2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

前额叶皮层启发的Transformer模型应用及其进展

潘雨辰 贾克斌 张铁林

潘雨辰, 贾克斌, 张铁林. 前额叶皮层启发的Transformer模型应用及其进展. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240538
引用本文: 潘雨辰, 贾克斌, 张铁林. 前额叶皮层启发的Transformer模型应用及其进展. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240538
Pan Yu-Chen, Jia Ke-Bin, Zhang Tie-lin. The application and progress of prefrontal cortex-inspired transformer model. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240538
Citation: Pan Yu-Chen, Jia Ke-Bin, Zhang Tie-lin. The application and progress of prefrontal cortex-inspired transformer model. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240538

前额叶皮层启发的Transformer模型应用及其进展

doi: 10.16383/j.aas.c240538 cstr: 32138.14.j.aas.c240538
基金项目: 北京市科技新星(20230484369), 上海市市级科技重大专项(2021SHZDZX), 中科院青促会, 多模态人工智能系统全国重点实验室开放课题基金等资助.
详细信息
    作者简介:

    潘雨辰:北京工业大学信息科学技术学院硕士研究生, 中科院脑科学与智能技术卓越创新中心联合培养学生. 2019年获得北京工业大学工学学士学位. 主要研究方向为类脑模型算法.E-mail: 18201335023@sina.cn

    贾克斌:北京工业大学信息科学技术学院教授, 博士. 主要研究方向为图像/视频处理技术与生物医学信息处理技术.E-mail: kebinj@bjut.edu.cn

    张铁林:中国科学院脑智卓越中心, 脑认知与类脑智能国重实验室研究员, 课题组长, 兼职中科院自动化所复杂系统认知与决策实验室. 主要从事类脑脉冲神经网络算法, 类脑芯片及AI for Neuroscience研究. 本文通信作者.E-mail: zhangtielin@ion.ac.cn

The Application and Progress of Prefrontal Cortex-inspired Transformer Model

Funds: Supported by Beijing Nova Program (20230484369), Shanghai Municipal Science and Technology Major Project (2021SHZDZX), Youth Innovation Promotion Association of Chinese Academy of Sciences, and Open Projects Program of State Key Laboratory of Multimodal Artificial Intelligence Systems.
More Information
    Author Bio:

    PAN Yu-Chen Master’s student in the School of Information Science and Technology, Beijing University of Technology, co-supervised by the Center for Excellence of Brain Science and Intelligence Technology, Chinese Academy of Sciences. He received his bachelor degree in engineering from Beijing University of Technology in 2019. His research interest covers brain-inspired algorithms

    JIA Ke-Bin Professor at the School of Information Science and Technology, Beijing University of Technology. His research interests are focused on Image/Video coding and processing, bioinformation processing

    ZHANG Tie-Lin Principal indicator at the Key Laboratory of Brain Cognition and Brain-inspired Intelligence, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences (CAS), also a co-PI at Key Laboratory of Complex System for Recognition and Decision-making, Institute of Automation, CAS. He mainly engaged in the research of brain-inspired spiking neural network algorithms, brain-inspired chips, and AI for Neuroscience. Corresponding author of this paper

  • 摘要: 本文聚焦于生物结构与类脑智能的交叉研究方向, 探讨前额叶皮层的结构及其认知功能对人工智能领域Transformer模型的启发. 前额叶皮层在认知控制和决策制定中扮演着关键角色, 本文首先介绍前额叶皮层的注意力机制、生物编码、多感觉融合等相关生物研究进展, 然后探讨这些生物机制如何启发新型的类脑Transformer架构, 重点提升其在自注意力、位置编码、多模态整合等方面的生物合理性与计算高效性. 最后, 总结前额叶皮层启发的类脑新模型, 在支持多类型神经网络组合、多领域应用、世界模型构建等方面的发展与潜力, 为生物和人工智能两大领域之间交叉融合构建桥梁.
  • 图  1  PFC启发Transformer结构

    Fig.  1  PFC-inspired Transformer structure

    图  2  PFC生物功能启发生物功能模型与神经网络架构

    Fig.  2  PFC biofunctional-inspired biofunctional model with neural network architecture

    图  3  PFC与类脑智能相互促进、共同进步

    Fig.  3  PFC and brain-like intelligence promote each other and progress together

    图  4  PFC与Transformer注意力相关模型架构[14, 23]

    Fig.  4  PFC and Transformer attention-related model architecture[14, 23]

