2018年 第44卷 第5期
2018, 44(5): 775-792.
doi: 10.16383/j.aas.2018.y000002
摘要:
生成式对抗网络(Generative adversarial networks,GAN)是当前人工智能学界最为重要的研究热点之一.其突出的生成能力不仅可用于生成各类图像和自然语言数据,还启发和推动了各类半监督学习和无监督学习任务的发展.本文概括了GAN的基本思想,并对近年来相关的理论与应用研究进行了梳理,总结了GAN常见的网络结构与训练方法,博弈形式,集成方法,并对一些应用场景进行了介绍.在此基础上,本文对GAN发展的内在逻辑进行了归纳总结.
生成式对抗网络(Generative adversarial networks,GAN)是当前人工智能学界最为重要的研究热点之一.其突出的生成能力不仅可用于生成各类图像和自然语言数据,还启发和推动了各类半监督学习和无监督学习任务的发展.本文概括了GAN的基本思想,并对近年来相关的理论与应用研究进行了梳理,总结了GAN常见的网络结构与训练方法,博弈形式,集成方法,并对一些应用场景进行了介绍.在此基础上,本文对GAN发展的内在逻辑进行了归纳总结.
2018, 44(5): 793-803.
doi: 10.16383/j.aas.2018.c170600
摘要:
生成式对抗网络(Generative adversarial network,GAN)是目前人工智能领域的一个研究热点,引起了众多学者的关注.针对现有GAN生成模型效率低下和判别模型的梯度消失问题,本文提出一种基于重构误差的能量函数意义下的生成式对抗网络模型(Energy reconstruction error GAN,E-REGAN).首先,将自适应深度信念网络(Adaptive deep belief network,ADBN)作为生成模型,来快速学习给定样本数据的概率分布并进一步生成相似...
生成式对抗网络(Generative adversarial network,GAN)是目前人工智能领域的一个研究热点,引起了众多学者的关注.针对现有GAN生成模型效率低下和判别模型的梯度消失问题,本文提出一种基于重构误差的能量函数意义下的生成式对抗网络模型(Energy reconstruction error GAN,E-REGAN).首先,将自适应深度信念网络(Adaptive deep belief network,ADBN)作为生成模型,来快速学习给定样本数据的概率分布并进一步生成相似...
2018, 44(5): 804-810.
doi: 10.16383/j.aas.2018.c170483
摘要:
生成对抗网络(Generative adversarial nets,GANs)将生成模型与判别模型进行了巧妙结合,采用无监督的训练方式,通过相互对抗共同提高,其在学术界掀起了一股新的机器学习热潮.GANs的学习目标是可以完整拟合任意真实样本的数据分布,然而在实际当中,真实样本分布的复杂程度难以预计,容易发生模式坍塌(Mode collapse)等问题,从而导致结果冗余,模型不收敛等.为提高无监督条件下的GANs生成能力,减少或消除模式坍塌,本文提出一种全新的协作式生成网络结构,通过构建多个生成...
生成对抗网络(Generative adversarial nets,GANs)将生成模型与判别模型进行了巧妙结合,采用无监督的训练方式,通过相互对抗共同提高,其在学术界掀起了一股新的机器学习热潮.GANs的学习目标是可以完整拟合任意真实样本的数据分布,然而在实际当中,真实样本分布的复杂程度难以预计,容易发生模式坍塌(Mode collapse)等问题,从而导致结果冗余,模型不收敛等.为提高无监督条件下的GANs生成能力,减少或消除模式坍塌,本文提出一种全新的协作式生成网络结构,通过构建多个生成...
2018, 44(5): 811-818.
doi: 10.16383/j.aas.2018.c170481
摘要:
因果关系抽取在事件预测、情景生成、问答以及文本蕴涵等任务上都有重要的应用价值.但多数现有的因果关系抽取方法都需要人工定义模式和约束,且严重依赖知识库.为此,本文利用生成式对抗网络(Generative adversarial networks,GAN)的对抗学习特性,将带注意力机制的双向门控循环单元神经网络(Bidirectional gated recurrent units networks,BGRU)与对抗学习相融合,通过重定义生成模型和判别模型,基本的因果关系抽取网络能够与判别网络形成对...
