2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向可再生能源消纳的火电机组控制结构综合与分析

马士全 丁进良

马士全, 丁进良. 面向可再生能源消纳的火电机组控制结构综合与分析. 自动化学报, 2024, 50(5): 1−15 doi: 10.16383/j.aas.c230210
引用本文: 马士全, 丁进良. 面向可再生能源消纳的火电机组控制结构综合与分析. 自动化学报, 2024, 50(5): 1−15 doi: 10.16383/j.aas.c230210
Ma Shi-Quan, Ding Jin-Liang. Syntheses and analyses of control structure for coal-fired power plants oriented to renewable energy accommodation. Acta Automatica Sinica, 2024, 50(5): 1−15 doi: 10.16383/j.aas.c230210
Citation: Ma Shi-Quan, Ding Jin-Liang. Syntheses and analyses of control structure for coal-fired power plants oriented to renewable energy accommodation. Acta Automatica Sinica, 2024, 50(5): 1−15 doi: 10.16383/j.aas.c230210

面向可再生能源消纳的火电机组控制结构综合与分析

doi: 10.16383/j.aas.c230210
基金项目: 国家自然科学基金 (61988101), 辽宁省中央引导地方项目(2022JH6/100100055)资助
详细信息
    作者简介:

    马士全:东北大学流程工业综合自动化国家重点实验室博士研究生. 2011年获得吉林化工学院自动化学士学位. 2014年获得东北电力大学自动化硕士学位. 主要研究方向为微机测控系统、复杂过程工业优化与控制. 本文通信作者.E-mail: msq_scholar_ex@163.com

    丁进良:东北大学教授. 主要研究方向为生产全流程运行优化, 智能优化和工业智能及应用.E-mail: jlding@mail.neu.edu.cn

Syntheses and Analyses of Control Structure for Coal-fired Power Plants Oriented to Renewable Energy Accommodation

Funds: Supported by National Natural Science Foundation of China (61988101), The Liaoning Province Center Leading Local Science and Technology Development Special Project under Grant (2022JH6/100100055)
More Information
    Author Bio:

    MA Shi-Quan Ph.D. candidate at the State Key Laboratory of Synthetical Automation for Process Industry, Northeastern University. He received the his bachelor degree from Jilin Institute of Chemical Technology in 2011 and master degree from Northeastern Dianli University in 2014. His current interest covers plant-wide control and optimization for complex industrial process systems, microcomputer measurement and control system. Corresponding authory of this paper

    DING Jin-Liang Professor at Northeastern University. His research interest covers optimization of the whole production process, intelligent optimization, industrial artificial intelligence and applications

  • 摘要: 增加可再生能源在电网中的占比, 使能源结构更合理, 是加快能源转型实现低碳可持续发展的有效途径. 电网中占主导地位的火电, 辅助消纳可再生能源的能力, 对提高可再生能源在电网中的占比起到重要作用. 为了提高火电机组辅助可再生能源的消纳能力, 本文根据当前系统控制方案, 分析了影响机组灵活性与调峰深度的因素, 包括机炉协调、局部反馈策略下的锅炉控制、系统稳态工作点的规划等. 基于补偿方案的协调策略限制了机组对具有随机性和间歇性的可再生能源的补偿能力; 局部反馈策略下的锅炉控制只是实现了等效热效应的反馈; 非额定工况下的稳态工作点关系到辅助可再生能源消纳的能耗和排放指标. 根据以上分析分别给出了进一步的研究内容.
  • 图  1  电力系统平衡调节示意图