    图  5  PFC与Transformer以注意力机制为媒介相互启发

    Fig.  5  PFC and Transformer inspire each other through the medium of the attention mechanism

    图  6  标量相对位置编码 (SRPE) 原理

    Fig.  6  Principle of Scalar Relative Position Encoding(SRPE)

    图  7  PFC生物编码过程启发Transformer位置编码

    Fig.  7  PFC biological coding process inspired Transformer position coding

    图  8  不同模态下EEG分类的多尺度卷积Transformer模型[63]

    Fig.  8  Multi-scale convolutional Transformer model for EEG classification in different modalities[63]

    图  9  PFC多感觉融合与多模态Transformer逻辑结构图

    Fig.  9  PFC multisensory fusion with multimodal Transformer logic structure diagram

  • [1] CECCARELLI F, FERRUCCI L, LONDEI F, et al. Static and dynamic coding in distinct cell types during associative learning in the prefrontal cortex. Nature Communications, 2023, 14(1): 8325. doi: 10.1038/s41467-023-43712-2
    [2] WATAKABE A, SKIBBE H, NAKAE K, et al. Local and long-distance organization of prefrontal cortex circuits in the marmoset brain [J]. Neuron, 2023, 111 (14): 2258-73. e10.
    [3] PASSINGHAM R E, LAU H. Do we understand the prefrontal cortex?. Brain Structure and Function, 2023, 228(5): 1095−105.
    [4] TRAPP N T, BRUSS J E, MANZEL K, et al. Large-scale lesion symptom mapping of depression identifies brain regions for risk and resilience. Brain, 2023, 146(4): 1672−85. doi: 10.1093/brain/awac361
    [5] CHAFEE M V, HEILBRONNER S R. Prefrontal cortex. Current Biology, 2022, 32(8): R346−R51. doi: 10.1016/j.cub.2022.02.071
    [6] MILLER E K, COHEN J D. An integrative theory of prefrontal cortex function. Annual Review Of Neuroscience, 2001, 24: 167−202. doi: 10.1146/annurev.neuro.24.1.167
    [7] DIEHL G W, REDISH A D. Differential processing of decision information in subregions of rodent medial prefrontal cortex [J]. Elife, 2023, 12 .
    [8] WANG J X, KURTH-NELSON Z, KUMARAN D, et al. Prefrontal cortex as a meta-reinforcement learning system. Nature Neuroscience, 2018, 21(6): 860−8. doi: 10.1038/s41593-018-0147-8
    [9] ALEXANDER W H, BROWN J W. Medial prefrontal cortex as an action-outcome predictor. Nature Neuroscience, 2011, 14(10): 1338−44. doi: 10.1038/nn.2921
    [10] RIKHYE R V, GILRA A, HALASSA M M. Thalamic regulation of switching between cortical representations enables cognitive flexibility. Nature Neuroscience, 2018, 21(12): 1753−63. doi: 10.1038/s41593-018-0269-z
    [11] GISIGER T, BOUKADOUM M. Mechanisms Gating the Flow of Information in the Cortex: What They Might Look Like and What Their Uses may be. Frontiers In Computational Neuroscience, 2011, 5: 1.
    [12] JOHNSTON K, LEVIN H M, KOVAL M J, EVERLING S. Top-down control-signal dynamics in anterior cingulate and prefrontal cortex neurons following task switching. Neuron, 2007, 53(3): 453−62. doi: 10.1016/j.neuron.2006.12.023
    [13] TSUDA B, TYE K M, SIEGELMANN H T, SEJNOWSKI T J. A modeling framework for adaptive lifelong learning with transfer and savings through gating in the prefrontal cortex. Proceedings Of The National Academy Of Sciences, 2020, 117(47): 29872−82. doi: 10.1073/pnas.2009591117
    [14] WANG Z, ZHANG J, ZHANG X, et al. Transformer model for functional near-infrared spectroscopy classification. IEEE Journal Of Biomedical And Health Informatics, 2022, 26(6): 2559−69. doi: 10.1109/JBHI.2022.3140531
    [15] CHOI S R, LEE M. Transformer architecture and attention mechanisms in genome data analysis: a comprehensive review. Biology, 2023, 12(7): 1033. doi: 10.3390/biology12071033
    [16] LI Q, ZHUANG Y. An efficient image-guided-based 3D point cloud moving object segmentation with transformer-attention in autonomous driving. International Journal Of Applied Earth Observation And Geoinformation, 2023, 123: 103488. doi: 10.1016/j.jag.2023.103488