因果关系抽取在事件预测、情景生成、问答以及文本蕴涵等任务上都有重要的应用价值.但多数现有的因果关系抽取方法都需要人工定义模式和约束,且严重依赖知识库.为此,本文利用生成式对抗网络(Generative adversarial networks,GAN)的对抗学习特性,将带注意力机制的双向门控循环单元神经网络(Bidirectional gated recurrent units networks,BGRU)与对抗学习相融合,通过重定义生成模型和判别模型,基本的因果关系抽取网络能够与判别网络形成对...
2018, 44(5): 819-828.
doi: 10.16383/j.aas.2018.c170496
摘要:
同一事物通常需要从不同角度进行表达.然而,现实应用经常引出复杂的场景,导致完整视图数据很难获得.因此研究如何构建事物的完整视图具有重要意义.本文提出一种基于生成对抗网络(Generative adversarial networks,GAN)的多视图学习与重构算法,利用已知单一视图,通过生成式方法构建其他视图.为构建多视图通用的表征,提出新型表征学习算法,使得同一实例的任意视图都能映射至相同的表征向量,并保证其包含实例的重构信息.为构建给定事物的多种视图,提出基于生成对抗网络的重构算法,在生成模...
同一事物通常需要从不同角度进行表达.然而,现实应用经常引出复杂的场景,导致完整视图数据很难获得.因此研究如何构建事物的完整视图具有重要意义.本文提出一种基于生成对抗网络(Generative adversarial networks,GAN)的多视图学习与重构算法,利用已知单一视图,通过生成式方法构建其他视图.为构建多视图通用的表征,提出新型表征学习算法,使得同一实例的任意视图都能映射至相同的表征向量,并保证其包含实例的重构信息.为构建给定事物的多种视图,提出基于生成对抗网络的重构算法,在生成模...
2018, 44(5): 829-839.
doi: 10.16383/j.aas.2018.c170473
摘要:
低秩纹理结构是图像处理领域中具有重要几何意义的结构,通过提取低秩纹理可以对受到各种变换干扰的图像进行有效校正.针对受到各种变换干扰的低秩图像校正问题,利用生成式框架来缓解图像中不具明显低秩特性区域的校正结果不理想的问题,提出了一种非监督式的由图像生成图像的低秩纹理生成对抗网络(Low-rank generative adversarial network,LR-GAN)算法.首先,该算法将传统的无监督学习的低秩纹理映射算法(Transform invariant low-rank texture...
低秩纹理结构是图像处理领域中具有重要几何意义的结构,通过提取低秩纹理可以对受到各种变换干扰的图像进行有效校正.针对受到各种变换干扰的低秩图像校正问题,利用生成式框架来缓解图像中不具明显低秩特性区域的校正结果不理想的问题,提出了一种非监督式的由图像生成图像的低秩纹理生成对抗网络(Low-rank generative adversarial network,LR-GAN)算法.首先,该算法将传统的无监督学习的低秩纹理映射算法(Transform invariant low-rank texture...
2018, 44(5): 840-854.
doi: 10.16383/j.aas.2018.c170486
摘要:
在漫画绘制的过程中,按草稿绘制出线条干净的线稿是很重要的一环.现有的草图简化方法已经具有一定的线条简化能力,然而由于草图的绘制方式的多样性以及画面复杂程度的不同,这些方法适用范围有限且效果不理想.本文提出了一种新颖的草图简化方法,利用条件随机场(Conditional random field,CRF)和最小二乘生成式对抗网络(Least squares generative adversarial networks,LSGAN)理论搭建了深度卷积神经网络的草图简化模型,通过该网络生成器与判别器...
在漫画绘制的过程中,按草稿绘制出线条干净的线稿是很重要的一环.现有的草图简化方法已经具有一定的线条简化能力,然而由于草图的绘制方式的多样性以及画面复杂程度的不同,这些方法适用范围有限且效果不理想.本文提出了一种新颖的草图简化方法,利用条件随机场(Conditional random field,CRF)和最小二乘生成式对抗网络(Least squares generative adversarial networks,LSGAN)理论搭建了深度卷积神经网络的草图简化模型,通过该网络生成器与判别器...
