似性度量与检索模型, 将航空影像特征与预先获取的遥感地图库特征进行相似性度量, 从而完成景象匹配. 最后, 根据无人机航空影像与遥感卫星地图的匹配结果, 获取相应的地理位置信息, 并更新为无人机的定位结果. 景象匹配定位导航方法摆脱了定位系统对定位信号的依赖, 实现了无人机飞行定位的自主化. 本文以景象匹配算法中的特征提取方式为线索, 分别针对基于模板匹配, 基于手工特征以及基于度量学习的景象匹配, 梳理其发展过程, 并总结了景象匹配定位导航方法中的关键问题. 最后, 针对景象匹配算法的发展现状, 总结了无人机景象匹配定位方法中亟待解决的问题.
摘要:
深度学习是一门依赖于数据的科学, 传统深度学习方法假定在平衡数据集上训练模型, 然而, 现实世界中大规模数据集通常表现出长尾分布现象, 样本数量众多的少量头部类主导模型训练, 而大量尾部类样本数量过少, 难以得到充分学习. 近年来, 长尾学习掀起学术界的研究热潮, 涌现出大量先进的工作. 本文综合梳理和分析了近年来发表在高水平会议或期刊上的文献, 对长尾学习进行全面的综述. 具体而言, 根据深度学习模型设计流程, 将图像识别领域的长尾学习算法分为丰富样本数量与语义信息的优化样本空间方法, 关注特征提取器、分类器、logits和损失函数这四个基本组成部分的优化模型方法以及通过引入帮助模型训练的辅助任务, 在多个空间共同优化长尾学习模型的辅助任务学习3大类, 并根据提出的分类方法综合对比分析每类长尾学习方法的优缺点. 然后, 进一步将基于样本数量的狭义长尾学习概念推广至多尺度广义长尾学习. 此外, 本文对文本数据、语音数据等其它数据形式下的长尾学习算法进行简要评述. 最后, 讨论了目前长尾学习面临的可解释性较差、数据质量较低等挑战, 并展望了如多模态长尾学习、半监督长尾学习等未来具有潜力的发展方向.
深度学习是一门依赖于数据的科学, 传统深度学习方法假定在平衡数据集上训练模型, 然而, 现实世界中大规模数据集通常表现出长尾分布现象, 样本数量众多的少量头部类主导模型训练, 而大量尾部类样本数量过少, 难以得到充分学习. 近年来, 长尾学习掀起学术界的研究热潮, 涌现出大量先进的工作. 本文综合梳理和分析了近年来发表在高水平会议或期刊上的文献, 对长尾学习进行全面的综述. 具体而言, 根据深度学习模型设计流程, 将图像识别领域的长尾学习算法分为丰富样本数量与语义信息的优化样本空间方法, 关注特征提取器、分类器、logits和损失函数这四个基本组成部分的优化模型方法以及通过引入帮助模型训练的辅助任务, 在多个空间共同优化长尾学习模型的辅助任务学习3大类, 并根据提出的分类方法综合对比分析每类长尾学习方法的优缺点. 然后, 进一步将基于样本数量的狭义长尾学习概念推广至多尺度广义长尾学习. 此外, 本文对文本数据、语音数据等其它数据形式下的长尾学习算法进行简要评述. 最后, 讨论了目前长尾学习面临的可解释性较差、数据质量较低等挑战, 并展望了如多模态长尾学习、半监督长尾学习等未来具有潜力的发展方向.
摘要:
针对模型参数不确定下多无人艇系统的固定时间二分编队跟踪控制问题,通过将命令滤波与复合学习技术融合到反推控制方法中, 提出了一种新型分布式固定时间二分编队跟踪控制协议.首先, 将命令滤波引入到反推控制中, 进而分别设计了虚拟控制协议与真实控制协议.在此基础上, 为估计未知参数设计了参数复合学习律, 利用在线记录的数据和即时数据来产生预测误差, 并利用跟踪误差和预测误差来更新参数估计.结果表明, 在严格弱于持续激励条件的区间激励条件下, 本文提出的控制方案不仅能够保证编队误差的固定时间收敛性也能够保证参数估计误差的固定时间收敛性, 同时解决了多无人艇系统的固定时间二分编队跟踪控制问题. 最后, 通过仿真实验验证了本文提出的控制协议的有效性.
针对模型参数不确定下多无人艇系统的固定时间二分编队跟踪控制问题,通过将命令滤波与复合学习技术融合到反推控制方法中, 提出了一种新型分布式固定时间二分编队跟踪控制协议.首先, 将命令滤波引入到反推控制中, 进而分别设计了虚拟控制协议与真实控制协议.在此基础上, 为估计未知参数设计了参数复合学习律, 利用在线记录的数据和即时数据来产生预测误差, 并利用跟踪误差和预测误差来更新参数估计.结果表明, 在严格弱于持续激励条件的区间激励条件下, 本文提出的控制方案不仅能够保证编队误差的固定时间收敛性也能够保证参数估计误差的固定时间收敛性, 同时解决了多无人艇系统的固定时间二分编队跟踪控制问题. 最后, 通过仿真实验验证了本文提出的控制协议的有效性.
