2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高斯过程的不确定非线性系统在线学习控制及应用

刘玉发 练桂铭 刘勇华 苏春翌

刘玉发, 练桂铭, 刘勇华, 苏春翌. 基于高斯过程的不确定非线性系统在线学习控制及应用. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240356
引用本文: 刘玉发, 练桂铭, 刘勇华, 苏春翌. 基于高斯过程的不确定非线性系统在线学习控制及应用. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240356
Liu Yu-Fa, Lian Gui-Ming, Liu Yong-Hua, Su Chun-Yi. Online learning control of uncertain nonlinear systems using gaussian processes and its application. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240356
Citation: Liu Yu-Fa, Lian Gui-Ming, Liu Yong-Hua, Su Chun-Yi. Online learning control of uncertain nonlinear systems using gaussian processes and its application. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240356

基于高斯过程的不确定非线性系统在线学习控制及应用

doi: 10.16383/j.aas.c240356 cstr: 32138.14.j.aas.c240356
基金项目: 国家自然科学基金(62173097,U2013601), 广东省基础与应用基础研究基金面上项目(2022A515011239), 广东省特支计划本土创新创业项目(2019BT02X353) 资助
详细信息
    作者简介:

    刘玉发:广东工业大学自动化学院博士研究生. 主要研究方向为自适应控制与智能控制. E-mail: yufa.liu@outlook.com

    练桂铭:广东工业大学自动化学院硕士研究生. 主要研究方向为自适应控制与智能控制. E-mail: gaslian@foxmail.com

    刘勇华:广东工业大学自动化学院副教授. 主要研究方向为非线性控制与智能控制. 本文通信作者. E-mail: yonghua.liu@outlook.com

    苏春翌:广东工业大学自动化学院教授. 主要研究方向为控制理论及其在机电系统中的应用. E-mail: chunyi.su@concordia.ca

Online Learning Control of Uncertain Nonlinear Systems Using Gaussian Processes and Its Application

Funds: Supported by National Natural Science Foundation of China (62173097,U2013601), GuangDong Basic and Applied Basic Research Foundation (2022A515011239), and the Local Innovative and Research Team Project of Guangdong Special Support Program (2019BT02X353)
More Information
    Author Bio:

    LIU Yu-Fa Ph.D. student at the School of Automation, Guangdong University of Technology. His main research interest is adaptive control and intelligent control

    LIAN Gui-Ming Master student at the School of Automation, Guangdong University of Technology. His main research interest is adaptive control and intelligent control

    LIU Yong-Hua Associate professor at the School of Automation, Guangdong University of Technology. His research interest covers nonlinear and intelligent control. Corresponding author of this paper

    SU Chun-Yi Professor at the School of Automation, Guangdong University of Technology. His research interest covers control theory and its applications to mechanical systems

  • 摘要: 针对一类不确定非线性系统, 提出了一种基于高斯过程的在线学习控制方法. 该方法首先通过障碍函数间接设定系统状态的运行区域. 其次, 在该区域内在线采集量测数据, 利用高斯过程回归对系统中未知非线性动态进行学习. 然后通过Lyapunov稳定理论, 证明了所提在线学习控制算法可保证闭环系统所有信号的有界性. 与基于径向基神经网络(Radial basis function neural networks, RBFNNs) 的自适应控制方案相比, 所提控制算法无需精确给出系统状态的运行区域及预先分配径向基函数中心值. 最后, 通过数值仿真与Franka Emika Panda 协作机械臂关节控制实验, 验证了控制算法的有效性与先进性.
  • 图  2  本文所提GP-OLC、文献[30]中GP-OLFLC、文献[7] 中RBFNNs-AC和PID控制作用下跟踪误差$e_1$

    Fig.  2  Tracking error $e_1$ under the proposed GP-OLC in the paper, GP-OLFLC in [30], RBFNNs-AC in [7] and PID

    图  1  本文所提GP-OLC、文献[30]中GP-OLFLC、文献[7] 中RBFNNs-AC和PID控制作用下系统状态$x_1$和参考轨迹$y_d$

    Fig.  1  $x_1$ and $y_d$ under the proposed GP-OLC in the paper, GP-OLFLC in [30], RBFNNs-AC in [7] and PID

    图  5  本文所提GP-OLC、文献[30]中GP-OLFLC、文献[7] 中RBFNNs-AC和PID控制作用下控制信号$u$

    Fig.  5  Control signal $u$ under the proposed GP-OLC in the paper, GP-OLFLC in [30], RBFNNs-AC in [7] and PID