    Fig.  1  Supply and demand balance of power grid

    图  2  炉跟随为基础的协调控制递阶结构

    Fig.  2  Hierarchical structure based on furnace following mode

    图  3  锅炉压力控制

    Fig.  3  Regulator of steam pressure of furnace

    图  5  火电机组控制结构简图

    Fig.  5  Control scheme of power plants

    图  6  局部反馈递阶结构

    Fig.  6  Hierarchical control structure of local feedback

    图  7  全局反馈递阶结构

    Fig.  7  Hierarchical control structure of feedback

    图  8  基本控制模式结构

    Fig.  8  Control structure of base mode

    图  9  炉跟随控制模式结构

    Fig.  9  Control structure of furnace following mode

    图  10  机跟随控制模式结构

    Fig.  10  Control structure of turbine following mode

    图  4  汽机负荷跟踪控制

    Fig.  4  Electrical power regulator of turbine

    图  11  基于炉跟随的协调控制

    Fig.  11  Coordinating control based on furnace following mode

    图  12  基于机跟随的协调控制

    Fig.  12  Coordinating control based on turbine following mode

    图  13  火电机组模型结构

    Fig.  13  Structure of coal-fired power plants

    图  14  串联前补偿结构

    Fig.  14  Compensation before series connection

    图  15  反馈前补偿结构

    Fig.  15  Compensation before feedback

    图  16  串联后补偿结构

    Fig.  16  Compensation after series connection

    图  17  汽机主控和电调参与一次调频

    Fig.  17  Primary frequency regulating of turbine master and DEH

    图  18  一次调频结构

    Fig.  18  Structure of primary frequency regulating

    图  19  凝结水节流补偿结构

    Fig.  19  Compensating structure of adjusting condensing water

    图  20  燃煤热值校正

    Fig.  20  Calorific value correction of coal

    图  21  回热减小水冷壁入口欠焓

    Fig.  21  Improve giving water enthalpy by reheating

    图  22  电网负荷供需平衡调节类比

    Fig.  22  Analogy of supply and demand balance of power grid

    表  1  性能参数对比

    Table  1  Comparision of performance parameters

    参数我国欧洲单位
    负荷变动速率2/1.56/4%/min 硬煤/褐煤
    最小出力35/5020/40% 硬煤/褐煤
    冷态启动时间8/124/6h 硬煤/褐煤
    热态启动时间42 h
    下载: 导出CSV
  • [1] 李星梅, 钟志鸣, 阎洁. 大规模风电接入下的火电机组灵活性改造规划. 电力系统自动化, 2019, 43(3): 51-57 doi: 10.7500/AEPS20180213007

    Li Xing-Mei, Zhong Zhi-Ming, Yan Jie. Flexibility reformation planning of thermal power units with large-scale integration of wind power. Automation of Electric Power Systems, 2019, 43(3): 51-57 doi: 10.7500/AEPS20180213007
    [2] 李人厚, 邵福庆. 大系统的递阶与分散控制. 西安: 西安交通大学出版社, 1986.

    Li Ren-hou, Shao Fu-qing. Hierarchical and Decentralized Control of Large Systems. Xi'an: Xi'an Jiaotong University Press, 1986.
    [3] 刘吉臻. 协调控制与给水全程控制. 北京: 水利电力出版社, 1995.

    Liu Ji-zhen. Coordinated control and full process control of water supply. Beijing: Water Resources and Electric Power Publishing House, 1995.
    [4] 涂序彦. 大系统控制论. 北京: 国防工业出版社, 1994.

    Tu Xu-yan. Large System Control Theory. Beijing: National Defense Industry Press, 1994.
    [5] Sandell N, Varaiya P, Athans M, Safonov M. Survey of decentralized control methods for large scale systems. IEEE Transactions on Automatic Control, 1978, 23(2): 108-128 doi: 10.1109/TAC.1978.1101704
    [6] Roberts P D. Hierarchical control and decomposition of a chemical plant. International Journal of Systems Science, 1979, 10(2): 207-223 doi: 10.1080/00207727908941576
    [7] Arkun Y, Stephanopoulos G. Studies in the synthesis of control structures for chemical processes. Part V: Design of steady-state optimizing control structures for integrated chemical plants. AIChE Journal, 1981, 27(5): 779-793 doi: 10.1002/aic.690270512
    [8] Bailey F N, Malinowski K B. Problems in the design of multilayer, multiechelon control structures. IFAC Proceedings Volumes, 1977, 10(6): 31-38 doi: 10.1016/B978-0-08-022010-9.50009-8
    [9] Li X N, Zhang L Q. Research based on the mid-point enthalpy of supercritical unit feed-water control circuit. Advanced Materials Research, 2011, 354-355: 344-349 doi: 10.4028/www.scientific.net/AMR.354-355.344
    [10] Qiu S L, Song R F, Wang Z, Wang X T, Zhu B Y, Qi Z Y, et al. Research and application of Automatic Procedure Start up and shut down of ultra supercritical thermal power unit based on enthalpy control. In: Proceedings of the 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). Chongqing, China: IEEE, 2020. 280−284
    [11] Huang Y X, Yao R W, Liu X C, Lin S Y, Zhang W D. A reinforcement learning method for intermediate point enthalpy control in super-critical power unit. In: Proceedings of the Chinese Automation Congress (CAC). Xi'an, China: IEEE, 2018. 651−654
    [12] Pan F P, Zhu Y Q, Zhang X. Full process control strategy of fuel based on water-coal ratio of ultra supercritical units. In: Proceedings of the International Conference on Electronics, Communications and Control (ICECC). Ningbo, China: IEEE, 2011. 3750−3753
    [13] 王玉清, 董传敏, 郑亚光, 张海萍, 苗广祥. 基于中间点焓值校正的超临界机组给水全程控制. 锅炉技术, 2010, 41(3): 11-15 doi: 10.3969/j.issn.1672-4763.2010.03.004