摘要:
自主无人系统是一类具有自主感知和决策能力的智能系统, 在国防安全、航空航天、高性能机器人等方面有着广泛的应用. 近年来, 基于Transformer架构的各类大模型快速革新, 极大地推动了自主无人系统的发展. 目前, 自主无人系统正迎来一场以“具身智能”为核心的新一代技术革命. 大模型需要借助无人系统的物理实体来实现“具身化”, 无人系统可以利用大模型技术来实现“智能化”. 本文阐述了具身智能自主无人系统的发展现状, 详细探讨了包含大模型驱动的多模态感知、面向具身任务的推理与决策、基于动态交互的机器人学习与控制、三维场景具身模拟器等具身智能领域的关键技术. 最后, 指出了目前具身智能无人系统所面临的挑战, 并展望了未来的研究方向.
自主无人系统是一类具有自主感知和决策能力的智能系统, 在国防安全、航空航天、高性能机器人等方面有着广泛的应用. 近年来, 基于Transformer架构的各类大模型快速革新, 极大地推动了自主无人系统的发展. 目前, 自主无人系统正迎来一场以“具身智能”为核心的新一代技术革命. 大模型需要借助无人系统的物理实体来实现“具身化”, 无人系统可以利用大模型技术来实现“智能化”. 本文阐述了具身智能自主无人系统的发展现状, 详细探讨了包含大模型驱动的多模态感知、面向具身任务的推理与决策、基于动态交互的机器人学习与控制、三维场景具身模拟器等具身智能领域的关键技术. 最后, 指出了目前具身智能无人系统所面临的挑战, 并展望了未来的研究方向.
, 最新更新时间
, doi: 10.16383/j.aas.c230789
摘要:
自1982年著名的Hopfield神经网络问世以来, 神经网络的分岔动力学受到了学术界的广泛关注. 本文回顾了四类经典神经网络的数学模型和它们在各个领域的应用. 接着, 综述了近三十年来关于整数阶神经网络、分数阶神经网络、超数域神经网络以及反应扩散神经网络分岔动力学的相关研究成果. 分析了诸多组合因素, 包括节点规模、耦合情形、拓扑结构、系统阶次、复值、四元数、八元数、扩散、时滞、随机性、脉冲、忆阻、激活函数等对神经网络分岔动力学的影响, 并展示了神经网络在多个领域的广泛应用. 最后, 在人工智能、大数据、深度学习等新技术的冲击下, 对神经网络分岔动力学所面临的挑战以及未来的研究方向进行了总结和展望.
自1982年著名的Hopfield神经网络问世以来, 神经网络的分岔动力学受到了学术界的广泛关注. 本文回顾了四类经典神经网络的数学模型和它们在各个领域的应用. 接着, 综述了近三十年来关于整数阶神经网络、分数阶神经网络、超数域神经网络以及反应扩散神经网络分岔动力学的相关研究成果. 分析了诸多组合因素, 包括节点规模、耦合情形、拓扑结构、系统阶次、复值、四元数、八元数、扩散、时滞、随机性、脉冲、忆阻、激活函数等对神经网络分岔动力学的影响, 并展示了神经网络在多个领域的广泛应用. 最后, 在人工智能、大数据、深度学习等新技术的冲击下, 对神经网络分岔动力学所面临的挑战以及未来的研究方向进行了总结和展望.
摘要:
基于深度神经网络的分类方法因缺乏可解释性, 导致在金融、医疗、法律等关键领域难以获得完全信任, 极大限制了其应用. 现有多数研究主要关注单模态数据的可解释性, 多模态数据的可解释性方面仍存在挑战. 为解决这一问题, 提出一种基于视觉属性的多模态可解释图像分类方法, 该方法将可见光和深度图等不同视觉模态提取的属性融入模型的训练过程, 不仅能通过视觉属性和决策树对已有的神经网络黑盒模型进行解释, 而且能在训练过程中进一步提升模型解释信息的能力. 引入可解释性通常会造成模型精度的降低, 该方法在保持模型具有良好可解释性的同时, 仍具有较高的分类精度, 在 NYUDv2、SUN RGB-D 和 RGB-NIR 三个数据集上, 相比于单模态可解释方法, 该模型准确率明显提升, 并达到与多模态不可解释模型相媲美的性能.
基于深度神经网络的分类方法因缺乏可解释性, 导致在金融、医疗、法律等关键领域难以获得完全信任, 极大限制了其应用. 现有多数研究主要关注单模态数据的可解释性, 多模态数据的可解释性方面仍存在挑战. 为解决这一问题, 提出一种基于视觉属性的多模态可解释图像分类方法, 该方法将可见光和深度图等不同视觉模态提取的属性融入模型的训练过程, 不仅能通过视觉属性和决策树对已有的神经网络黑盒模型进行解释, 而且能在训练过程中进一步提升模型解释信息的能力. 引入可解释性通常会造成模型精度的降低, 该方法在保持模型具有良好可解释性的同时, 仍具有较高的分类精度, 在 NYUDv2、SUN RGB-D 和 RGB-NIR 三个数据集上, 相比于单模态可解释方法, 该模型准确率明显提升, 并达到与多模态不可解释模型相媲美的性能.