    图  4  本文所提GP-OLC、文献[30]中GP-OLFLC、文献[7] 中RBFNNs-AC和PID控制作用下跟踪误差$e_2$

    Fig.  4  Tracking error $e_2$ under the proposed GP-OLC in the paper, GP-OLFLC in [30], RBFNNs-AC in [7] and PID

    图  3  本文所提GP-OLC、文献[30]中GP-OLFLC、文献[7] 中RBFNNs-AC和PID控制作用下系统状态$x_2$和$\dot{y}_d$

    Fig.  3  $x_2$ and $\dot{y}_d$ under the proposed GP-OLC in the paper, GP-OLFLC in [30], RBFNNs-AC in [7] and PID

    图  6  Franka Emika Panda机械臂系统结构

    Fig.  6  The system structure of Franka Emika Panda robot

    图  7  由Franka Emika Panda机械臂本体和控制箱组成的实验平台

    Fig.  7  The experimental platform consisted of the Franka Emika Panda robot body和control box

    图  8  位置状态$q_1$, 参考轨迹$q_{d1}$和跟踪误差$e_{11}=q_1-q_{d1}$

    Fig.  8  Position state $q_1$, desired trajectory $q_{d1}$ and tracking error $e_{11}=q_1-q_{d1}$

    图  10  控制力矩$u_1$和$u_2$

    Fig.  10  Control torques $u_1$ and $u_2$

    图  9  位置状态$q_2$, 参考轨迹$q_{d2}$和跟踪误差$e_{12}=q_2-q_{d2}$

    Fig.  9  Position state $q_2$, desired trajectory $q_{d2}$ and tracking error $e_{12}=q_2-q_{d2}$

    图  11  文中GP-OLC和PD控制作用下关节位置跟踪误差$e_{11}=q_1-q_{d1}$

    Fig.  11  Position tracking error $e_{11}=q_1-q_{d1}$ under the proposed GP-OLC in this paper and PD control

    图  12  文中GP-OLC和PD控制作用下关节位置跟踪误差$e_{12}=q_2-q_{d2}$

    Fig.  12  Position tracking error $e_{12}=q_2-q_{d2}$ the proposed GP-OLC in this paper and PD control

    表  1  在时间间隔$ [20,\;30] $上跟踪误差$ e_1 $和$ e_2 $的$ L_2 $范数

    Table  1  $ L_2 $ norm of tracking errors $ e_1 $ and $ e_2 $ over time interval $ [20,\;30] $

    GP-OLC GP-OLFLC PID RBFNNs-AC
    $ ||e_1||_{L_2} $ 4.46 5.41 6.76 97.22
    $ ||e_2||_{L_2} $ 2.61 2.82 32.41 161.17
    下载: 导出CSV

    表  2  Franka Emika Panda机械臂的运动学参数

    Table  2  Kinematic parameters of Franka Emika Panda robot

    关节 $ j $ $ d_j $[m] $ a_j $[rad] $ b_j $[m] $ q_j $[rad]
    关节1 0.333 0 0 $ q_1 $
    关节2 0 $ -\dfrac{\pi}{2} $ 0 $ q_2 $
    关节3 0.316 $ \dfrac{\pi}{2} $ 0 $ q_3 $
    关节4 0 $ \dfrac{\pi}{2} $ 0.0825 $ q_4 $
    关节5 0.384 $ -\dfrac{\pi}{2} $ 0.0825 $ q_5 $
    关节6 0 $ \dfrac{\pi}{2} $ 0 $ q_6 $
    关节7 0 $ \dfrac{\pi}{2} $ 0.088 $ q_7 $
    下载: 导出CSV
  • [1] Wu Chengxi, Karimi Hamid Reza, Shan Liang, Dai Yuewei. Data-driven iterative learning cooperative trajectory tracking control for multiple autonomous underwater vehicles with input saturation constraints. Journal of Field Robotics, 2024, DOI: 10.1002/ROB.22343
    [2] Zhang M, Zhang Z, Sun M. Adaptive tracking control of uncertain robotic m anipulators. IEEE Transactions on Circuits and Systems II: Express Briefs, 2024, 71(5): 2734−2738
    [3] 王浩亮, 柴亚星, 王丹, 刘陆, 王安青, 彭周华. 基于事件触发机制的多自主水下航行器协同路径跟踪控制. 自动化学报, 2024, 50(5): 1001−1011

    Wang Hao-Liang, Chai Ya-Xing, Wang Dan, Liu Lu, Wang An-Qing, Peng Zhou-Hua. Event-triggered cooperative path following of multiple autonomous underwater vehicles. Acta Automatica Sinica, 2024, 50(5): 1001−1011
    [4] 路遥. 一种非仿射高超声速飞行器输出反馈控制方法. 自动化学报, 2022, 48(6): 1530−1542