2018, 44(5): 855-864.
doi: 10.16383/j.aas.2018.c170470
摘要:
生成对抗网络(Generative adversarial networks,GAN)是目前热门的生成式模型.深度卷积生成对抗网络(Deep convolutional GAN,DCGAN)在传统生成对抗网络的基础上,引入卷积神经网络(Convolutional neural networks,CNN)进行无监督训练;条件生成对抗网络(Conditional GAN,CGAN)在GAN的基础上加上条件扩展为条件模型.结合深度卷积生成对抗网络和条件生成对抗网络的优点,建立条件深度卷积生成对抗网络模...
生成对抗网络(Generative adversarial networks,GAN)是目前热门的生成式模型.深度卷积生成对抗网络(Deep convolutional GAN,DCGAN)在传统生成对抗网络的基础上,引入卷积神经网络(Convolutional neural networks,CNN)进行无监督训练;条件生成对抗网络(Conditional GAN,CGAN)在GAN的基础上加上条件扩展为条件模型.结合深度卷积生成对抗网络和条件生成对抗网络的优点,建立条件深度卷积生成对抗网络模...
2018, 44(5): 865-877.
doi: 10.16383/j.aas.2018.c170477
摘要:
人们在自然情感交流中经常伴随着头部旋转和肢体动作,它们往往导致较大范围的人脸遮挡,使得人脸图像损失部分表情信息.现有的表情识别方法大多基于通用的人脸特征和识别算法,未考虑表情和身份的差异,导致对新用户的识别不够鲁棒.本文提出了一种对人脸局部遮挡图像进行用户无关表情识别的方法.该方法包括一个基于Wasserstein生成式对抗网络(Wasserstein generative adversarial net,WGAN)的人脸图像生成网络,能够为图像中的遮挡区域生成上下文一致的补全图像;以及一个表情...
人们在自然情感交流中经常伴随着头部旋转和肢体动作,它们往往导致较大范围的人脸遮挡,使得人脸图像损失部分表情信息.现有的表情识别方法大多基于通用的人脸特征和识别算法,未考虑表情和身份的差异,导致对新用户的识别不够鲁棒.本文提出了一种对人脸局部遮挡图像进行用户无关表情识别的方法.该方法包括一个基于Wasserstein生成式对抗网络(Wasserstein generative adversarial net,WGAN)的人脸图像生成网络,能够为图像中的遮挡区域生成上下文一致的补全图像;以及一个表情...
2018, 44(5): 878-890.
doi: 10.16383/j.aas.2018.c170562
摘要:
背景消减是计算机视觉和模式识别的关键技术之一.本文提出一种新的背景消减算法,该算法首先利用中值滤波算法进行背景数据的获取,然后基于贝叶斯生成对抗网络进行训练,利用生成对抗网络的特性,有效地对每个像素进行分类,解决了光照渐变和突变、非静止背景以及鬼影的问题.本文采用深度卷积神经网络,来构建贝叶斯生成对抗网络的生成器和判别器.实验结果表明,本文提出的算法性能在绝大多数情况下优于现有其他算法.本文的贡献在于首次将贝叶斯生成对抗网络应用于背景消减,并且取得了良好的实验效果.
背景消减是计算机视觉和模式识别的关键技术之一.本文提出一种新的背景消减算法,该算法首先利用中值滤波算法进行背景数据的获取,然后基于贝叶斯生成对抗网络进行训练,利用生成对抗网络的特性,有效地对每个像素进行分类,解决了光照渐变和突变、非静止背景以及鬼影的问题.本文采用深度卷积神经网络,来构建贝叶斯生成对抗网络的生成器和判别器.实验结果表明,本文提出的算法性能在绝大多数情况下优于现有其他算法.本文的贡献在于首次将贝叶斯生成对抗网络应用于背景消减,并且取得了良好的实验效果.
2018, 44(5): 891-900.
doi: 10.16383/j.aas.2018.c170464
摘要:
基于最大似然估计(Maximum likelihood estimation,MLE)的语言模型(Language model,LM)数据增强方法由于存在暴露偏差问题而无法生成具有长时语义信息的采样数据.本文提出了一种基于对抗训练策略的语言模型数据增强的方法,通过一个辅助的卷积神经网络判别模型判断生成数据的真伪,从而引导递归神经网络生成模型学习真实数据的分布.语言模型的数据增强问题实质上是离散序列的生成问题.当生成模型的输出为离散值时,来自判别模型的误差无法通过反向传播算法回传到生成模型.为了解...