    [17] BRUS J, HENG J A, BELIAEVA V, et al. Causal phase-dependent control of non-spatial attention in human prefrontal cortex. Nature Human Behaviour, 2024, 8(4): 743−57. doi: 10.1038/s41562-024-01820-z
    [18] BICHOT N P, HEARD M T, DEGENNARO E M, DESIMONE R. A Source for Feature-Based Attention in the Prefrontal Cortex. Neuron, 2015, 88(4): 832−44. doi: 10.1016/j.neuron.2015.10.001
    [19] HUANG L, WANG J, HE Q, et al. A source for category-induced global effects of feature-based attention in human prefrontal cortex. Cell Reports, 2023, 42(9): 113080. doi: 10.1016/j.celrep.2023.113080
    [20] ZHAO M, XU D, GAO T. From Cognition to Computation: A Comparative Review of Human Attention and Transformer Architectures [J]. arXiv preprint arXiv: 240701548, 2024.
    [21] KUMAR S, SUMERS T R, YAMAKOSHI T, et al. Shared functional specialization in transformer-based language models and the human brain. Nature Communications, 2024, 15(1): 5523. doi: 10.1038/s41467-024-49173-5
    [22] MULLER L, CHURCHLAND P S, SEJNOWSKI T J. Transformers and Cortical Waves: Encoders for Pulling In Context Across Time [J]. arXiv preprint arXiv: 240114267, 2024.
    [23] HUANG H, LI R, QIAO X, et al. Attentional control influence habituation through modulation of connectivity patterns within the prefrontal cortex: Insights from stereo-EEG. Neuroimage, 2024, 294: 120640. doi: 10.1016/j.neuroimage.2024.120640
    [24] LI N, CHEN Y, LI W, et al. BViT: Broad attention-based vision transformer [J]. IEEE Transactions On Neural Networks And Learning Systems, 2023.
    [25] SHI Q, FAN J, WANG Z, ZHANG Z. Multimodal channel-wise attention transformer inspired by multisensory integration mechanisms of the brain. Pattern Recognition, 2022, 130: 108837. doi: 10.1016/j.patcog.2022.108837
    [26] GONG D, ZHANG H. Self-Attention Limits Working Memory Capacity of Transformer-Based Models [J]. arXiv preprint arXiv: 240910715, 2024.
    [27] MAITH O, SCHWARZ A, HAMKER F H. Optimal attention tuning in a neuro-computational model of the visual cortex-basal ganglia-prefrontal cortex loop. Neural Networks, 2021, 142: 534−47. doi: 10.1016/j.neunet.2021.07.008
    [28] SPITALE G, BILLER-ANDORNO N, GERMANI F. AI model GPT-3 (dis) informs us better than humans. Science Advances, 2023, 9(26): eadh1850. doi: 10.1126/sciadv.adh1850
    [29] BROWN T, MANN B, RYDER N, et al. Language models are few-shot learners. Advances In Neural Information Processing Systems, 2020, 33: 1877−901.
    [30] ZHANG S, ROLLER S, GOYAL N, et al. Opt: Open pre-trained transformer language models [J]. arXiv preprint arXiv: 220501068, 2022.
    [31] YUE F, KO T. An Investigation of Positional Encoding in Transformer-based End-to-end Speech Recognition [Z]. In: Proceedings of the 12th International Symposium on Chinese Spoken Language Processing (ISCSLP). 2021: 1-5.10. 1109/iscslp49672.2021. 9362093
    [32] KAZEMNEJAD A, PADHI I, NATESAN RAMAMURTHY K, et al. The impact of positional encoding on length generalization in transformers [J]. Advances In Neural Information Processing Systems, 2024, 36 .
    [33] CHOWDHERY A, NARANG S, DEVLIN J, et al. Palm: Scaling language modeling with pathways. Journal Of Machine Learning Research, 2023, 24(240): 1−113.
    [34] ZHANG R, HAN J, LIU C, et al. Llama-adapter: Efficient fine-tuning of language models with zero-init attention [J]. arXiv preprint arXiv: 230316199, 2023.
    [35] TOUVRON H, LAVRIL T, IZACARD G, et al. Llama: Open and efficient foundation language models [J]. arXiv preprint arXiv: 230213971, 2023.
    [36] WU J, ZHANG R, MAO Y, CHEN J. On scalar embedding of relative positions in attention models; In: Proceedings of the AAAI Conference on Artificial Intelligence, F, 2021, 35(16): 14050-14057 [C].
    [37] WALLIS J D, ANDERSON K C, MILLER E K. Single neurons in prefrontal cortex encode abstract rules. Nature, 2001, 411(6840): 953−6. doi: 10.1038/35082081
