2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

异质依存网络衰退特征与关键节点辨识

吴舜裕 许刚

吴舜裕, 许刚. 异质依存网络衰退特征与关键节点辨识. 自动化学报, 2018, 44(5): 953-960. doi: 10.16383/j.aas.2018.c170384
引用本文: 吴舜裕, 许刚. 异质依存网络衰退特征与关键节点辨识. 自动化学报, 2018, 44(5): 953-960. doi: 10.16383/j.aas.2018.c170384
WU Shun-Yu, XU Gang. Degeneration Characters of Heterogeneous-interdependent Network and Key Node Identification. ACTA AUTOMATICA SINICA, 2018, 44(5): 953-960. doi: 10.16383/j.aas.2018.c170384
Citation: WU Shun-Yu, XU Gang. Degeneration Characters of Heterogeneous-interdependent Network and Key Node Identification. ACTA AUTOMATICA SINICA, 2018, 44(5): 953-960. doi: 10.16383/j.aas.2018.c170384

异质依存网络衰退特征与关键节点辨识

doi: 10.16383/j.aas.2018.c170384
基金项目: 

国家重点研发计划 2016YFB0901200

详细信息
    作者简介:

    许刚  华北电力大学电气与电子工程学院教授.主要研究方向为智能电网, 电力大数据分析.E-mail:xugang@ncepu.edu.cn

    通讯作者:

    吴舜裕  华北电力大学电气与电子工程学院博士研究生.主要研究方向为智能配电网, 电力依存网络.本文通信作者.E-mail:wsy817@126.com

Degeneration Characters of Heterogeneous-interdependent Network and Key Node Identification

Funds: 

National Key Research and Development Program of China 2016YFB0901200

More Information
    Author Bio:

     Professor at the School of Electrical and Electronic Engineering, North China Electric Power University. His research interest covers smart grid and big data analysis in power grid

    Corresponding author: WU Shun-Yu  Ph. D. candidate at the School of Electrical and Electronic Engineering, North China Electric Power University. His research interest covers smart grid and interdependent networks in power system. Corresponding author of this paper
  • 摘要: 针对传统复杂网络理论通常以同质单层网络作为研究对象,忽视现有工业复杂网络具有多异质节点与多层网络互耦合性的问题,提出异质依存网络(Heterogeneous-interdependent network,HI net)理论及其关键节点辨识方法.以含多类型节点的异质依存网络作为研究对象,分析异质节点依存关系以及网络衰退机理.构建分块结构下异质节点依存矩阵,将多层异质依存网络归并于单层网络.提出节点效用耦合系数,描述不同故障类型下邻居节点效用耦合性.建立节点邻域效用耦合系数计算方法及其影响力传播方法,识别节点对网络状态的影响,实现关键节点识别.通过对典型的含多电源电网系统与电力信息物理异质依存网络进行仿真实验,分别验证了所提方法对不同故障类型下关键节点识别的有效性.
    1)  本文责任编委 王卓
  • 图  1  典型异质电网节点结构示例

    Fig.  1  Examples of heterogeneous power grid structure

    图  2  一种简单的多层异质依存网络

    Fig.  2  A simple multi-layer HI network

    图  3  电力信息异质依存网络衰退过程

    Fig.  3  Degeneration process of power-information HI Net

    图  5  邻域节点群依存结构

    Fig.  5  Dependency structure of neighborhood nodes

    图  4  节点虚拟依存路径示意图

    Fig.  4  Virtual dependency path between nodes

    图  6  邻域网络状态耦合反馈

    Fig.  6  State coupling feedback of neighborhood network

    图  7  关键节点评估流程

    Fig.  7  Flow chart of key nodes assessment

    图  8  IEEE 39节点测试系统

    Fig.  8  IEEE 39-node test system

    图  9  IEEE 39节点系统不同节点三相接地时系统暂态状态

    Fig.  9  Transient state of IEEE 39-node system when three-phase ground fault occurs to different node

    图  10  IEEE 39节点系统节点重要度与状态衰退时节点电压振荡

    Fig.  10  Node importance and the voltage oscillation caused by state degeneration in IEEE 39-node system

    图  11  IEEE 118节点系统节点重要度与网络结构衰退失效节点比例

    Fig.  11  Node importance and failure node ratio caused by network structure degeneration in IEEE 118-node system

  • [1] 阮逸润, 老松杨, 王竣德, 白亮, 陈立栋.基于领域相似度的复杂网络节点重要度评估算法.物理学报, 2017, 66(3):Article No.038902 http://mall.cnki.net/magazine/Article/JSJC201210023.htm

    Ruan Yi-Run, Lao Song-Yang, Wang Jun-De, Bai Liang, Chen Li-Dong. Node importance measurement based on neighborhood similarity in complex network. Acta Physica Sinica, 2017, 66(3):Article No.038902 http://mall.cnki.net/magazine/Article/JSJC201210023.htm
    [2] 韦相, 赵军产, 胡春华.两个异构复杂网络的广义同步与参数识别.自动化学报, 2017, 43(4):595-603 http://www.cqvip.com/QK/90250X/201704/671875705.html

    Wei Xiang, Zhao Jun-Chan, Hu Chun-Hua. Generalized synchronization and system parameters identification between two different complex networks. Acta Automatica Sinica, 2017, 43(4):595-603 http://www.cqvip.com/QK/90250X/201704/671875705.html
    [3] 谢琼瑶, 邓长虹, 赵红生, 翁毅选.基于有权网络模型的电力网节点重要度评估.电力系统自动化, 2009, 33(4):21-24 doi: 10.7500/AEPS200805140

