2.624

2020影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于 PID 自整定功能的自适应双路输出的黑体温度控制

张海弟

张海弟. 基于 PID 自整定功能的自适应双路输出的黑体温度控制. 自动化学报, 2021, 47(12): 1−9 doi: 10.16383/j.aas.c190277
引用本文: 张海弟. 基于 PID 自整定功能的自适应双路输出的黑体温度控制. 自动化学报, 2021, 47(12): 1−9 doi: 10.16383/j.aas.c190277
Zhang Hai-Di. Blackbody temperature control based on adaptive double output function of pid self-tuning. Acta Automatica Sinica, 2021, 47(12): 1−9 doi: 10.16383/j.aas.c190277
Citation: Zhang Hai-Di. Blackbody temperature control based on adaptive double output function of pid self-tuning. Acta Automatica Sinica, 2021, 47(12): 1−9 doi: 10.16383/j.aas.c190277

基于 PID 自整定功能的自适应双路输出的黑体温度控制

doi: 10.16383/j.aas.c190277
详细信息
    作者简介:

    张海弟:北京新航智科技有限公司高级工程师. 2008年获得北京理工大学电路与系统专业硕士学位. 主要研究方向为电厂自动控制. E-mail: zhd8202@163.com

Blackbody Temperature Control Based on Adaptive Double Output Function of PID Self-tuning

More Information
    Author Bio:

    ZHANG Hai-Di Senior engineer at Beijing New Intelligent Technology Co., Ltd.. He received his master degree in circuits and systems from Beijing Institute of Technology in 2008. His main research interest is automatic control of power plant

  • 摘要: 首先, 通过分析黑体温度控制系统的物理模型, 推演出黑体传递函数的表达式.推演过程中得知黑体易受环境温度和空气散热的影响, 所以黑体温度控制系统是个非线性时变系统.结合实验黑体的阶跃响应数据, 采用阶跃响应法对传递函数进行近似计算, 得出黑体温控系统的传递函数是极点在左半轴的二阶系统, 该系统等效于二阶低通滤波器.经过低通滤波器的信号, 会滤除高频部分, 当用继电器法进行参数自整定时, 仅需计算能量较大的基波信号.通过对基波信号进行比较, 得出继电器法的整定公式, 并参照Ziegler-Nichols整定法则计算出PID参数.同时, 本文针对黑体加热器具有双路输出的特点, 提出了一种双路动态输出法, 通过理论分析了该方法可以消除环境对黑体温度的影响.对于环境温度变化较大的, 采用继电器法PID参数自整定的方式来消除; 对于黑体运行过程中环境温度变化较小的, 采用双路动态输出法来减少影响.最后, 结合实验数据, 引入性能指标, 验证了本文所述方法对黑体的温度控制性能有一定的提升.
  • 图  1  系统总体图

    Fig.  1  System overall diagram

    图  2  黑体温控系统

    Fig.  2  Blackbody temperature control system

    图  3  实测阶跃响应与识别阶跃响应

    Fig.  3  Measured step response and recognition of step response

    图  4  继电器法实现原理

    Fig.  4  Principle of relay method

    图  5  输入方波

    Fig.  5  Square wave

    图  6  实测黑体自整定数据

    Fig.  6  Measured blackbody self-tuning data

    图  7  自适应动态双路输出

    Fig.  7  Adaptive dynamic double output

    图  8  双路输出数据

    Fig.  8  Dual output data

    图  9  带相关因子的模糊算法

    Fig.  9  Fuzzy algorithm with correlation factor

    图  10  响应数据

    Fig.  10  Response data

    图  11  实测黑体稳定精度数据

    Fig.  11  Blackbody stabilization accuracy data

    表  1  Ziegler-Nichols整定法则

    Table  1  Ziegler-Nichols setting rule

    控制器类型 Kp Tn Tv Ki Kd
    P 0.5· Kpcrit
    PD 0.8· Kpcrit 0.12 Tcrit Kp × Tv
    PI 0.45· Kpcrit 0.85 Tcrit Kp/Tn
    PID 0.6· Kpcrit 0.5 Tcrit 0.12 Tcrit Kp/Tn Kp × Tv
    下载: 导出CSV

    表  2  比例积分微分模糊规则

    Table  2  Proportional integral differential fuzzy rule

    P, I, D NB(EC) NM(EC) NS(EC) ZO(EC) PS(EC) PM(EC) PB(EC)
    NB(E) PB, NB, PS PB, NB, NS PM, NM, NB PM, NM, NB PS, NS, NB ZO, ZO, NM ZO, ZO, PS
    NM(E) PB, NB, PS PB, NB, NS PM, NM, NB PS, NS, NM PS, NS, NM ZO, ZO, NS NS, ZO, ZO
    NS(E) PM, NB, ZO PM, NM, NS PM, NS, NM PS, NS, NM ZO, ZO, NS NS, PS, PS NS, PS, ZO
    ZO(E) PM, NM, ZO PM, NM, NS PS, NS, PS ZO, ZO, NS NS, NS, NS NM, NM, NS NM, NM, ZO
    PS(E) PS, NM, ZO PS, NS, ZO ZO, ZO, ZO NS, PS, ZO NS, PS, ZO NM, PM, ZO NM, PB, ZO
    PM(E) PS, ZO, PB ZO, ZO, NS NS, PS, PS NM, PS, PS NM, PM, PS NM, PB, PS NB, PB, PB
    PB(E) ZO, ZO, PB ZO, ZO, PM NM, PS, PM NM, PM, PM NM, PM, PS NB, PB, PS NB, PB, PB
    下载: 导出CSV