    Wang Yu-Qing, Dong Chuan-Min, Zheng Ya-Guang, Zhang Hai-Ping, Miao Guang-Xiang. Supercritical unit full range feedwater control system based on intermediate point enthalpy correction. Boiler Technology, 2010, 41(3): 11-15 doi: 10.3969/j.issn.1672-4763.2010.03.004
    [14] 王丕洲, 谷俊杰, 秦达飞, 曹晓威. 600 MW超临界直流锅炉两种给水控制系统分析. 电力科学与工程, 2013, 29(4): 64-69 doi: 10.3969/j.issn.1672-0792.2013.04.013

    Wang Pi-Zhou, Gu Jun-Jie, Qin Da-Fei, Cao Xiao-Wei. Analysis of the two feed water control system of 600 mw supercritical once-through boiler. Electric Power Science and Engineering, 2013, 29(4): 64-69 doi: 10.3969/j.issn.1672-0792.2013.04.013
    [15] 谷俊杰, 秦达飞, 曹晓威, 王丕洲, 李伟, 陈顺青. 超临界锅炉中间点温度增益切换控制方法. 中国电机工程学报, 2014, 34(14): 2274-2280 doi: 10.13334/j.0258-8013.pcsee.2014.14.008

    Gu Jun-Jie, Qin Da-Fei, Cao Xiao-Wei, Wang Pi-Zhou, Li Wei, Chen Shun-Qing. A control method based on gain-switching for intermediate point temperature of supercritical pressure boiler. Proceedings of the CSEE, 2014, 34(14): 2274-2280 doi: 10.13334/j.0258-8013.pcsee.2014.14.008
    [16] 秦志明, 张栾英, 谷俊杰. 直流锅炉单元机组协调控制系统的研究与设计. 动力工程学报, 2016, 36(1): 16-21, 29 doi: 10.3969/j.issn.1674-7607.2016.01.003

    Qin Zhi-Ming, Zhang Luan-Ying, Gu Jun-Jie. Research and design on the coordinate control system of a once-through boiler unit. Journal of Chinese Society of Power Engineering, 2016, 36(1): 16-21, 29 doi: 10.3969/j.issn.1674-7607.2016.01.003
    [17] 张秋生, 梁华, 胡晓花, 李生光, 刘潇. 超超临界机组的两种典型协调控制方案. 中国电力, 2011, 44(10): 74-79 doi: 10.3969/j.issn.1004-9649.2011.10.017

    Zhang Qiu-Sheng, Liang Hua, Hu Xiao-Hua, Li Sheng-Guang, Liu Xiao. Two kinds of typical coordinated control systems in ultra-supercritical units. Electric Power, 2011, 44(10): 74-79 doi: 10.3969/j.issn.1004-9649.2011.10.017
    [18] 刘吉臻, 王耀函, 曾德良, 陈彦桥. 基于凝结水节流的火电机组AGC控制优化方法. 中国电机工程学报, 2017, 37(23): 6918-6925 doi: 10.13334/J.0258-8013.PCSEE.161979

    Liu Ji-Zhen, Wang Yao-Han, Zeng De-Liang, Chen Yan-Qiao. An AGC control method of thermal unit based on condensate throttling. Proceedings of the CSEE, 2017, 37(23): 6918-6925 doi: 10.13334/J.0258-8013.PCSEE.161979
    [19] 王玮, 孙阳, 刘吉臻, 井思桐. 适应电网快速调频的热电联产机组新型变负荷控制策略. 电力系统自动化, 2018, 42(21): 63-69 doi: 10.7500/AEPS20180102008

    Wang Wei, Sun Yang, Liu Ji-Zhen, Jing Si-Tong. Load-change control strategy for combined heat and power units adapted to rapid frequency regulation of power grid. Automation of Electric Power Systems, 2018, 42(21): 63-69 doi: 10.7500/AEPS20180102008
    [20] Buche D, Stoll P, Dornberger R, Koumoutsakos P. Multiobjective evolutionary algorithm for the optimization of noisy combustion processes. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2002, 32(4): 460-473 doi: 10.1109/TSMCB.2002.804372
    [21] Song Z, Kusiak A. Constraint-based control of boiler efficiency: A data-mining approach. IEEE Transactions on Industrial Informatics, 2007, 3(1): 73-83 doi: 10.1109/TII.2006.890530
    [22] Ito F, Fujimoto K, Kurihara N, Nishimura A, Kobayashi K, Sema T. A combustion monitoring and evaluation system for large utility boilers. IEEE Power Engineering Review, 1984, PER-4(5): 25-26 doi: 10.1109/MPER.1984.5526023
    [23] Li K, Thompson S. A cascaded neural network and its application to modelling power plant pollutant emission. In: Proceedings of the 3rd World Congress on Intelligent Control and Automation (WCICA). Hefei, China: IEEE, 2000. 992−997
    [24] Zhao S N, Fang Q Y, Yin C G, Wei T S, Wang H J, Zhang C, et al. New fuel air control strategy for reducing NOx emissions from corner-fired utility boilers at medium–low loads. Energy & Fuels, 2017, 31(7): 6689-6699
    [25] 张鑫, 陈隆. 高速煤粉燃烧器内燃烧特性数值模拟及结构优化. 洁净煤技术, 2020, 26(2): 66-72 doi: 10.13226/j.issn.1006-6772.20011005