    Xie Qiong-Yao, Deng Chang-Hong, Zhao Hong-Sheng, Weng Yi-Xuan. Evaluation method for node importance of power grid based on the weighted network model. Automation of Electric Power Systems, 2009, 33(4):21-24 doi: 10.7500/AEPS200805140
    [4] 余新, 李艳和, 郑小平, 张汉一, 郭奕理.基于网络性能变化梯度的通信网络节点重要程度评价方法.清华大学学报(自然科学版), 2008, 48(4):541-544 http://www.cnki.com.cn/Article/CJFDTOTAL-GGYT201115037.htm

    Yu Xin, Li Yan-He, Zheng Xiao-Ping, Zhang Han-Yi, Guo Yi-Li. Node importance evaluation based on communication network performance grads. Journal of Tsinghua University (Science & Technology), 2008, 48(4):541-544 http://www.cnki.com.cn/Article/CJFDTOTAL-GGYT201115037.htm
    [5] 符修文, 李文锋, 段莹.分簇无线传感器网络级联失效抗毁性研究.计算机研究与发展, 2016, 53(12):2882-2892 doi: 10.7544/issn1000-1239.2016.20150455

    Fu Xiu-Wen, Li Wen-Feng, Duan Ying. Invulnerability of clustering wireless sensor network towards cascading failures. Journal of Computer Research and Development, 2016, 53(12):2882-2892 doi: 10.7544/issn1000-1239.2016.20150455
    [6] 吴润泽, 张保健, 唐良瑞.双网耦合模型中基于级联失效的节点重要度评估.电网技术, 2015, 39(4):1053-1058 http://www.oalib.com/paper/4639654

    Wu Run-Ze, Zhang Bao-Jian, Tang Liang-Rui. A cascading failure based nodal importance evaluation method applied in dual network coupling model. Power System Technology, 2015, 39(4):1053-1058 http://www.oalib.com/paper/4639654
    [7] Zhao L, Park K, Lai Y C. Attack vulnerability of scale-free networks due to cascading breakdown. Physical Review E, 2004, 70(2):Article No.035101 http://www.ncbi.nlm.nih.gov/pubmed/15524565
    [8] Tang L, Jing K, He J, Stanley H E. Complex interdependent supply chain networks:cascading failure and robustness. Physica A:Statistical Mechanics and Its Applications, 2016, 443:58-69 doi: 10.1016/j.physa.2015.09.082
    [9] 谢丰, 程苏琦, 陈冬青, 张国强.基于级联失效的复杂网络抗毁性.清华大学学报(自然科学版), 2011, 51(10):1252-1257 http://www.cqvip.com/QK/93884X/201110/39550908.html

    Xie Feng, Cheng Su-Qi, Chen Dong-Qing, Zhang Guo-Qiang. Cascade-based attack vulnerability in complex networks. Journal of Tsinghua University (Science & Technology), 2011, 51(10):1252-1257 http://www.cqvip.com/QK/93884X/201110/39550908.html
    [10] Buldyrev S V, Parshani R, Paul G, Stanley H E, Havlin S. Catastrophic cascade of failures in interdependent networks. Nature, 2010, 464(7291):1025-1028 doi: 10.1038/nature08932
    [11] Gao J X, Buldyrev S V, Stanley H E, Havlin S. Networks formed from interdependent networks. Nature Physics, 2012, 8(1):40-48 doi: 10.1038/nphys2180
    [12] Sun Y Z, Han J W, Yan X F, Yu P S, Wu T Y. PathSim:meta path-based top-k similarity search in heterogeneous information networks. Proceedings of the VLDB Endowment, 2011, 4(11):992-1003 https://www.researchgate.net/publication/220538331_PathSim_Meta_Path-Based
    [13] Boldi P, Santini M, Vigna S. PageRank:functional dependencies. ACM Transactions on Information Systems, 2009, 27(4):Article No.19 http://vigna.di.unimi.it/ftp/papers/PageRankFunctional.pdf
    [14] Eom Y H, Shepelyansky D L. Opinion formation driven by PageRank node influence on directed networks. Physica A:Statistical Mechanics and Its Applications, 2015, 436:707-715 doi: 10.1016/j.physa.2015.05.095
    [15] Wu X D, Kumar V, Quinlan J R, Ghosh J, Yang Q, et al. Top 10 algorithms in data mining. Knowledge and Information Systems, 2008, 14(1):1-37 http://dl.acm.org/citation.cfm?id=1327436
    [16] Pai M A. Energy Function Analysis for Power System Stability. London:Kluwer Academic Publishers, 1989.
    [17] Wang K, Zhang B H, Zhang Z, Yin X G, Wang B. An electrical betweenness approach for vulnerability assessment of power grids considering the capacity of generators and load. Physica A:Statistical Mechanics and Its Applications, 2011, 390(23-24):4692-4701 doi: 10.1016/j.physa.2011.07.031
    [18] Arianos S, Bompard E, Carbone A, Xue F. Power grid vulnerability:a complex network approach. Chaos, 2009, 19(1):Article No.013119 http://www.ncbi.nlm.nih.gov/pubmed/19334983
  • 加载中
图(11)
计量
  • 文章访问数:  2156
  • HTML全文浏览量:  304
  • PDF下载量:  565
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-11
  • 录用日期:  2017-12-06
  • 刊出日期:  2018-05-20

目录

    /

    返回文章
    返回