    [38] OOTA S R, ARORA J, ROWTULA V, et al. Visio-linguistic brain encoding [J]. arXiv preprint arXiv: 220408261, 2022.
    [39] BOCINCOVA A, BUSCHMAN T J, STOKES M G, MANOHAR S G. Neural signature of flexible coding in prefrontal cortex. Proceedings Of The National Academy Of Science USA, 2022, 119(40): e2200400119. doi: 10.1073/pnas.2200400119
    [40] ZHANG K, HAO W, YU X, SHAO T. An interpretable image classification model Combining a fuzzy neural network with a variational autoencoder inspired by the human brain. Information Sciences, 2024, 661: 119885. doi: 10.1016/j.ins.2023.119885
    [41] AOI M C, MANTE V, PILLOW J W. Prefrontal cortex exhibits multidimensional dynamic encoding during decision-making. Nature Neuroscience, 2020, 23(11): 1410−20. doi: 10.1038/s41593-020-0696-5
    [42] ZHANG Z, GONG X. Positional label for self-supervised vision transformer; In: Proceedings of the AAAI Conference on Artificial Intelligence, F, 2023, 37(3): 3516-3524 [C].
    [43] CAUCHETEUX C, GRAMFORT A, KING J R. Evidence of a predictive coding hierarchy in the human brain listening to speech. Nature Human Behavaviour, 2023, 7(3): 430−41. doi: 10.1038/s41562-022-01516-2
    [44] BUSCH A, ROUSSY M, LUNA R, et al. Neuronal activation sequences in lateral prefrontal cortex encode visuospatial working memory during virtual navigation. Nature Communications, 2024, 15(1): 4471. doi: 10.1038/s41467-024-48664-9
    [45] LABAIEN J, IDé T, CHEN P-Y, et al. Diagnostic spatio-temporal transformer with faithful encoding [J]. Knowledge-Based Systems, 2023, 274 .
    [46] DEIHIM A, ALONSO E, APOSTOLOPOULOU D. STTRE: A Spatio-Temporal Transformer with Relative Embeddings for multivariate time series forecasting. Neural Networks, 2023, 168: 549−59. doi: 10.1016/j.neunet.2023.09.039
    [47] MA Y, WANG R. Relative-position embedding based spatially and temporally decoupled Transformer for action recognition [J]. Pattern Recognition, 2024, 145 .
    [48] COEN P, SIT T P H, WELLS M J, et al. Mouse frontal cortex mediates additive multisensory decisions [J]. Neuron, 2023, 111 (15): 2432-47 e13.
    [49] FERRARI A, NOPPENEY U. Attention controls multisensory perception via two distinct mechanisms at different levels of the cortical hierarchy. PLoS Biology, 2021, 19(11): e3001465. doi: 10.1371/journal.pbio.3001465
    [50] MIHALIK A, NOPPENEY U. Causal inference in audiovisual perception. Journal Of Neuroscience, 2020, 40(34): 6600−12. doi: 10.1523/JNEUROSCI.0051-20.2020
    [51] KANG K, ROSENKRANZ R, KARAN K, et al. Congruence-based contextual plausibility modulates cortical activity during vibrotactile perception in virtual multisensory environments. Communications Biology, 2022, 5(1): 1360. doi: 10.1038/s42003-022-04318-4
    [52] CAO Y, SUMMERFIELD C, PARK H, et al. Causal inference in the multisensory brain [J]. Neuron, 2019, 102 (5): 1076-87. e8.
    [53] GIESSING C, THIEL C M, STEPHAN K E, et al. Visuospatial attention: how to measure effects of infrequent, unattended events in a blocked stimulus design. Neuroimage, 2004, 23(4): 1370−81. doi: 10.1016/j.neuroimage.2004.08.008
    [54] ZHENG Q, ZHOU L, GU Y. Temporal synchrony effects of optic flow and vestibular inputs on multisensory heading perception [J]. Cell Reports, 2021, 37 (7).
    [55] LIANG P P, ZADEH A, MORENCY L-P. Foundations & Trends in Multimodal Machine Learning: Principles, Challenges, and Open Questions. ACM Computing Surveys, 2024, 56(10): 1−42.
    [56] KLEMEN J, CHAMBERS C D. Current perspectives and methods in studying neural mechanisms of multisensory interactions. Neuroscience & Biobehavioral Reviews, 2012, 36(1): 111−33.
    [57] PARASKEVOPOULOS G, GEORGIOU E, POTAMIANOS A. Mmlatch: Bottom-Up Top-Down Fusion For Multimodal Sentiment Analysis [Z]. In: Proceedings of the 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2022: 4573-7.10. 1109/icassp43922.2022. 9746418