摘要:
针对多机器人系统在战场, 灾难现场等复杂未知环境下的区域搜索问题, 提出了一种基于分层仿生神经网络的多机器人协同区域搜索算法. 首先将仿生神经网络(BNN) 和不同分辨率下的区域栅格地图结合, 构建分层仿生神经网络信息模型, 其中包括区域搜索神经网络信息模型(AS-BNN)和区域覆盖神经网络信息模型(AC-BNN). 机器人在任务区域内实时探测到的环境信息将转换为AS-BNN和AC-BNN中神经元的动态活性值. 其次, 在分层仿生神经网络信息模型基础上引入了分布式模型预测控制(DMPC)框架, 并设计了多机器人分层协同决策机制. 当机器人处于正常搜索状态时, 基于AS-BNN信息模型进行搜索路径滚动优化决策. 当机器人陷入局部最优状态时, 则启用AC-BNN信息模型引导机器人快速找到新的未搜索区域. 最后, 在复杂未知环境下进行多机器人区域搜索仿真实验, 并与该领域内的3种算法进行比较. 仿真结果验证了所提算法能够在复杂未知环境下引导多机器人系统高效地完成区域搜索任务.
针对多机器人系统在战场, 灾难现场等复杂未知环境下的区域搜索问题, 提出了一种基于分层仿生神经网络的多机器人协同区域搜索算法. 首先将仿生神经网络(BNN) 和不同分辨率下的区域栅格地图结合, 构建分层仿生神经网络信息模型, 其中包括区域搜索神经网络信息模型(AS-BNN)和区域覆盖神经网络信息模型(AC-BNN). 机器人在任务区域内实时探测到的环境信息将转换为AS-BNN和AC-BNN中神经元的动态活性值. 其次, 在分层仿生神经网络信息模型基础上引入了分布式模型预测控制(DMPC)框架, 并设计了多机器人分层协同决策机制. 当机器人处于正常搜索状态时, 基于AS-BNN信息模型进行搜索路径滚动优化决策. 当机器人陷入局部最优状态时, 则启用AC-BNN信息模型引导机器人快速找到新的未搜索区域. 最后, 在复杂未知环境下进行多机器人区域搜索仿真实验, 并与该领域内的3种算法进行比较. 仿真结果验证了所提算法能够在复杂未知环境下引导多机器人系统高效地完成区域搜索任务.
摘要:
本文研究了多智能体时变网络上基于bandit反馈的分布式在线鞍点问题, 其中每个智能体通过本地计算和局部信息交流去协作最小化全局损失函数. 在bandit反馈下, 包括梯度在内的损失函数信息是不可用的, 每个智能体仅能获得和使用在某决策或其附近产生的函数值. 为此, 结合单点梯度估计方法和预测映射技术, 提出了一种非欧几里得意义上的分布式在线bandit鞍点优化算法. 以动态鞍点遗憾作为性能指标, 对于一般的凸-凹损失函数, 建立了遗憾上界并在某些预设条件下确保了所提算法的次线性收敛. 此外, 考虑到计算优化子程序的精确解在迭代优化中通常较为困难, 本文进一步设计了一种基于近似计算方法的算法变种, 并严格分析了精确度设置对算法遗憾上界的影响. 最后, 通过一个目标跟踪案例对算法的有效性和先进性进行了仿真验证.
本文研究了多智能体时变网络上基于bandit反馈的分布式在线鞍点问题, 其中每个智能体通过本地计算和局部信息交流去协作最小化全局损失函数. 在bandit反馈下, 包括梯度在内的损失函数信息是不可用的, 每个智能体仅能获得和使用在某决策或其附近产生的函数值. 为此, 结合单点梯度估计方法和预测映射技术, 提出了一种非欧几里得意义上的分布式在线bandit鞍点优化算法. 以动态鞍点遗憾作为性能指标, 对于一般的凸-凹损失函数, 建立了遗憾上界并在某些预设条件下确保了所提算法的次线性收敛. 此外, 考虑到计算优化子程序的精确解在迭代优化中通常较为困难, 本文进一步设计了一种基于近似计算方法的算法变种, 并严格分析了精确度设置对算法遗憾上界的影响. 最后, 通过一个目标跟踪案例对算法的有效性和先进性进行了仿真验证.
摘要:
研究异构不确定二阶非线性多智能体系统的事件触发状态趋同控制问题. 首先, 为每个智能体设计参数观测器用以估计不确定参数, 这些观测器可渐近估计不确定参数. 其次, 为每个跟随智能体设计分布式参数观测器渐近估计领导智能体不确定参数, 每个智能体利用邻居智能体触发时刻的采样值估计其邻居智能体的状态. 基于估计的参数和邻居状态, 提出完全不依赖智能体间连续信息传输的事件触发趋同算法. 同时, 证明在所给算法的作用下多智能体系统能够达到状态趋同且不存在芝诺现象. 最后, 给出一个多单摆系统用以验证事件触发趋同算法, 仿真结果表明跟随智能体的位置和速度可以渐近跟踪领导智能体的位置和速度, 并且整个多智能体系统平均每秒触发8.825次, 对比仿真显示, 基于参数和状态观测器的事件触发状态趋同算法可以有效减少事件触发次数.