基于最大似然估计(Maximum likelihood estimation,MLE)的语言模型(Language model,LM)数据增强方法由于存在暴露偏差问题而无法生成具有长时语义信息的采样数据.本文提出了一种基于对抗训练策略的语言模型数据增强的方法,通过一个辅助的卷积神经网络判别模型判断生成数据的真伪,从而引导递归神经网络生成模型学习真实数据的分布.语言模型的数据增强问题实质上是离散序列的生成问题.当生成模型的输出为离散值时,来自判别模型的误差无法通过反向传播算法回传到生成模型.为了解...
2018, 44(5): 901-914.
doi: 10.16383/j.aas.2018.c170487
摘要:
自能源(We-energy,WE)作为能源互联网的子单元旨在实现能量间的双向传输及灵活转换.由于自能源在不同工况下运行特性存在很大差异,现有方法还不能对其参数精确地辨识.为了解决上述问题,本文根据自能源网络结构提出了一种基于GAN技术的数据——机理混合驱动方法对自能源模型参数辨识.将GAN(Generative adversarial networks)模型中训练数据与专家经验结合进行模糊分类,解决了自能源在不同运行工况下的模型切换问题.通过应用含策略梯度反馈的改进GAN技术对模型进行训练,解决...
自能源(We-energy,WE)作为能源互联网的子单元旨在实现能量间的双向传输及灵活转换.由于自能源在不同工况下运行特性存在很大差异,现有方法还不能对其参数精确地辨识.为了解决上述问题,本文根据自能源网络结构提出了一种基于GAN技术的数据——机理混合驱动方法对自能源模型参数辨识.将GAN(Generative adversarial networks)模型中训练数据与专家经验结合进行模糊分类,解决了自能源在不同运行工况下的模型切换问题.通过应用含策略梯度反馈的改进GAN技术对模型进行训练,解决...
2018, 44(5): 915-921.
doi: 10.16383/j.aas.2018.c170485
摘要:
针对生成对抗网络(Generative adversarial network,GAN)不适用于原油物性回归预测的问题,本文提出一种回归生成对抗网络(Regression GAN,RGAN)结构,该结构由生成模型G、判别模型D及回归模型R组成.通过判别模型D与生成模型G间的对抗学习,D提取原油物性核磁共振氢谱(1H NMR)谱图的潜在特征.首层潜在特征是样本空间的浅层表示利于解决回归问题,采用首层潜在特征建立回归模型R,提高了预测的精度及稳定性.通过增加条件变量和生成样本间的互信息约束,并采用回...
针对生成对抗网络(Generative adversarial network,GAN)不适用于原油物性回归预测的问题,本文提出一种回归生成对抗网络(Regression GAN,RGAN)结构,该结构由生成模型G、判别模型D及回归模型R组成.通过判别模型D与生成模型G间的对抗学习,D提取原油物性核磁共振氢谱(1H NMR)谱图的潜在特征.首层潜在特征是样本空间的浅层表示利于解决回归问题,采用首层潜在特征建立回归模型R,提高了预测的精度及稳定性.通过增加条件变量和生成样本间的互信息约束,并采用回...
2018, 44(5): 922-934.
doi: 10.16383/j.aas.2018.y000003
摘要:
本文旨在讨论核能5.0(Nuclear Energy 5.0)的基本概念、体系架构和关键平台技术等问题.首先讨论了核能5.0出现的新智能时代基础,阐述了虚拟数字工业崛起的技术背景.详细叙述了核电工业新形态与体系结构,即平行核能的定义、意义、研究内容、体系架构以及应用领域.接下来讨论了核能5.0中新一代核心技术,包括核能物联网、知识自动化、发展性人工智能、大规模协同演进技术、核能区块链等.最后讨论了核能5.0中在核电系统的具体应用场景与案例,重点是核电工控系统安全评估与核电站数字化仪控系统.