    [58] SUN H, LIU J, CHEN Y-W, LIN L. Modality-invariant temporal representation learning for multimodal sentiment classification. Information Fusion, 2023, 91: 504−14. doi: 10.1016/j.inffus.2022.10.031
    [59] WANG Z, WAN Z, WAN X. Transmodality: An end2end fusion method with transformer for multimodal sentiment analysis; In: Proceedings of the web conference 2020, F, 2020: 2514-2520 [C].
    [60] YU J, CHEN K, XIA R. Hierarchical interactive multimodal transformer for aspect-based multimodal sentiment analysis. IEEE Transactions On Affective Computing, 2022, 14(3): 1966−78.
    [61] HUANG J, ZHOU J, TANG Z, et al. TMBL: Transformer-based multimodal binding learning model for multimodal sentiment analysis [J]. Knowledge-Based Systems, 2024, 285 .
    [62] YANG D, LIU Y, HUANG C, et al. Target and source modality co-reinforcement for emotion understanding from asynchronous multimodal sequences [J]. Knowledge-Based Systems, 2023, 265 .
    [63] AHN H J, LEE D H, JEONG J H, LEE S W. Multiscale Convolutional Transformer for EEG Classification of Mental Imagery in Different Modalities [J]. IEEE Transactions On Neural Systems And Rehabilitation Engineering, 2022, 31 : 646-656. PP.
    [64] LI J, CHEN N, ZHU H, et al. Incongruity-aware multimodal physiology signals fusion for emotion recognition [J]. Information Fusion, 2024, 105 .
    [65] ASIF M, GUPTA A, ADITYA A, et al. Brain Multi-Region Information Fusion using Attentional Transformer for EEG Based Affective Computing [Z]. In: Proceedings of the 20th India Council International Conference (INDICON). 2023: 771-5.10. 1109/indicon59947.2023. 10440791
    [66] CHEN Z, HAN Y, MA Z, et al. A prefrontal-thalamic circuit encodes social information for social recognition. Nature Communications, 2024, 15(1): 1036. doi: 10.1038/s41467-024-45376-y
    [67] YU J, LI J, YU Z, HUANG Q. Multimodal Transformer With Multi-View Visual Representation for Image Captioning. IEEE Transactions On Circuits And Systems For Video Technology, 2020, 30(12): 4467−80. doi: 10.1109/TCSVT.2019.2947482
    [68] HU B, GUAN Z-H, CHEN G, CHEN C P. Neuroscience and network dynamics toward brain-inspired intelligence. IEEE Transactions on Cybernetics, 2021, 52(10): 10214−27.
    [69] SUCHOLUTSKY I, MUTTENTHALER L, WELLER A, et al. Getting aligned on representational alignment [J]. arXiv preprint arXiv: 231013018, 2023.
    [70] CHERSONI E, SANTUS E, HUANG C-R, LENCI A. Decoding word embeddings with brain-based semantic features. Computational Linguistics, 2021, 47(3): 663−98. doi: 10.1162/coli_a_00412
    [71] TONEVA M, WEHBE L. Interpreting and improving natural-language processing (in machines) with natural language-processing (in the brain) [J]. Advances in Neural Information Processing Systems, 2019, 32 .
    [72] YU S, GU C, HUANG K, LI P. Predicting the next sentence (not word) in large language models: What model-brain alignment tells us about discourse comprehension. Science Advances, 2024, 10(21): eadn7744. doi: 10.1126/sciadv.adn7744
    [73] CAMBRIA E, DAS D, BANDYOPADHYAY S, FERACO A. Affective computing and sentiment analysis [J]. A Practical Guide To Sentiment Analysis, 2017: 1-10 .
    [74] MISHRA A, DEY K, BHATTACHARYYA P. Learning cognitive features from gaze data for sentiment and sarcasm classification using convolutional neural network; In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), F, 2017 [C].
    [75] ZHANG Z, WU C, CHEN H, CHEN H. CogAware: Cognition-Aware framework for sentiment analysis with textual representations [J]. Knowledge-Based Systems, 2024, 299 .
    [76] MONTEJO-RáEZ A, MOLINA-GONZáLEZ M D, JIMéNEZ-ZAFRA S M, et al. A survey on detecting mental disorders with natural language processing: Literature review, trends and challenges. Computer Science Review, 2024, 53: 100654. doi: 10.1016/j.cosrev.2024.100654
