[1]
|
葛泉波, 王远亮, 李宏. 基于改进舰尾流模型和多层耦合分析的机载雷达测量建模. 自动化学报, 2024, 50(3): 617−639Ge Quan-Bo, Wang Yuan-Liang, Li Hong. Airborne radar measurement modeling based on improved carrier air wake model and multi-layer coupling analysis. Acta Automatica Sinica, 2024, 50(3): 617−639
|
[2]
|
Zhang Y Y, Huang Y, Huang C, Huang H L, Nguyen A T. Joint optimization of deployment and flight planning of multi-UAVs for long-distance data collection from large-scale IoT devices. IEEE Internet of Things Journal, 2024, 11(1): 791−804 doi: 10.1109/JIOT.2023.3285942
|
[3]
|
Liu Z, Wei H S, Wang H Y, Li H A, Wang H S. Integrated task allocation and path coordination for large-scale robot networks with uncertainties. IEEE Transactions on Automation Science and Engineering, 2022, 19(4): 2750−2761 doi: 10.1109/TASE.2021.3111888
|
[4]
|
Zhang H, Chen X Y L, Lu H M, Xiao J H. Distributed and collaborative monocular simultaneous localization and mapping for multi-robot systems in large-scale environments. International Journal of Advanced Robotic Systems, 2018, 15(3): 1−20
|
[5]
|
Devlin-Hill B, Calinescu R, Cámara J, Caliskanelli I. Towards scalable multi-robot systems by partitioning the task domain. In: Proceedings of the 23rd Annual Conference on Towards Autonomous Robotic Systems. Culham, UK: Springer, 2022. 282−292
|
[6]
|
王本斐, 张荣辉, 冯国栋, Manandhar Ujjal, 郭戈. 基于事件触发的直流微电网无差拍预测控制. 自动化学报, 2024, 50(3): 475−485Wang Ben-Fei, Zhang Rong-Hui, Feng Guo-Dong, Manandhar Ujjal, Guo Ge. Event-triggered deadbeat predictive control for DC microgrid. Acta Automatica Sinica, 2024, 50(3): 475−485
|
[7]
|
王睿, 孙秋野, 张化光. 信息能源系统的信物融合稳定性分析. 自动化学报, 2023, 49(2): 307−316Wang Rui, Sun Qiu-Ye, Zhang Hua-Guang. Stability analysis of cyber-physical fusion in cyber-energy systems. Acta Automatica Sinica, 2023, 49(2): 307−316
|
[8]
|
王澄, 刘德荣, 魏庆来, 赵冬斌, 夏振超. 带有储能设备的智能电网电能迭代自适应动态规划最优控制. 自动化学报, 2014, 40(9): 1984−1990Wang Cheng, Liu De-Rong, Wei Qing-Lai, Zhao Dong-Bin, Xia Zhen-Chao. Iterative adaptive dynamic programming approach to power optimal control for smart grid with energy storage devices. Acta Automatica Sinica, 2014, 40(9): 1984−1990
|
[9]
|
Byun H. Learning-based adaptive feedback control for tracking optimisation in wireless sensor actuator networking systems. IET Communications, 2022, 16(3): 218−226 doi: 10.1049/cmu2.12332
|
[10]
|
Chen C H, Lin M Y, Tew W P. Wireless fieldbus networking with precision time synchronization for a low-power WSAN. Microprocessors and Microsystems, 2022, 90: Article No. 104509 doi: 10.1016/j.micpro.2022.104509
|
[11]
|
Park H S, Moon S, Kwak J, Park K J. CAPL: Criticality-aware adaptive path learning for industrial wireless sensor-actuator networks. IEEE Transactions on Industrial Informatics, 2023, 19(8): 9123−9133 doi: 10.1109/TII.2022.3217471
|
[12]
|
Vu V P. A polynomial decentralized controller design for a large-scale nonlinear system: SOS approach. IEEE Access, 2022, 10: 44008−44022 doi: 10.1109/ACCESS.2022.3169898
|
[13]
|
Sarbaz M, Zamani I, Manthouri M, Ibeas A. Decentralized robust interval type-2 fuzzy model predictive control for Takagi-Sugeno large-scale systems. Automatika, 2022, 63(1): 49−63 doi: 10.1080/00051144.2021.2003113
|
[14]
|
Sun Y F, Mao Y, Yu H S, Liu H B. (Q, S, R)-Dissipativity analysis of large-scale networked systems. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2023, 70(12): 4424−4428 doi: 10.1109/TCSII.2023.3282972
|
[15]
|
Zhang J, Li S, Ahn C K, Xiang Z R. Decentralized event-triggered adaptive fuzzy control for nonlinear switched large-scale systems with input delay via command-filtered backstepping. IEEE Transactions on Fuzzy Systems, 2022, 30(6): 2118−2123 doi: 10.1109/TFUZZ.2021.3066297
|
[16]
|
Zhang S C, Zhao B, Liu D R, Zhang Y W. Event-triggered decentralized integral sliding mode control for input-constrained nonlinear large-scale systems with actuator failures. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2024, 54(3): 1914−1925 doi: 10.1109/TSMC.2023.3331150
|
[17]
|
