[1]
|
Wu J, Yuan S F, Ji S, Zhou G Y, Wang Y, Wang Z L. Multi-agent system design and evaluation for collaborative wireless sensor network in large structure health monitoring. Expert Systems with Applications, 2010, 37(3): 2028−2036 doi: 10.1016/j.eswa.2009.06.098
|
[2]
|
郑志, 江涛, 杨玥, 苏晓杰. 嵌套运动饱和下分布式多移动机器人反振荡安全编队控制. 自动化学报, 2025, 51(3): 658−668Zheng Zhi, Jiang Tao, Yang Yue, Su Xiao-Jie. Distributed multi-mobile robot anti-oscillation safety formation control with nested motion saturation. Acta Automatica Sinica, 2025, 51(3): 658−668
|
[3]
|
刘沛明, 郭祥贵. 基于观测器的人在环多机械臂系统预设性能二分一致性. 自动化学报, 2024, 50(9): 1761−1771Liu Pei-Ming, Guo Xiang-Gui. Observer-based prescribed performance bipartite consensus for human-in-the-loop multi-manipulator systems. Acta Automatica Sinica, 2024, 50(9): 1761−1771
|
[4]
|
刘健, 顾扬, 程玉虎, 王雪松. 基于多智能体强化学习的乳腺癌致病基因预测. 自动化学报, 2022, 48(5): 1246−1258Liu Jian, Gu Yang, Cheng Yu-Hu, Wang Xue-Song. Prediction of breast cancer pathogenic genes based on multi-agent reinforcement learning. Acta Automatica Sinica, 2022, 48(5): 1246−1258
|
[5]
|
王浩亮, 柴亚星, 王丹, 刘陆, 王安青, 彭周华. 基于事件触发机制的多自主水下航行器协同路径跟踪控制. 自动化学报, 2024, 50(5): 1024−1034Wang Hao-Liang, Chai Ya-Xing, Wang Dan, Liu Lu, Wang An-Qing, Peng Zhou-Hua. Event-triggered cooperative path following of multiple autonomous underwater vehicles. Acta Automatica Sinica, 2024, 50(5): 1024−1034
|
[6]
|
游星星, 杨道文, 郭斌, 刘凯, 佃松宜, 朱雨琪. 基于观测器和指定性能的非线性系统事件触发跟踪控制. 自动化学报, 2024, 50(9): 1747−1760You Xing-Xing, Yang Dao-Wen, Guo Bin, Liu Kai, Dian Song-Yi, Zhu Yu-Qi. Event-triggered tracking control for a class of nonlinear systems with observer and prescribed performance. Acta Automatica Sinica, 2024, 50(9): 1747−1760
|
[7]
|
Zhu J H, Wen G X, Veluvolu K C. Optimized backstepping consensus control using adaptive observer-critic-actor reinforcement learning for strict-feedback multi-agent systems. Journal of the Franklin Institute, 2024, 361(6): 106693 doi: 10.1016/j.jfranklin.2024.106693
|
[8]
|
武文强, 王庆领. 基于比例积分调节的严格反馈多智能体系统最优一致性. 自动化学报, 2025, 51(3): 577−589Wu Wen-Qiang, Wang Qing-Ling. Optimal consensus for strict-feedback multi-agent systems based on proportional-integral regulation. Acta Automatica Sinica, 2025, 51(3): 577−589
|
[9]
|
Pan W H, Fan D B, Li H F, Zhang X F. Event-triggered impulsive tracking control for uncertain strict-feedback nonlinear systems via the neural-network-based backstepping technique. Neurocomputing, 2024, 601: 128240 doi: 10.1016/j.neucom.2024.128240
|
[10]
|
Tian C C, Mei J, Ma G F. A high-order fully actuated consensus approach for strict-feedback nonlinear multi-agent systems. In: Proceedings of 2024 3rd Conference on Fully Actuated System Theory and Applications (FASTA). Shenzhen, China: IEEE, 2024, 506−510
|
[11]
|
Wang W, Wen C Y, Huang J S. Distributed adaptive asymptotically consensus tracking control of nonlinear multi-agent systems with unknown parameters and uncertain disturbances. Automatica, 2017, 77: 133−142
|
[12]
|
Huang J S, Wang W, Wen C Y, Zhou J, Li G Q. Distributed adaptive leader-follower and leaderless consensus control of a class of strict-feedback nonlinear systems: a unified approach. Automatica, 2020, 118: Article No. 109021
|
[13]
|
Zhang H W, Lewis F L. Adaptive cooperative tracking control of higher-order nonlinear systems with unknown dynamics. Automatica, 2012, 48(7): 1432−1439 doi: 10.1016/j.automatica.2012.05.008
|
[14]
|
Yoo S J. Distributed consensus tracking for multiple uncertain nonlinear strict-feedback systems under a directed Graph. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(4): 666−672
|
[15]
|
Sujil A, Verma J, Kumar R. Multi agent system: concepts, platforms and applications in power systems. Artificial Intelligence Review, 2018, 49(2): 153−182 doi: 10.1007/s10462-016-9520-8
|
[16]
|
Zheng L Y, Zh ou, Y M. Output feedback consensus control of nonlinear multi-agent system under communication faults and actuator faults. International Journal of Control, Automation and Systems, 2024, 22(11): 3482−3498 doi: 10.1007/s12555-024-0492-1
|
[17]
|
Rezaee H, Parisini T, Polycarpou M M. Almost sure resilient consensus under stochastic interaction: links failure and noisy channels. IEEE Transactions on Automatic Control, 2021, 66(12): 5727−5741 doi: 10.1109/TAC.2020.3043322
|
[18]
|
Li H Q, Liao X F, Huang T W, Zhu W, Liu Y B. Second-order global consensus in multiagent networks with random directional link failure. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(3): 565−575 doi: 10.1109/TNNLS.2014.2320274
|
[19]
|
Firouzmand E, Babahaji M, Talebi H A, Aghdam A G. Distributed control of multi-agent systems with uncertain communication links. IEEE Journal of Radio Frequency Identification, 2023, 7: 415−423 doi: 10.1109/JRFID.2023.3274537
|
[20]
|
Li Z K, Chen J. Robust consensus for multi-agent systems communicating over stochastic uncertain networks. SIAM Journal on Control and Optimization, 2019, 57(5): 3553−3570 doi: 10.1137/18M1181614
|
[21]
|
Chen C, Xie K, Lewis F L, Xie S L, Fierro R. Adaptive synchronization of multi-agent systems with resilience to communication link faults. Automatica, 2020, 111: Article No. 108636 doi: 10.1016/j.automatica.2019.108636
|
[22]
|
Fu Q L, Shen Q K, Jia Z Y. Cooperative adaptive tracking control for unknown nonlinear multi-agent systems with signal transmission faults. Circuits, Systems, and Signal Processing, 2020, 39(3): 1335−1352 doi: 10.1007/s00034-019-01218-7
|
[23]
|
Wang W, Li Y M. Observer-based event-triggered adaptive fuzzy control for leader-following consensus of nonlinear strict-feedback systems. IEEE Transactions on Cybernetics, 2021, 51(4): 2131−2141 doi: 10.1109/TCYB.2019.2951151
|
[24]
|
You X, Hua C C, Guan X P. Self-triggered leader-following consensus for high-order nonlinear multiagent systems via dynamic output feedback control. IEEE Transactions on Cybernetics, 2019, 49(6): 2002−2010 doi: 10.1109/TCYB.2018.2813423
|