研究异构不确定二阶非线性多智能体系统的事件触发状态趋同控制问题. 首先, 为每个智能体设计参数观测器用以估计不确定参数, 这些观测器可渐近估计不确定参数. 其次, 为每个跟随智能体设计分布式参数观测器渐近估计领导智能体不确定参数, 每个智能体利用邻居智能体触发时刻的采样值估计其邻居智能体的状态. 基于估计的参数和邻居状态, 提出完全不依赖智能体间连续信息传输的事件触发趋同算法. 同时, 证明在所给算法的作用下多智能体系统能够达到状态趋同且不存在芝诺现象. 最后, 给出一个多单摆系统用以验证事件触发趋同算法, 仿真结果表明跟随智能体的位置和速度可以渐近跟踪领导智能体的位置和速度, 并且整个多智能体系统平均每秒触发8.825次, 对比仿真显示, 基于参数和状态观测器的事件触发状态趋同算法可以有效减少事件触发次数.
, 最新更新时间
, doi: 10.16383/j.aas.c240151
摘要:
针对工业过程中故障发生源与故障信息在传播过程中的差异性问题, 提出了一种基于不同故障传播路径差异化的故障诊断方法. 该方法分别从故障源邻域信息关系和故障信息传播两个角度出发, 设计了基于k近邻筛选和基于剪枝的k跳可达路径选择的两种故障源图的构建方式, 构建“故障源图”. 从故障在变量间的差异化表现着手, 将基于特征的分类问题转换为基于结构关系的图匹配问题, 利用该结构化信息优化过程特征, 提升模型故障诊断性能. 最后, 通过田纳西−伊斯曼过程和某海底盾构掘进施工过程进行仿真验证, 实验结果证明了所提方法的有效性.
针对工业过程中故障发生源与故障信息在传播过程中的差异性问题, 提出了一种基于不同故障传播路径差异化的故障诊断方法. 该方法分别从故障源邻域信息关系和故障信息传播两个角度出发, 设计了基于k近邻筛选和基于剪枝的k跳可达路径选择的两种故障源图的构建方式, 构建“故障源图”. 从故障在变量间的差异化表现着手, 将基于特征的分类问题转换为基于结构关系的图匹配问题, 利用该结构化信息优化过程特征, 提升模型故障诊断性能. 最后, 通过田纳西−伊斯曼过程和某海底盾构掘进施工过程进行仿真验证, 实验结果证明了所提方法的有效性.
, 最新更新时间
, doi: 10.16383/j.aas.c240223
摘要:
针对介电弹性体驱动器(Dielectric elastomer actuator, DEA)建模与控制的挑战性问题, 提出基于神经网络常微分方程(Ordinary differential equation, ODE)和非线性模型预测控制(Model predictive control, MPC)的DEA动力学建模与跟踪控制方法. 首先, 基于神经网络ODE建立DEA的动力学模型以描述其复杂的动态行为. 然后, 基于所建立的DEA动力学模型, 设计非线性模型预测控制器实现其跟踪控制目标. 最后, 在所搭建的实验平台上进行一系列跟踪控制实验. 在所有实验结果中, DEA的运动均能很好地跟踪目标轨迹, 且相对均方根误差均不超过3.30%, 说明了所提动力学建模与跟踪控制方法的有效性.
针对介电弹性体驱动器(Dielectric elastomer actuator, DEA)建模与控制的挑战性问题, 提出基于神经网络常微分方程(Ordinary differential equation, ODE)和非线性模型预测控制(Model predictive control, MPC)的DEA动力学建模与跟踪控制方法. 首先, 基于神经网络ODE建立DEA的动力学模型以描述其复杂的动态行为. 然后, 基于所建立的DEA动力学模型, 设计非线性模型预测控制器实现其跟踪控制目标. 最后, 在所搭建的实验平台上进行一系列跟踪控制实验. 在所有实验结果中, DEA的运动均能很好地跟踪目标轨迹, 且相对均方根误差均不超过3.30%, 说明了所提动力学建模与跟踪控制方法的有效性.
, 最新更新时间
, doi: 10.16383/j.aas.c240288
摘要:
本文研究了严格反馈多智能体系统的最优一致性问题, 旨在局部信息交互的条件下, 使所有智能体收敛至全局代价函数的最优解. 首先, 针对权重非平衡有向图, 提出了一种新的分布式比例积分(Proportional-integral, PI)变量, 将最优一致性问题转化为PI调节问题, 使得经典的控制技术能够通过调节PI变量的方式来处理更加复杂的多智能体系统. 然后, 结合所提出的分布式PI变量和预设性能控制, 设计了一类基于PI调节的最优一致性算法, 用以解决带有死区输入非线性和有界扰动的严格反馈多智能体系统的最优一致性问题. 最后, 通过仿真实验验证了所设计的最优一致性算法的有效性.
本文研究了严格反馈多智能体系统的最优一致性问题, 旨在局部信息交互的条件下, 使所有智能体收敛至全局代价函数的最优解. 首先, 针对权重非平衡有向图, 提出了一种新的分布式比例积分(Proportional-integral, PI)变量, 将最优一致性问题转化为PI调节问题, 使得经典的控制技术能够通过调节PI变量的方式来处理更加复杂的多智能体系统. 然后, 结合所提出的分布式PI变量和预设性能控制, 设计了一类基于PI调节的最优一致性算法, 用以解决带有死区输入非线性和有界扰动的严格反馈多智能体系统的最优一致性问题. 最后, 通过仿真实验验证了所设计的最优一致性算法的有效性.