    表  3  阶跃响应(抗干扰)性能指标

    Table  3  Step response (anti-interference) performance index

    条件 IAE ITAE PV TV 综合1 (综合2)
    S 1.000000 (1.000000) 1.000000 (1.000000) 1.000000 (1.000000) 1.000000 (1.000000) 1.000000 (1.000000)
    D 0.847483 (0.723668) 0.562693 (0.678478) 0.442698 (0.805442) 0.762998 (0.907009) 0.653968 (0.778649)
    SF 0.943743 (0.992518) 0.807751 (1.004470) 0.633536 (0.944839) 0.851171 (1.013720) 0.809050 (0.988887)
    DF 0.843329 (0.520340) 0.525302 (0.432016) 0.042592 (0.806038) 0.642354 (0.805883) 0.513394 (0.641069)
    下载: 导出CSV

    表  4  稳定精度测试(55 ℃)

    Table  4  Stability accuracy testing (55 ℃)

    条件 绝对误差 (℃) 绝对精度 均方差 TV 综合3
    S 0.003979 0.0000723455 0.00163144 1.000000 1.000000
    D 0.002308 0.0000419636 0.000764468 0.846146 0.844462
    SF 0.003132 0.0000569455 0.00125763 0.954824 0.953850
    DF 0.002628 0.0000477818 0.000786771 0.885582 0.884021
    下载: 导出CSV

    表  5  性能指标

    Table  5  Performance index

    条件 综合1 综合2 综合3 性能指标
    S 1.000000 1.000000 1.000000 1.000000
    D 0.653968 0.778649 0.844462 0.759026
    SF 0.809050 0.988887 0.953850 0.917262
    DF 0.513394 0.641069 0.884021 0.679495
    下载: 导出CSV
  • [1] Oh H U, Shin S. Numerical study on the thermal design of on-board blackbody. Aerospace Science and Technology, 2012, 18(1): 25-34 doi: 10.1016/j.ast.2011.03.011
    [2] Kim G J, Yoo Y S, Kim B H, Lim S D, Hyun Song J. A small-size transfer blackbody cavity for calibration of infrared ear thermometers. Physiological Measurement, 2014, 35(5): 753-762 doi: 10.1088/0967-3334/35/5/753
    [3] Flambaum V V, Porsev S G, Safronova M S. Energy shift due to anisotropic blackbody radiation. Physical Review A, 2016, 93(2): 022508 doi: 10.1103/PhysRevA.93.022508
    [4] Å ström K J, Hägglund T. The future of PID control. Control Engineering Practice, 2001, 9(11): 1163-1175 doi: 10.1016/S0967-0661(01)00062-4
    [5] 黄大兴, 王景辉, 陈昱卓, 王志刚. 面黑体辐射源的温度自抗扰控制. 光电子·激光, 2017, 28(4): 376-381

    Huang Da-Xing, Wang Jing-Hui, Chen Yu-Zhuo, Wang Zhi-Gang. Temperature control of plane blackbody radiation source based on ADRC. Journal of Optoelectronics·laser, 2017, 28(4): 376-381
    [6] Ramadan E A, El-Bardini M, Fkirin M A. Design and fpga-implementation of an improved adaptive fuzzy logic controller for dc motor speed control. Ain Shams Engineering Journal, 2014, 5(3): 803-816 doi: 10.1016/j.asej.2014.04.002
    [7] Sahu B K, Pati S, Mohanty P K, Panda S. Teaching-learning based optimization algorithm based fuzzy-PID controller for automatic generation control of multi-area power system. Applied Soft Computing, 2015, 27: 240-249 doi: 10.1016/j.asoc.2014.11.027
    [8] 王维洲, 吴志伟, 柴天佑. 电熔镁砂熔炼过程带输出补偿的PID 控制. 自动化学报, 2018, 44(7): 1282-1292

    Wang Wei-Zhou, Wu Zhi-Wei, Chai Tian-You. PID control with output compensation for the fused magnesia smelting process. Acta Automatica Sinica, 2018, 44(7): 1282-1292
    [9] 杨天皓, 李健, 贾瑶, 刘腾飞, 柴天佑. 虚拟未建模动态补偿驱动的双率自适应控制. 自动化学报, 2018, 44(2): 299-310