Wei J, Wu Q W, Li C B, Huang S, Zhou B, Chen D W. Hierarchical event-triggered MPC-based coordinated control for HVRT and voltage restoration of large-scale wind farm. IEEE Transactions on Sustainable Energy, 2022, 13(3): 1819−1829 doi: 10.1109/TSTE.2022.3172933
|
[18]
|
Wu Z Y, Zhang A B, Yu T, Li Y M, Xiong J L, Xie M. Dynamic probability-density-dependent event-triggered L∞ LFC for power systems subject to stochastic delays. IEEE Transactions on Network Science and Engineering, 2024, 11(1): 453−462 doi: 10.1109/TNSE.2023.3300876
|
[19]
|
Zhang J, Zhang H G, Gao Z Y, Sun S X. Time-varying formation control with general linear multi-agent systems by distributed event-triggered mechanisms under fixed and switching topologies. Neural Computing and Applications, 2022, 34(6): 4277−4294 doi: 10.1007/s00521-021-06539-w
|
[20]
|
Zhao F Y, Gao W N, Liu T F, Jiang Z P. Event-triggered robust adaptive dynamic programming with output feedback for large-scale systems. IEEE Transactions on Control of Network Systems, 2023, 10(1): 63−74 doi: 10.1109/TCNS.2022.3186623
|
[21]
|
Bi W S, Wang T. Adaptive fuzzy decentralized control for nonstrict feedback nonlinear systems with unmodeled dynamics. IEEE Transactions on Systems, Man, and Cybernetic: Systems, 2022, 52(1): 275−286 doi: 10.1109/TSMC.2020.2997703
|
[22]
|
Gao Z F, Shen K H, Sha X Q, He J Q. Decentralized adaptive PI fault tolerant tracking control for strong interconnected nonlinear systems subject to unmodeled dynamics and actuator faults. Nonlinear Analysis: Hybrid Systems, 2023, 50: Article No. 101394 doi: 10.1016/j.nahs.2023.101394
|
[23]
|
Zhang T P, Tang H L, Xia X N, Yi Y. Decentralized adaptive output feedback dynamic surface control for stochastic nonstrict-feedback interconnected nonlinear systems with actuator failures and input quantization via command filter. International Journal of Robust and Nonlinear Control, 2022, 32(12): 6739−6766 doi: 10.1002/rnc.6165
|
[24]
|
Cheng Y, Niu B, Zhao X D, Zong G D, Ahmad A M. Event-triggered adaptive decentralised control of interconnected nonlinear systems with Bouc-Wen hysteresis input. International Journal of Systems Science, 2023, 54(6): 1275−1288 doi: 10.1080/00207721.2023.2169845
|
[25]
|
Su H G, Zhang H G, Liang X D, Liu C. Decentralized event-triggered online adaptive control of unknown large-scale systems over wireless communication networks. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(11): 4907−4919 doi: 10.1109/TNNLS.2019.2959005
|
[26]
|
王鼎, 穆朝絮, 刘德荣. 基于迭代神经动态规划的数据驱动非线性近似最优调节. 自动化学报, 2017, 43(3): 366−375Wang Ding, Mu Chao-Xu, Liu De-Rong. Data-driven nonlinear near-optimal regulation based on iterative neural dynamic programming. Acta Automatica Sinica, 2017, 43(3): 366−375
|
[27]
|
Wang D, Fan W Q, Li M H, Qiao J F. Decentralised tracking control based on critic learning for nonlinear disturbed interconnected systems. International Journal of Systems Science, 2023, 54(5): 1150−1164 doi: 10.1080/00207721.2023.2168143
|
[28]
|
Zhang Q C, Zhao D B, Zhu Y H. Event-triggered H∞ control for continuous-time nonlinear system via concurrent learning. IEEE Transactions on Systems Man, and Cybernetics: Systems, 2017, 47(7): 1071−1081 doi: 10.1109/TSMC.2016.2531680
|
[29]
|
Zhao B, Wang D, Shi G, Liu D R, Li Y C. Decentralized control for large-scale nonlinear systems with unknown mismatched interconnections via policy iteration. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48(10): 1725−1735 doi: 10.1109/TSMC.2017.2690665
|
[30]
|
Li Y, Zhang H, Wang Z P, Huang C, Yan H C. Data-driven decentralized control for large-scale systems with sparsity and communication delays. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(9): 5614−5624 doi: 10.1109/TSMC.2023.3274292
|
[31]
|
Hu C H, Zou Y Y, Li S Y. Adaptive dynamic programming-based decentralized event-triggered control of large-scale nonlinear systems. Asian Journal of Control, 2022, 24(4): 1542−1556 doi: 10.1002/asjc.2662
|
[32]
|
Wang Y J, Wang T, Yang X B, Yang J E. Decentralized optimal tracking control for large-scale nonlinear systems with tracking error constraints. International Journal of Adaptive Control and Signal Processing, 2021, 35(7): 1388−1403 doi: 10.1002/acs.3248