, 最新更新时间
, doi: 10.16383/j.aas.c240089
摘要:
多智能体网络(Multi-agent network, MAN)协同执行任务中需要个体之间频繁交换并共享信息, 这对网络安全带来了巨大风险. 考虑网络中节点状态隐私保护问题, 提出一种基于隐写术的分布式一致性控制策略. 首先, 建立网络窃听者攻击模型, 提出面向隐私保护的分布式平均一致性控制算法. 理论分析表明, 所提算法不仅有效保护节点初始状态的隐私, 而且可以通过隐写载体信息主动诱导窃听者推测得出错误结论. 其次, 通过引入概率指标, 提出一种用于量化MAN隐私泄露指标模型, 实现了对网络隐私泄露程度的准确描述. 并基于该模型, 从窃听者视角, 通过权衡对网络隐私泄露的影响与付出代价成本建立一个优化问题, 据此寻找最优效益攻击策略. 最后, 通过数值仿真分析, 对比现有算法验证了所提方法的有效性和优越性.
多智能体网络(Multi-agent network, MAN)协同执行任务中需要个体之间频繁交换并共享信息, 这对网络安全带来了巨大风险. 考虑网络中节点状态隐私保护问题, 提出一种基于隐写术的分布式一致性控制策略. 首先, 建立网络窃听者攻击模型, 提出面向隐私保护的分布式平均一致性控制算法. 理论分析表明, 所提算法不仅有效保护节点初始状态的隐私, 而且可以通过隐写载体信息主动诱导窃听者推测得出错误结论. 其次, 通过引入概率指标, 提出一种用于量化MAN隐私泄露指标模型, 实现了对网络隐私泄露程度的准确描述. 并基于该模型, 从窃听者视角, 通过权衡对网络隐私泄露的影响与付出代价成本建立一个优化问题, 据此寻找最优效益攻击策略. 最后, 通过数值仿真分析, 对比现有算法验证了所提方法的有效性和优越性.
, 最新更新时间
, doi: 10.16383/j.aas.c240392
摘要:
强化学习作为一类重要的人工智能方法, 广泛应用于解决复杂的控制与决策问题, 其在众多领域的应用已展示出巨大潜力. 近年来, 强化学习从单智能体决策逐渐扩展到多智能体协作与博弈, 形成多智能体强化学习这一研究热点. 多智能体系统由多个具有自主感知和决策能力的实体组成, 有望解决传统单智能体方法难以应对的大规模复杂问题. 多智能体强化学习不仅需要考虑环境的动态性, 还需应对其他智能体策略的不确定性, 这增加了学习和决策的复杂度. 本文梳理多智能体强化学习在控制与决策领域的研究, 分析其面临的主要问题与挑战, 从控制理论与自主决策两个层次综述现有的研究成果与进展, 并针对未来的研究方向进行了展望. 通过本文的分析, 期望为未来多智能体强化学习的研究提供有价值的参考和启示.
强化学习作为一类重要的人工智能方法, 广泛应用于解决复杂的控制与决策问题, 其在众多领域的应用已展示出巨大潜力. 近年来, 强化学习从单智能体决策逐渐扩展到多智能体协作与博弈, 形成多智能体强化学习这一研究热点. 多智能体系统由多个具有自主感知和决策能力的实体组成, 有望解决传统单智能体方法难以应对的大规模复杂问题. 多智能体强化学习不仅需要考虑环境的动态性, 还需应对其他智能体策略的不确定性, 这增加了学习和决策的复杂度. 本文梳理多智能体强化学习在控制与决策领域的研究, 分析其面临的主要问题与挑战, 从控制理论与自主决策两个层次综述现有的研究成果与进展, 并针对未来的研究方向进行了展望. 通过本文的分析, 期望为未来多智能体强化学习的研究提供有价值的参考和启示.
, 最新更新时间
, doi: 10.16383/j.aas.c240312
摘要:
针对小样本学习过程上样本数量不足导致的性能下降问题, 基于原型网络的小样本学习方法通过实现查询样本与支持样本原型特征间的距离度量, 从而达到很好的分类性能. 然而, 这种方法直接将支持集样本均值视为类原型, 在一定程度上加剧了对样本数量稀少情况下的敏感性. 针对此问题, 提出了基于自适应原型特征类矫正的小样本学习方法(Few-shot learning based on class rectification via adaptive prototype features, CRAPF), 通过自适应生成原型特征来缓解模型对数据细微变化的过度响应, 并同步实现类边界的精细化调整. 首先, 使用卷积网络构建自适应原型特征生成模块, 该模块采用非线性映射获取更为稳健的原型特征, 有助于减弱异常值对原型构建的影响. 其次, 通过对原型生成过程的优化, 提升了不同类间原型表示的区分度, 进而强化了原型特征对于类别表征的整体效能. 最后, 在3个广泛使用的基准数据集上的实验结果显示, 该方法提升了小样本学习任务的表现. 例如, 在5类5样本设置下, CRAPF在MiniImageNet和CIFAR-FS上的准确率比其他模型至少提高了2.06% 和2.30%.