    [77] RAMACHANDRAN G, YANG R. CortexCompile: Harnessing Cortical-Inspired Architectures for Enhanced Multi-Agent NLP Code Synthesis [J]. arXiv preprint arXiv: 240902938, 2024.
    [78] LI Z, ZHAO B, ZHANG G, DANG J. Brain network features differentiate intentions from different emotional expressions of the same text; In: Proceedings of the 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), F, 2023 [C]. IEEE.
    [79] SQUIRES M, TAO X, ELANGOVAN S, et al. Deep learning and machine learning in psychiatry: a survey of current progress in depression detection, diagnosis and treatment. Brain Informatics, 2023, 10(1): 10. doi: 10.1186/s40708-023-00188-6
    [80] SONG G, HUANG D, XIAO Z. A study of multilingual toxic text detection approaches under imbalanced sample distribution. Information, 2021, 12(5): 205. doi: 10.3390/info12050205
    [81] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale [J]. arXiv preprint arXiv: 201011929, 2020.
    [82] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [J]. Advances In Neural Information Processing Systems, 2017, 30 .
    [83] BI Y, ABROL A, JIA S, et al. Gray Matters: An Efficient Vision Transformer GAN Framework for Predicting Functional Network Connectivity Biomarkers from Brain Structure [J]. BioRxiv, 2024: 2024.01. 11.575307.
    [84] DONG S, GONG Y, SHI J, et al. Brain Cognition-Inspired Dual-Pathway CNN Architecture for Image Classification. IEEE Transactions On Neural Networks And Learning Systems, 2024, 35(7): 9900−14. doi: 10.1109/TNNLS.2023.3237962
    [85] LIU L, WANG F, ZHOU K, et al. Perceptual integration rapidly activates dorsal visual pathway to guide local processing in early visual areas. PLoS Biology, 2017, 15(11): e2003646. doi: 10.1371/journal.pbio.2003646
    [86] BAR M. The proactive brain: using analogies and associations to generate predictions. Trends In Cognitive Sciences, 2007, 11(7): 280−9. doi: 10.1016/j.tics.2007.05.005
    [87] BARAM A B, MULLER T H, NILI H, et al. Entorhinal and ventromedial prefrontal cortices abstract and generalize the structure of reinforcement learning problems [J]. Neuron, 2021, 109 (4): 713-23 e7.
    [88] VAN HOLSTEIN M, FLORESCO S B. Dissociable roles for the ventral and dorsal medial prefrontal cortex in cue-guided risk/reward decision making. Neuropsychopharmacology, 2020, 45(4): 683−93. doi: 10.1038/s41386-019-0557-7
    [89] AVERBECK B, O'DOHERTY J P. Reinforcement-learning in fronto-striatal circuits. Neuropsychopharmacology, 2022, 47(1): 147−62. doi: 10.1038/s41386-021-01108-0
    [90] HU S, SHEN L, ZHANG Y, et al. On Transforming Reinforcement Learning With Transformers: The Development Trajectory [J]. IEEE Transactions On Pattern Analysis And Machine Intelligence, 2024, PP.
    [91] ZHANG Y, JIA M, CHEN T, et al. A neuroergonomics model for evaluating nuclear power plants operators’ performance under heat stress driven by ECG time-frequency spectrums and fNIRS prefrontal cortex network: A CNN-GAT fusion model. Advanced Engineering Informatics, 2024, 62: 102563. doi: 10.1016/j.aei.2024.102563
    [92] LAW C-K, KOLLING N, CHAN C C, CHAU B K. Frontopolar cortex represents complex features and decision value during choice between environments [J]. Cell Reports, 2023, 42 (6).
    [93] LEE J, JUNG M, LUSTIG N, LEE J H. Neural representations of the perception of handwritten digits and visual objects from a convolutional neural network compared to humans. Human Brain Mapping, 2023, 44(5): 2018−38. doi: 10.1002/hbm.26189
    [94] VISWANATHAN K A, MYLAVARAPU G, CHEN K, THOMAS J P. A Study of Prefrontal Cortex Task Switching Using Spiking Neural Networks; In: Proceedings of the 12th International Conference on Advanced Computational Intelligence (ICACI), F, 2020 [C]. IEEE.