    Lu Yao. A method of output feedback control for non-affine hypersonic vehicles. Acta Automatica Sinica, 2022, 48(6): 1530−1542
    [5] Ma J, Wang H, QiaoJ. Adaptive neural fixed-time tracking control for high-order nonlinear systems. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(1): 708−717
    [6] Bai W, Liu P X, Wang H. Neural-network-based adaptive fixed-time control for nonlinear multiagent non-affine systems. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(1): 570−583 doi: 10.1109/TNNLS.2022.3175929
    [7] Wang C. Deterministic Learning Theory for Identification, Recognition, and Control. Boca Raton: CRC Press, 2017
    [8] Zheng S, Shi P, Wang S, Shi Y. Adaptive neural control for a class of nonlinear multiagent systems. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(2): 763−776
    [9] 吴锦娃, 刘勇华, 苏春翌, 鲁仁全. 具有不确定控制增益严格反馈系统的自适应命令滤波控制. 自动化学报, 2024, 50(5): 1−10

    Wu Jin-Wa, Liu Yong-Hua, Su Chun-Yi, Lu Ren-Quan. Adaptive command filtered control of strict feedback systems with uncertain control gains. Acta Automatica Sinica, 2024, 50(5): 1−10
    [10] Zhang J, Niu B, Wang D, Wang H, Zong G. Time-/event-triggered adaptive neural asymptotic tracking control for nonlinear systems with full-state constraints and application to a single-link robot. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(11): 3390−6700
    [11] Zhang F, Wu W, Wang C. Dynamic learning from neural network-based control for sampled-data strict-feedback nonlinear systems. International Journal of Robust and Nonlinear Control, 2022, 32(15): 8397−8420 doi: 10.1002/rnc.6292
    [12] Wang M, Shi H, Wang C, Fu J. Dynamic learning from adaptive neural control for discrete-time strict-feedback systems. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(8): 3700−3712
    [13] Sanner R M, Slotine J. Gaussian networks for direct adaptive control. IEEE Transactions on Neural Networks, 1992, 3(6): 837−863 doi: 10.1109/72.165588
    [14] Chen W, Ge S S, Wu J, Gong M. Globally stable adaptive backstepping neural network control for uncertain strict-feedback systems with tracking accuracy known a priori. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(9): 1842−1854 doi: 10.1109/TNNLS.2014.2357451
    [15] Liu Y H, Su C Y, Li H, Lu R. Barrier function-based adaptive control for uncertain strict-feedback systems within predefined neural network approximation sets. IEEE Transactions on Neural Networks and Learing Systems, 2020, 31(8): 2942−2954 doi: 10.1109/TNNLS.2019.2934403
    [16] Liu Y H, Liu Y, Liu Y F, Su C Y, Zhou Q, Lu R. Adaptive approximation-based tracking control for a class of unknown high-order nonlinear systems with unknown powers. IEEE Transactions on Cybernetics, 2022, 52(6): 4559−4573 doi: 10.1109/TCYB.2020.3030310
    [17] Liu Y H, Liu Y, Liu Y F, Su C Y. Adaptive fuzzy control with global stability guarantees for unknown strict-feedback systems using novel integral barrier Lyapunov functions. IEEE Transactions on Systems, Man and Cybernetics: Systems, 2022, 52(7): 4336−4348 doi: 10.1109/TSMC.2021.3094975
    [18] Liu Y H, Liu Y F, Su C Y, Liu Y, Zhou Q, Lu R. Guaranteeing global stability for neuro-adaptive control of unknown pure-feedback nonaffine systems via barrier functions. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(9): 5869−5881 doi: 10.1109/TNNLS.2021.3131364
    [19] Nardi F. Neural Network Based Adaptive Algorithms for Nonlinear Control[Ph. D. dissertation], Georgia Institute of Technology, US, 2000
    [20] Shankar P. Self-organizing Radial Basis Function Networks for Adaptive Flight Control and Aircraft Engine State Estimation [Ph. D. dissertation], The Ohio State University, US, 2007
    [21] Sundararajan N, Saratchandran P, Yan L. Fully Tuned Radial Basis Function Neural Networks for Flight Control. New York, US: Springer, 2002
    [22] Deisenroth M P, Turner R D, Huber M F, Hanebeck U D, Rasmussen C E. Robust filtering and smoothing with Gaussian processes. IEEE Transactions on Automatic Control, 2012, 57(7): 1865−1871 doi: 10.1109/TAC.2011.2179426