针对小样本学习过程上样本数量不足导致的性能下降问题, 基于原型网络的小样本学习方法通过实现查询样本与支持样本原型特征间的距离度量, 从而达到很好的分类性能. 然而, 这种方法直接将支持集样本均值视为类原型, 在一定程度上加剧了对样本数量稀少情况下的敏感性. 针对此问题, 提出了基于自适应原型特征类矫正的小样本学习方法(Few-shot learning based on class rectification via adaptive prototype features, CRAPF), 通过自适应生成原型特征来缓解模型对数据细微变化的过度响应, 并同步实现类边界的精细化调整. 首先, 使用卷积网络构建自适应原型特征生成模块, 该模块采用非线性映射获取更为稳健的原型特征, 有助于减弱异常值对原型构建的影响. 其次, 通过对原型生成过程的优化, 提升了不同类间原型表示的区分度, 进而强化了原型特征对于类别表征的整体效能. 最后, 在3个广泛使用的基准数据集上的实验结果显示, 该方法提升了小样本学习任务的表现. 例如, 在5类5样本设置下, CRAPF在MiniImageNet和CIFAR-FS上的准确率比其他模型至少提高了2.06% 和2.30%.
, 最新更新时间
, doi: 10.16383/j.aas.c240334
摘要:
随着无人系统技术的快速发展, 海上无人系统跨域集群凭借其诸多优点已成为当前无人系统领域研究热点. 具体来说, 海上无人系统跨域集群是指空中、水面、水下无人平台, 通过跨域任务规划与信息交互实现高效集群协作, 对提升海洋复杂环境下无人平台应对能力至关重要. 目前, 海上无人系统跨域集群理论体系还不完善, 相关研究正面临诸多亟待解决的难题. 为此, 本文首先梳理了跨域集群相关概念及其发展现状, 分析了其面临的挑战与关键问题; 进而, 从控制理论和通信技术相结合角度出发, 简述了跨域集群任务规划、组网传输、协同控制等关键技术的研究进展; 最后, 结合实际发展情况和未来发展趋势, 对海上无人系统跨域集群未来值得深入研究的研究方向进行了总结与展望.
随着无人系统技术的快速发展, 海上无人系统跨域集群凭借其诸多优点已成为当前无人系统领域研究热点. 具体来说, 海上无人系统跨域集群是指空中、水面、水下无人平台, 通过跨域任务规划与信息交互实现高效集群协作, 对提升海洋复杂环境下无人平台应对能力至关重要. 目前, 海上无人系统跨域集群理论体系还不完善, 相关研究正面临诸多亟待解决的难题. 为此, 本文首先梳理了跨域集群相关概念及其发展现状, 分析了其面临的挑战与关键问题; 进而, 从控制理论和通信技术相结合角度出发, 简述了跨域集群任务规划、组网传输、协同控制等关键技术的研究进展; 最后, 结合实际发展情况和未来发展趋势, 对海上无人系统跨域集群未来值得深入研究的研究方向进行了总结与展望.
, 最新更新时间
, doi: 10.16383/j.aas.c240096
摘要:
动态系统的实时安全性评估在防止潜在安全事故导致重大损失方面发挥着关键作用. 随着系统功能和复杂性的日益增加, 实时安全性评估技术面临着更大的挑战. 该文阐述了动态系统实时安全性评估的概念定义, 从环境的平稳性及评估模型的构建方式两个维度出发提出了一种分类框架, 给出了相应的问题描述, 较系统地回顾了动态系统实时安全性评估技术的现有进展, 讨论了针对不同实际系统的部署策略, 分析了现有技术的发展趋势, 探讨了实时安全性评估中亟待解决的问题与未来的发展方向.
动态系统的实时安全性评估在防止潜在安全事故导致重大损失方面发挥着关键作用. 随着系统功能和复杂性的日益增加, 实时安全性评估技术面临着更大的挑战. 该文阐述了动态系统实时安全性评估的概念定义, 从环境的平稳性及评估模型的构建方式两个维度出发提出了一种分类框架, 给出了相应的问题描述, 较系统地回顾了动态系统实时安全性评估技术的现有进展, 讨论了针对不同实际系统的部署策略, 分析了现有技术的发展趋势, 探讨了实时安全性评估中亟待解决的问题与未来的发展方向.
, 最新更新时间
, doi: 10.16383/j.aas.c240295
摘要:
针对持续扰动下的分布式状态耦合非线性系统, 提出一种新的多耦合分布式经济模型预测控制 (Economic model predictive control, EMPC) 策略. 由于耦合非线性系统的经济性能函数的非凸性和非正定性, 首先引入关于经济最优平衡点的正定辅助函数和相应的辅助优化问题. 接着, 利用辅助函数的最优值函数构造原始分布式 EMPC 的一类隐式收缩约束. 然后建立状态耦合分布式 EMPC 的递推可行性和闭环系统关于最优经济平衡点的输入到状态稳定性结论. 最后, 以耦合的四个连续搅拌釜反应器为例, 验证本文所提策略的有效性.
针对持续扰动下的分布式状态耦合非线性系统, 提出一种新的多耦合分布式经济模型预测控制 (Economic model predictive control, EMPC) 策略. 由于耦合非线性系统的经济性能函数的非凸性和非正定性, 首先引入关于经济最优平衡点的正定辅助函数和相应的辅助优化问题. 接着, 利用辅助函数的最优值函数构造原始分布式 EMPC 的一类隐式收缩约束. 然后建立状态耦合分布式 EMPC 的递推可行性和闭环系统关于最优经济平衡点的输入到状态稳定性结论. 最后, 以耦合的四个连续搅拌釜反应器为例, 验证本文所提策略的有效性.