    Yang Tian-Hao, Li Jian, Jia Yao, Liu Teng-Fei, Chai Tian-You. Dual-rate adaptive control driven by virtual unmodeled dynamics compensation in industrial heat exchange process. Acta Automatica Sinica, 2018, 44(2): 299-310
    [10] 李军, 陈世和, 万文军, 王越超, 黄卫剑. 一种内反馈控制器IFC 的研究与应用. 自动化学报, 2018, 44(9): 1706-1716

    Li Jun, Chen Shi-He, Wan Wen-Jun, Wang Yue-Chao, Huang Wei-Jian. An internal feedback controller. Acta Automatica Sinica, 2018, 44(9): 1706-1716
    [11] Alvarez J D, Redondo J L, Camponogara E, Normey-Rico J, Berenguel M, Ortigosa P M. Optimizing building comfort temperature regulation via model predictive control. Energy and Buildings, 2013, 57: 361-372 doi: 10.1016/j.enbuild.2012.10.044
    [12] Boldbaatar E A, Lin C M. Self-learning fuzzy sliding-mode control for a water bath temperature control system. International Journal of Fuzzy Systems, 2015, 17(1): 31-38 doi: 10.1007/s40815-015-0015-6
    [13] Zhang Y, Tang S, Guo J. Adaptive terminal angle constraint interception against maneuvering targets with fast fixed-time convergence. International Journal of Robust and Nonlinear Control, 2018, 28(8): 2996-3014 doi: 10.1002/rnc.4067
    [14] 朱宇轩, 李少远. 双层模型预测控制系统的多包镇定域分析与系统设计. 自动化学报, 2018, 44(2): 262-269

    Zhu Yu-Xuan, Li Shao-Yuan. Analysis and system design of multi-convex hull stabilization domain for double-layered model predictive control system. Acta Automatica Sinica, 2018, 44(2): 262-269
    [15] Ding F, Xu L, Alsaadi F E, Hayat T. Iterative parameter identification for pseudo-linear systems with ARMA noise using the filtering technique. IET Control Theory & Applications, 2018, 12(7): 892-899
    [16] 丁锋. 系统辨识新论. 北京: 科学出版社, 2013.

    Ding Feng. New Theory of System Identification. Beijing: Science Press, 2013.
    [17] Zhang X, Ding F, Xu L, Yang E F. State filtering-based least squares parameter estimation for bilinear systems using the hierarchical identification principle. IET Control Theory & Applications, 2018, 12(12): 1704-1713
    [18] Huo X, Ma L, Zhao X D, Zong G D. Observer-based fuzzy adaptive stabilization of uncertain switched stochastic nonlinear systems with input quantization. Journal of the Franklin Institute, 2019, 356(4): 1789-1809 doi: 10.1016/j.jfranklin.2018.11.022
    [19] Zhao X, Wang X, Zhang S, Zong G. Adaptive neural backstepping control design for a class of nonsmooth nonlinear systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 99: 1-12
    [20] Tan W, Fu C. Linear active disturbance-rejection control: analysis and tuning via IMC. IEEE Transactions on Industrial Electronics, 2016, 63(4): 2350-2359
    [21] Guo B Z, Wu Z H, Zhou H C. Active disturbance rejection control approach to output-feedback stabilization of a class of uncertain nonlinear systems subject to stochastic disturbance. IEEE Transhactions on Automatic Control, 2016, 61(6): 1613-1618 doi: 10.1109/TAC.2015.2471815
    [22] Jérôme Mendes, Luís Osório, Rui Araújo. Self-tuning PID controllers in pursuit of plug and play capacity. Control Engineering Practice, 2017, 69: 73-84 doi: 10.1016/j.conengprac.2017.09.006
    [23] Ahmed S, Huang B, Shah S L. Identification from Step Responses with Transient Initial Conditions. Journal of Process Control, 2008, 18(2): 121-130 doi: 10.1016/j.jprocont.2007.07.009
    [24] 王修中, 岳红, 高东杰. 二阶加滞后连续模型的直接辨识. 自动化学报, 2001, 27(5): 728-731

    Wang Xiu-Zhong, Yue Hong, Gao Dong-Jie. Direct identification of continuous second-order plus dead-time model. Acta Automatica Sinica, 2001, 27(5): 728-731
    [25] 黄存坚, 尚群立, 余善恩, 张二青. 基于阶跃响应二阶加纯滞后模型的系统辨识. 机械制造, 2010, 48(10): 19-21 doi: 10.3969/j.issn.1000-4998.2010.10.006

    Huang Cun-Jian, Shang Qun-Li, Yu Shan-En, Zhang Er-Qin. System identification based on step response second-order plus pure delay model. Machinery, 2010, 48(10): 19-21 doi: 10.3969/j.issn.1000-4998.2010.10.006
  • 加载中
计量
  • 文章访问数:  270
  • HTML全文浏览量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-01
  • 录用日期:  2019-10-16
  • 网络出版日期:  2021-10-22

目录

    /

    返回文章
    返回