    [23] Rasmussen C E, Williams C. Gaussian Processes for Machine Learning. Cambridge, MA: MIT Press, 2006
    [24] Kocijan J. Modelling and Control of Dynamic Systems using Gaussian Process Models. New York, US: Springer, 2016
    [25] Duvenaud D. Automatic Model Construction with Gaussian Processes[Ph. D. dissertation], University of Cambridge, UK, 2014
    [26] Umlauft J M. Safe Learning Control for Gaussian Process[Ph. D. dissertation], Technical University of Munich, Germany, 2020
    [27] Umlauft J, Beckers T, Kimmel M, Hirche S. Feedback linearization using Gaussian processes. In: Proceedings of the 2017 IEEE 56th Annual Conference on Decision and Control (CDC). Melbourne, VIC, Australia: 2017. 5249−5255
    [28] Capone A, Hirche S. Backstepping for partially unknown nonlinear systems using Gaussian processes. IEEE Control Systems Letters, 2019, 3(2): 416−421 doi: 10.1109/LCSYS.2018.2890467
    [29] Chowdhary G, Kingravi H A, How J P, Vela P A. Bayesian nonparametric adaptive control using Gaussian processes. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(3): 537−550 doi: 10.1109/TNNLS.2014.2319052
    [30] Umlauft J, Hirche S. Feedback linearization based on Gaussian Processes with event-triggered online learning. IEEE Transactions on Automatic Control, 2020, 65(10): 4154−4169 doi: 10.1109/TAC.2019.2958840
    [31] Jiao J J, Capone A, Hirche S. Backstepping tracking control using Gaussian processes with event-triggered online learning. IEEE Control Systems Letters, 2022, 6: 3176−3181 doi: 10.1109/LCSYS.2022.3183530
    [32] Lederer A, Yang Z, Jiao J, Hirche S. Cooperative control of uncertain multiagent systems via distributed Gaussian processes. IEEE Transactions on Automatic Control, 2023, 68(5): 3091−3098 doi: 10.1109/TAC.2022.3205424
    [33] Beckers T, D Kulic, Hirche S. Stable Gaussian process based tracking control of Euler-Lagrange systems. Automatica, 2019, 103: 390−397 doi: 10.1016/j.automatica.2019.01.023
    [34] Lederer A, Capone A, Umlauft J, Hirche S. How training data impacts performance in learning-based control. IEEE Control Systems Letters, 2021, 5(3): 905−910 doi: 10.1109/LCSYS.2020.3006725
    [35] Beckers T, Hirche S, Colombo L. Online learning-based formation control of multi-agent systems with Gaussian processes. In: Proceedings of the 60th IEEE Conference on Decision and Control (CDC). Austin, TX, USA: IEEE, 2021. 2197−2022
    [36] Beckers T, Hirche S. Prediction with approximated Gaussian process dynamical models. IEEE Transactions on Automatic Control, 2022, 67(12): 6460−6473 doi: 10.1109/TAC.2021.3131988
    [37] Beckers T, Colombo L, Hirche S, Pappas G J. Online learning-based trajectory tracking for underactuated vehicles with uncertain dynamics. IEEE Control Systems Letters, 2022, 6: 2090−2095 doi: 10.1109/LCSYS.2021.3138546
    [38] Khalil H K. Nonlinear Systems, 3rd Edition. Englewood Cliffs: Prentice-Hall, 2002
    [39] Seeger M W, Kakade S M, Foster D P. Information consistency of nonparametric Gaussian process methods. IEEE Transactions on Information Theory, 2008, 54(5): 2376−2382 doi: 10.1109/TIT.2007.915707
    [40] Song Y, Wang Y, Wen C. Adaptive fault-tolerant pi tracking control with guaranteed transient and steady-state performance. IEEE Transactions on Automatic Control, 2017, 62(1): 481−487
    [41] Logemann M, Ryan E P. Ordinary Differential Equations: Analysis, Qualitative Theory and Control. London, UK: Springer, 2014
    [42] Gaz C, Cognetti M, Oliva A, Giordano P Robuffo, Luca A De. Dynamic identification of the franka emika panda robot with retrieval of feasible parameters using penalty-based optimization. IEEE Robotics and Automation Letters, 2019, 4(4): 4147−4154
  • 加载中
计量
  • 文章访问数:  18
  • HTML全文浏览量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-26
  • 录用日期:  2024-12-13
  • 网络出版日期:  2025-03-31

目录

    /

    返回文章
    返回