, 最新更新时间
, doi: 10.16383/j.aas.c230359
摘要:
在统计流形空间中, 从信息几何角度考虑非线性状态后验分布近似的实质是后验分布与相应参数化变分分布之间的Kullback-Leibler散度最小化问题, 同时也可以转化为变分置信下界的最大化问题. 为了提升非线性系统状态估计的精度, 在高斯系统假设条件下结合变分贝叶斯推断和Fisher信息矩阵推导出置信下界的自然梯度, 并通过分析其信息几何意义, 阐述在统计流形空间中置信下界沿其方向不断迭代增大, 实现变分分布与后验分布的 “紧密” 近似; 在此基础上, 以状态估计及其误差协方差作为变分超参数, 结合最优估计理论给出一种基于自然梯度的非线性变分贝叶斯滤波算法; 最后, 通过天基光学传感器量测条件下近地轨道卫星跟踪定轨仿真实验验证: 与对比算法相比, 所提算法具有更高的精度.
在统计流形空间中, 从信息几何角度考虑非线性状态后验分布近似的实质是后验分布与相应参数化变分分布之间的Kullback-Leibler散度最小化问题, 同时也可以转化为变分置信下界的最大化问题. 为了提升非线性系统状态估计的精度, 在高斯系统假设条件下结合变分贝叶斯推断和Fisher信息矩阵推导出置信下界的自然梯度, 并通过分析其信息几何意义, 阐述在统计流形空间中置信下界沿其方向不断迭代增大, 实现变分分布与后验分布的 “紧密” 近似; 在此基础上, 以状态估计及其误差协方差作为变分超参数, 结合最优估计理论给出一种基于自然梯度的非线性变分贝叶斯滤波算法; 最后, 通过天基光学传感器量测条件下近地轨道卫星跟踪定轨仿真实验验证: 与对比算法相比, 所提算法具有更高的精度.
, 最新更新时间
, doi: 10.16383/j.aas.c230210
摘要:
增加可再生能源在电网中的占比, 使能源结构更合理, 是加快能源转型实现低碳可持续发展的有效途径. 电网中占主导地位的火电, 辅助消纳可再生能源的能力, 对提高可再生能源在电网中的占比起到重要作用. 为了提高火电机组辅助可再生能源的消纳能力, 本文根据当前系统控制方案, 分析了影响机组灵活性与调峰深度的因素, 包括机炉协调、局部反馈策略下的锅炉控制、系统稳态工作点的规划等. 基于补偿方案的协调策略限制了机组对具有随机性和间歇性的可再生能源的补偿能力; 局部反馈策略下的锅炉控制只是实现了等效热效应的反馈; 非额定工况下的稳态工作点关系到辅助可再生能源消纳的能耗和排放指标. 根据以上分析分别给出了进一步的研究内容.
增加可再生能源在电网中的占比, 使能源结构更合理, 是加快能源转型实现低碳可持续发展的有效途径. 电网中占主导地位的火电, 辅助消纳可再生能源的能力, 对提高可再生能源在电网中的占比起到重要作用. 为了提高火电机组辅助可再生能源的消纳能力, 本文根据当前系统控制方案, 分析了影响机组灵活性与调峰深度的因素, 包括机炉协调、局部反馈策略下的锅炉控制、系统稳态工作点的规划等. 基于补偿方案的协调策略限制了机组对具有随机性和间歇性的可再生能源的补偿能力; 局部反馈策略下的锅炉控制只是实现了等效热效应的反馈; 非额定工况下的稳态工作点关系到辅助可再生能源消纳的能耗和排放指标. 根据以上分析分别给出了进一步的研究内容.
, 最新更新时间
, doi: 10.16383/j.aas.c190277
摘要:
首先, 通过分析黑体温度控制系统的物理模型, 推演出黑体传递函数的表达式.推演过程中得知黑体易受环境温度和空气散热的影响, 所以黑体温度控制系统是个非线性时变系统.结合实验黑体的阶跃响应数据, 采用阶跃响应法对传递函数进行近似计算, 得出黑体温控系统的传递函数是极点在左半轴的二阶系统, 该系统等效于二阶低通滤波器.经过低通滤波器的信号, 会滤除高频部分, 当用继电器法进行参数自整定时, 仅需计算能量较大的基波信号.通过对基波信号进行比较, 得出继电器法的整定公式, 并参照Ziegler-Nichols整定法则计算出PID参数.同时, 本文针对黑体加热器具有双路输出的特点, 提出了一种双路动态输出法, 通过理论分析了该方法可以消除环境对黑体温度的影响.对于环境温度变化较大的, 采用继电器法PID参数自整定的方式来消除; 对于黑体运行过程中环境温度变化较小的, 采用双路动态输出法来减少影响.最后, 结合实验数据, 引入性能指标, 验证了本文所述方法对黑体的温度控制性能有一定的提升.