    [95] LI B-Z, PUN S H, FENG W, et al. A spiking neural network model mimicking the olfactory cortex for handwritten digit recognition; In: Proceedings of the 9th International IEEE/EMBS Conference on Neural Engineering (NER), F, 2019 [C]. IEEE.
    [96] HYAFIL A, SUMMERFIELD C, KOECHLIN E. Two mechanisms for task switching in the prefrontal cortex. Journal Of Neuroscience, 2009, 29(16): 5135−42. doi: 10.1523/JNEUROSCI.2828-08.2009
    [97] KUSHLEYEVA Y, SALVUCCI D D, LEE F J. Deciding when to switch tasks in time-critical multitasking. Cognitive Systems Research, 2005, 6(1): 41−9. doi: 10.1016/j.cogsys.2004.09.005
    [98] BRASS M, VON CRAMON D Y. The role of the frontal cortex in task preparation. Cerebral Cortex, 2002, 12(9): 908−14. doi: 10.1093/cercor/12.9.908
    [99] WEI Q, HAN L, ZHANG T. Learning and Controlling Multiscale Dynamics in Spiking Neural Networks Using Recursive Least Square Modifications [J]. IEEE Transactions On Cybernetics, 2024, PP.
    [100] DEMIR A, KOIKE-AKINO T, WANG Y, et al. EEG-GNN: Graph neural networks for classification of electroencephalogram (EEG) signals; proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), F, 2021 [C]. IEEE.
    [101] BALAJI S S, PARHI K K. Classifying Subjects with PFC Lesions from Healthy Controls during Working Memory Encoding via Graph Convolutional Networks [Z]. In: Proceedings of the 11th International IEEE/EMBS Conference on Neural Engineering (NER). 2023: 1-4.10. 1109/ner52421.2023. 10123793
    [102] YANG Y, YE C, MA T. A deep connectome learning network using graph convolution for connectome-disease association study. Neural Networks, 2023, 164: 91−104. doi: 10.1016/j.neunet.2023.04.025
    [103] ACHTERBERG J, AKARCA D, STROUSE D J, et al. Spatially embedded recurrent neural networks reveal widespread links between structural and functional neuroscience findings. Nature Machine Intelligence, 2023, 5(12): 1369−81. doi: 10.1038/s42256-023-00748-9
    [104] JENSEN K T, HENNEQUIN G, MATTAR M G. A recurrent network model of planning explains hippocampal replay and human behavior [J]. Nature Neuroscience, 2024: 1-9 .
    [105] PRATIWI M. Comparative Analysis of Brain Waves for EEG-Based Depression Detection in the Prefrontal Cortex Lobe using LSTM; In: Proceedings of the 7th International Conference on New Media Studies (CONMEDIA), F, 2023 [C]. IEEE.
    [106] PRATIWI M. EEG-Based Depression Detection in the Prefrontal Cortex Lobe using mRMR Feature Selection and Bidirectional LSTM. Ultima Computing: Jurnal Sistem Komputer, 2023, 15(2): 71−8. doi: 10.31937/sk.v15i2.3426
    [107] SHARMA S, SHARMA S, ATHAIYA A. Activation functions in neural networks. Towards Data Sci, 2017, 6(12): 310−6.
    [108] JAGTAP A D, KAWAGUCHI K, KARNIADAKIS G E. Adaptive activation functions accelerate convergence in deep and physics-informed neural networks. Journal Of Computational Physics, 2020, 404: 109136. doi: 10.1016/j.jcp.2019.109136
    [109] ABBASI J, ANDERSEN P Ø. Physical activation functions (PAFs): an approach for more efficient induction of physics into physics-informed neural networks (PINNs). Neurocomputing, 2024, 608: 128352. doi: 10.1016/j.neucom.2024.128352
    [110] JAGTAP A D, KARNIADAKIS G E. How important are activation functions in regression and classification? A survey, performance comparison, and future directions [J]. Journal Of Machine Learning For Modeling And Computing, 2023, 4 (1).
    [111] MANOLA L, ROELOFSEN B, HOLSHEIMER J, et al. Modelling motor cortex stimulation for chronic pain control: electrical potential field, activating functions and responses of simple nerve fibre models. Medical And Biological Engineering And Computing, 2005, 43: 335−43. doi: 10.1007/BF02345810
    [112] STEINERBERGER S, WU H-T. Fundamental component enhancement via adaptive nonlinear activation functions. Applied And Computational Harmonic Analysis, 2023, 63: 135−43. doi: 10.1016/j.acha.2022.11.007