    Zhang Xin, Chen Long. Numerical simulation of burning characteristics and structural optimization design of the high speed combustor of pulverized coal. Clean Coal Technology, 2020, 26(2): 66-72 doi: 10.13226/j.issn.1006-6772.20011005
    [26] 王东风, 刘千, 韩璞, 赵文杰. 基于大数据驱动案例匹配的电站锅炉燃烧优化. 仪器仪表学报, 2016, 37(2): 420-428 doi: 10.3969/j.issn.0254-3087.2016.02.024

    Wang Dong-Feng, Liu Qian, Han Pu, Zhao Wen-Jie. Combustion optimization in power station based on big data-driven case-matching. Chinese Journal of Scientific Instrument, 2016, 37(2): 420-428 doi: 10.3969/j.issn.0254-3087.2016.02.024
    [27] Booth R C, Roland W B. Neural network-based combustion optimization reduces NOx emissions while improving performance. In: Proceedings of the IEEE Industry Applications on Dynamic Modeling Control Applications for Industry Workshop. Vancouver, Canada: IEEE, 1998. 1−6
    [28] Gu Y P, Zhao W J, Wu Z S. Online adaptive least squares support vector machine and its application in utility boiler combustion optimization systems. Journal of Process Control, 2011, 21(7): 1040-1048 doi: 10.1016/j.jprocont.2011.06.001
    [29] Ding J L, Liu C X, Wen M, Chai T Y. Case-based decision making model for supervisory control of ore roasting process. In: Proceedings of the 5th International Composium on Neural Networks. Beijing, China: Springer, 2008. 148−157
    [30] Ding J L, Chen Q, Chai T Y, Wang H, Su C Y. Data mining based feedback regulation in operation of hematite ore mineral processing plant. In: Proceedings of the American Control Conference. St. Louis, USA: IEEE, 2009. 907−912
    [31] Kuang M, Li Z Q, Wang Z H, Jing X J, Liu C L, Zhu Q Y, et al. Combustion and NOx emission characteristics with respect to staged-air damper opening in a 600 MW_e down-fired pulverized-coal furnace under deep-air-staging conditions. Environmental Science & Technology, 2014, 48(1): 837-844
    [32] Zhou H, Mo G Y, Si D B, Cen K F. Numerical simulation of the NOx emissions in a 1000 MW tangentially fired pulverized-coal boiler: Influence of the multi-group arrangement of the separated over fire air. Energy & Fuels, 2011, 25(5): 2004-2012
    [33] Park H Y, Faulkner M, Turrell M D, Stopford P J, Kang D S. Coupled fluid dynamics and whole plant simulation of coal combustion in a tangentially-fired boiler. Fuel, 2010, 89(8): 2001-2010 doi: 10.1016/j.fuel.2010.01.036
    [34] Miller J A, Bowman C T. Mechanism and modeling of nitrogen chemistry in combustion. Progress in Energy and Combustion Science, 1989, 15(4): 287-338 doi: 10.1016/0360-1285(89)90017-8
    [35] Szecowka L, Poskart M. Techniques to limit NOX emissions. Advanced Combustion and Aerothermal Technologies: Environmental Protection and Pollution Reductions. Dordrecht: Springer, 2007. 47−54
    [36] Hill S C, Smoot L D. Modeling of nitrogen oxides formation and destruction in combustion systems. Progress in Energy and Combustion Science, 2000, 26(4-6): 417-458 doi: 10.1016/S0360-1285(00)00011-3
    [37] De Soete G G. Overall reaction rates of NO and N_2 formation from fuel nitrogen. Symposium (International) on Combustion, 1975, 15(1): 1093-1102 doi: 10.1016/S0082-0784(75)80374-2
    [38] Shi Y, Li C, Song L Z, Zhu C P, Fu Y L, He Y Q. Peak shaving auxiliary service market model with multi-type power participation. In: Proceedings of the International Conference on Power System Technology (POWERCON). Haikou, China: IEEE, 2021. 684−689
  • 加载中
计量
  • 文章访问数:  68
  • HTML全文浏览量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-17
  • 录用日期:  2023-07-10
  • 网络出版日期:  2024-01-17

目录

    /

    返回文章
    返回