首先, 通过分析黑体温度控制系统的物理模型, 推演出黑体传递函数的表达式.推演过程中得知黑体易受环境温度和空气散热的影响, 所以黑体温度控制系统是个非线性时变系统.结合实验黑体的阶跃响应数据, 采用阶跃响应法对传递函数进行近似计算, 得出黑体温控系统的传递函数是极点在左半轴的二阶系统, 该系统等效于二阶低通滤波器.经过低通滤波器的信号, 会滤除高频部分, 当用继电器法进行参数自整定时, 仅需计算能量较大的基波信号.通过对基波信号进行比较, 得出继电器法的整定公式, 并参照Ziegler-Nichols整定法则计算出PID参数.同时, 本文针对黑体加热器具有双路输出的特点, 提出了一种双路动态输出法, 通过理论分析了该方法可以消除环境对黑体温度的影响.对于环境温度变化较大的, 采用继电器法PID参数自整定的方式来消除; 对于黑体运行过程中环境温度变化较小的, 采用双路动态输出法来减少影响.最后, 结合实验数据, 引入性能指标, 验证了本文所述方法对黑体的温度控制性能有一定的提升.
, 最新更新时间
, doi: 10.16383/j.aas.c200007
摘要:
仿人智能控制是现代智能控制理论之一, 利用分层递阶的控制结构与多控制模态为强非线性、大迟滞、难建模问题提供了切实可行的解决方案, 近些年来发展迅速并且得到学术界的持续关注, 但缺乏对该理论研究进展系统性的总结. 本文通过系统的梳理仿人智能控制的理论基础和发展脉络, 将其划分为三代控制模型, 分别从每一代控制模型的算法描述、研究进展与应用进展三个角度进行综述, 同时, 结合当前的研究进展讨论仿人智能控制在控制模型、结构功能、参数校正方面进一步研究的方向.
仿人智能控制是现代智能控制理论之一, 利用分层递阶的控制结构与多控制模态为强非线性、大迟滞、难建模问题提供了切实可行的解决方案, 近些年来发展迅速并且得到学术界的持续关注, 但缺乏对该理论研究进展系统性的总结. 本文通过系统的梳理仿人智能控制的理论基础和发展脉络, 将其划分为三代控制模型, 分别从每一代控制模型的算法描述、研究进展与应用进展三个角度进行综述, 同时, 结合当前的研究进展讨论仿人智能控制在控制模型、结构功能、参数校正方面进一步研究的方向.
, 最新更新时间
, doi: 10.16383/j.aas.2020.c200033
摘要:
深度神经网络在解决复杂问题方面取得了惊人的成功, 广泛应用于生活中各个领域, 但是最近的研究表明, 深度神经网络容易受到精心设计的对抗样本的攻击, 导致网络模型输出错误的预测结果, 这对于深度学习网络的安全性是一种极大的挑战. 对抗攻击是深度神经网络发展过程中必须克服的一大障碍, 设计一种高效且能够防御多种对抗攻击算法, 且具有强鲁棒性的防御模型是有效推动对抗攻击防御的方向之一, 探究能否利用对抗性攻击来训练网络分类器从而提高其鲁棒性具有重要意义. 本文将生成对抗网络(Generative adversarial networks, GAN)和现有的攻击算法结合, 提出一种基于生成对抗网络的对抗攻击防御模型(AC-DefGAN), 利用对抗攻击算法生成攻击样本作为GAN的训练样本, 同时在网络中加入条件约束来稳定模型的训练过程, 利用分类器对生成器所生成样本的分类来指导GAN的训练过程, 通过自定义分类器需要防御的攻击算法来生成对抗样本以完成判别器的训练, 从而得到能够防御多种对抗攻击的分类器. 通过在MNIST、CIFAR-10和ImageNet数据集上进行实验, 证明训练完成后, AC-DefGAN可以直接对原始样本和对抗样本进行正确分类, 对各类对抗攻击算法达到很好的防御效果, 且比已有方法防御效果好、鲁棒性强.
深度神经网络在解决复杂问题方面取得了惊人的成功, 广泛应用于生活中各个领域, 但是最近的研究表明, 深度神经网络容易受到精心设计的对抗样本的攻击, 导致网络模型输出错误的预测结果, 这对于深度学习网络的安全性是一种极大的挑战. 对抗攻击是深度神经网络发展过程中必须克服的一大障碍, 设计一种高效且能够防御多种对抗攻击算法, 且具有强鲁棒性的防御模型是有效推动对抗攻击防御的方向之一, 探究能否利用对抗性攻击来训练网络分类器从而提高其鲁棒性具有重要意义. 本文将生成对抗网络(Generative adversarial networks, GAN)和现有的攻击算法结合, 提出一种基于生成对抗网络的对抗攻击防御模型(AC-DefGAN), 利用对抗攻击算法生成攻击样本作为GAN的训练样本, 同时在网络中加入条件约束来稳定模型的训练过程, 利用分类器对生成器所生成样本的分类来指导GAN的训练过程, 通过自定义分类器需要防御的攻击算法来生成对抗样本以完成判别器的训练, 从而得到能够防御多种对抗攻击的分类器. 通过在MNIST、CIFAR-10和ImageNet数据集上进行实验, 证明训练完成后, AC-DefGAN可以直接对原始样本和对抗样本进行正确分类, 对各类对抗攻击算法达到很好的防御效果, 且比已有方法防御效果好、鲁棒性强.