    [113] PAPPAS C, KOVAIOS S, MORALIS-PEGIOS M, et al. Programmable tanh-, elu-, sigmoid-, and sin-based nonlinear activation functions for neuromorphic photonics [J]. IEEE Journal Of Selected Topics In Quantum Electronics, 2023, 29 (6: Photonic Signal Processing): 1-10.
    [114] HA D, SCHMIDHUBER J. World models [J]. arXiv preprint arXiv: 180310122, 2018.
    [115] ESLAMI S A, JIMENEZ REZENDE D, BESSE F, et al. Neural scene representation and rendering. Science, 2018, 360(6394): 1204−10. doi: 10.1126/science.aar6170
    [116] YAMINS D L, HONG H, CADIEU C F, et al. Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proceedings Of The National Academy Of Sciences, 2014, 111(23): 8619−24. doi: 10.1073/pnas.1403112111
    [117] FRISTON K, MORAN R J, NAGAI Y, et al. World model learning and inference. Neural Networks, 2021, 144: 573−90. doi: 10.1016/j.neunet.2021.09.011
    [118] ROBINE J, HöFTMANN M, UELWER T, HARMELING S. Transformer-based world models are happy with 100k interactions [J]. arXiv preprint arXiv: 230307109, 2023.
    [119] MICHELI V, ALONSO E, FLEURET F. Transformers are sample-efficient world models [J]. arXiv preprint arXiv: 220900588, 2022.
    [120] CHEN C, WU Y-F, YOON J, AHN S. Transdreamer: Reinforcement learning with transformer world models [J]. arXiv preprint arXiv: 220209481, 2022.
    [121] ZHANG W, WANG G, SUN J, et al. STORM: Efficient stochastic transformer based world models for reinforcement learning [J]. Advances In Neural Information Processing Systems, 2024, 36 .
    [122] HAFNER D, PASUKONIS J, BA J, LILLICRAP T. Mastering diverse domains through world models [J]. arXiv preprint arXiv: 230104104, 2023.
    [123] HAFNER D, LILLICRAP T, NOROUZI M, BA J. Mastering atari with discrete world models [J]. arXiv preprint arXiv: 201002193, 2020.
    [124] BARTO A G, SUTTON R S, ANDERSON C W. Looking back on the actor–critic architecture. IEEE Transactions On Systems, Man, And Cybernetics: Systems, 2020, 51(1): 40−50.
    [125] KAISER L, BABAEIZADEH M, MILOS P, et al. Model-based reinforcement learning for atari [J]. arXiv preprint arXiv: 190300374, 2019.
    [126] MOERLAND T M, BROEKENS J, PLAAT A, JONKER C M. Model-based reinforcement learning: A survey. Foundations And Trends® In Machine Learning, 2023, 16(1): 1−118.
    [127] GU A, GOEL K, Ré C. Efficiently modeling long sequences with structured state spaces [J]. arXiv preprint arXiv: 211100396, 2021.
    [128] SMITH J T, WARRINGTON A, LINDERMAN S W. Simplified state space layers for sequence modeling [J]. arXiv preprint arXiv: 220804933, 2022.
    [129] DENG F, PARK J, AHN S. Facing off world model backbones: Rnns, transformers, and s4 [J]. Advances In Neural Information Processing Systems, 2024, 36 .
    [130] CHEN J, LI S E, TOMIZUKA M. Interpretable end-to-end urban autonomous driving with latent deep reinforcement learning. IEEE Transactions On Intelligent Transportation Systems, 2021, 23(6): 5068−78.
    [131] HAFNER D, LILLICRAP T, BA J, NOROUZI M. Dream to control: Learning behaviors by latent imagination [J]. arXiv preprint arXiv: 191201603, 2019.
    [132] ZHANG Y, MU Y, YANG Y, et al. Steadily learn to drive with virtual memory [J]. arXiv preprint arXiv: 210208072, 2021.
    [133] GAO Z, MU Y, CHEN C, et al. Enhance sample efficiency and robustness of end-to-end urban autonomous driving via semantic masked world model [J]. IEEE Transactions On Intelligent Transportation Systems, 2024.
    [134] YU N, LV Z, YAN J, WANG Z. Spatial Cognition and Decision Model Based on Hippocampus-Prefrontal Cortex Interaction [Z]. 2023 China Automation Congress (CAC). 2023: 3754-9.10. 1109/cac59555.2023. 10450650.
  • 加载中
计量
  • 文章访问数:  91
  • HTML全文浏览量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-13
  • 录用日期:  2024-12-13
  • 网络出版日期:  2025-03-03

目录

    /

    返回文章
    返回