|
[33]
|
Tan L N, Tran H T, Tran T T. Event-triggered observers and distributed H∞ control of physically interconnected nonholonomic mechanical agents in harsh conditions. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(12): 7871−7884 doi: 10.1109/TSMC.2022.3177043
|
[34]
|
Tan L N, Gupta N, Derawi M. Adaptive dynamic programming and zero-sum game-based distributed control for energy management systems with internet of things. IEEE Internet of Things Journal, 2023, 10(24): 22371−22385 doi: 10.1109/JIOT.2023.3303448
|
[35]
|
罗彪, 欧阳志华, 易昕宁, 刘德荣. 基于自适应动态规划的移动机器人视觉伺服跟踪控制. 自动化学报, 2023, 49(11): 2286−2296Luo Biao, Ouyang Zhi-Hua, Yi Xin-Ning, Liu De-Rong. Adaptive dynamic programming based visual servoing tracking control for mobile robots. Acta Automatica Sinica, 2023, 49(11): 2286−2296
|
[36]
|
Wei Q L, Liu D R, Liu Y, Song R Z. Optimal constrained self-learning battery sequential management in microgrid via adaptive dynamic programming. IEEE/CAA Journal of Automatica Sinica, 2017, 4(2): 168−176 doi: 10.1109/JAS.2016.7510262
|
[37]
|
Zhang J C, Zhao X W, Wei X. Reinforcement learning-based structural control of floating wind turbines. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(3): 1603−1613 doi: 10.1109/TSMC.2020.3032622
|
[38]
|
Wang Z Y, Wei Q L, Liu D R. A tracking control method based on event-triggered adaptive dynamic programming. In: Proceedings of the 38th Chinese Control Conference. Guangzhou, China: IEEE, 2019. 2454−2459
|
[39]
|
Peng Z A, Zhang Z Q, Luo R, Kuang Y Q, Hu J P, Cheng H, et al. Event-triggered optimal control of completely unknown nonlinear systems via identifier-critic learning. Kybernetika, 2023, 59(3): 365−391
|
[40]
|
Wang D, Mu C X, Liu D R, Ma H W. On mixed data and event driven design for adaptive-critic-based nonlinear H∞ control. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(4): 993−1005 doi: 10.1109/TNNLS.2016.2642128
|
[41]
|
Dahal R, Kar I. Event-triggered adaptive dynamic programming based guaranteed cost tracking controller for uncertain nonlinear systems. In: Proceedings of the 8th Indian Control Conference (ICC). Chennai, India: IEEE, 2022. 206−211
|
[42]
|
Zhong X N, He H B. An event-triggered ADP control approach for continuous-time system with unknown internal states. IEEE Transactions on Cybernetics, 2017, 47(3): 683−694 doi: 10.1109/TCYB.2016.2523878
|
[43]
|
Vamvoudakis K G, Lewis F L. Online actor critic algorithm to solve the continuous-time infinite horizon optimal control problem. In: Proceedings of the International Joint Conference on Neural Networks. Atlanta, USA: IEEE, 2009. 3180−3187
|
[44]
|
Su H G, Zhang H G, Jiang H, Wen Y L. Decentralized event-triggered adaptive control of discrete-time nonzero-sum games over wireless sensor-actuator networks with input constraints. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(10): 4254−4266 doi: 10.1109/TNNLS.2019.2953613
|
[45]
|
Su H G, Luan X Y, Zhang H G, Liang X D, Yang J Z, Wang J W. Decentralized optimal control of large-scale partially unknown nonlinear mismatched interconnected systems based on dynamic event-triggered control. Neurocomputing, 2024, 568: 127013 doi: 10.1016/j.neucom.2023.127013
|
[46]
|
Sahoo A, Xu H, Jagannathan S. Near optimal event-triggered control of nonlinear discrete-time systems using neurodynamic programming. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(9): 1801−1815 doi: 10.1109/TNNLS.2015.2453320
|
[47]
|
Vamvoudakis K G. Event-triggered optimal adaptive control algorithm for continuous-time nonlinear systems. IEEE/CAA Journal of Automatica Sinica, 2014, 1(3): 282−293 doi: 10.1109/JAS.2014.7004686
|
[48]
|
Vamvoudakis K G. An online actor/critic algorithm for event-triggered optimal control of continuous-time nonlinear systems. In: Proceedings of the American Control Conference. Portland, USA: IEEE, 2014. 1−6
|
[49]
|
Wang D, Mu C X, He H B, Liu D R. Event-driven adaptive robust control of nonlinear systems with uncertainties through NDP strategy. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47(7): 1358−1370 doi: 10.1109/TSMC.2016.2592682
|