本文旨在讨论核能5.0(Nuclear Energy 5.0)的基本概念、体系架构和关键平台技术等问题.首先讨论了核能5.0出现的新智能时代基础,阐述了虚拟数字工业崛起的技术背景.详细叙述了核电工业新形态与体系结构,即平行核能的定义、意义、研究内容、体系架构以及应用领域.接下来讨论了核能5.0中新一代核心技术,包括核能物联网、知识自动化、发展性人工智能、大规模协同演进技术、核能区块链等.最后讨论了核能5.0中在核电系统的具体应用场景与案例,重点是核电工控系统安全评估与核电站数字化仪控系统.
2018, 44(5): 935-942.
doi: 10.16383/j.aas.2017.c160355
摘要:
多智能体协调控制系统更适合采用分布式控制方式,但是处理智能体之间的耦合影响是分布式控制的一个难点.本文针对串联结构下的多智能体系统,提出一类多速率分布式预测控制策略,异步更新多智能体的控制律,能够充分考虑智能体之间的耦合影响,提高系统的稳定性,并给出了系统稳定的充分条件.最后,将多速率分布式控制算法应用到热连轧活套系统,仿真验证了方法的有效性和可行性.
多智能体协调控制系统更适合采用分布式控制方式,但是处理智能体之间的耦合影响是分布式控制的一个难点.本文针对串联结构下的多智能体系统,提出一类多速率分布式预测控制策略,异步更新多智能体的控制律,能够充分考虑智能体之间的耦合影响,提高系统的稳定性,并给出了系统稳定的充分条件.最后,将多速率分布式控制算法应用到热连轧活套系统,仿真验证了方法的有效性和可行性.
2018, 44(5): 943-952.
doi: 10.16383/j.aas.2017.c160383
摘要:
把材料科学中的位错理论引入到水平集方法中.图像中水平集曲线的演化被看作刃位错中位错线的滑移过程,运用位错动力学机制推导出驱使水平集曲线演化的位错组态力.结合距离正则化水平集方法,把水平集方法的边缘检测函数替换为基于位错动力学理论的速度停止函数,并构建了新的距离正则化水平集函数演化方程.水平集曲线在位错组态力和速度停止函数的驱使下移动.位错组态力反映了单位长度曲线上的平均受力情况,不仅包括了图像梯度信息,也包括了位错组态力的作用范围等信息,因此可以有效地避免在局部图像梯度异常的情况下发生曲线停止演...
把材料科学中的位错理论引入到水平集方法中.图像中水平集曲线的演化被看作刃位错中位错线的滑移过程,运用位错动力学机制推导出驱使水平集曲线演化的位错组态力.结合距离正则化水平集方法,把水平集方法的边缘检测函数替换为基于位错动力学理论的速度停止函数,并构建了新的距离正则化水平集函数演化方程.水平集曲线在位错组态力和速度停止函数的驱使下移动.位错组态力反映了单位长度曲线上的平均受力情况,不仅包括了图像梯度信息,也包括了位错组态力的作用范围等信息,因此可以有效地避免在局部图像梯度异常的情况下发生曲线停止演...
2018, 44(5): 953-960.
doi: 10.16383/j.aas.2018.c170384
摘要:
针对传统复杂网络理论通常以同质单层网络作为研究对象,忽视现有工业复杂网络具有多异质节点与多层网络互耦合性的问题,提出异质依存网络(Heterogeneous-interdependent network,HI net)理论及其关键节点辨识方法.以含多类型节点的异质依存网络作为研究对象,分析异质节点依存关系以及网络衰退机理.构建分块结构下异质节点依存矩阵,将多层异质依存网络归并于单层网络.提出节点效用耦合系数,描述不同故障类型下邻居节点效用耦合性.建立节点邻域效用耦合系数计算方法及其影响力传播方法...
针对传统复杂网络理论通常以同质单层网络作为研究对象,忽视现有工业复杂网络具有多异质节点与多层网络互耦合性的问题,提出异质依存网络(Heterogeneous-interdependent network,HI net)理论及其关键节点辨识方法.以含多类型节点的异质依存网络作为研究对象,分析异质节点依存关系以及网络衰退机理.构建分块结构下异质节点依存矩阵,将多层异质依存网络归并于单层网络.提出节点效用耦合系数,描述不同故障类型下邻居节点效用耦合性.建立节点邻域效用耦合系数计算方法及其影响力传播方法...