2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种能量函数意义下的生成式对抗网络

王功明 乔俊飞 王磊

王功明, 乔俊飞, 王磊. 一种能量函数意义下的生成式对抗网络. 自动化学报, 2018, 44(5): 793-803. doi: 10.16383/j.aas.2018.c170600
引用本文: 王功明, 乔俊飞, 王磊. 一种能量函数意义下的生成式对抗网络. 自动化学报, 2018, 44(5): 793-803. doi: 10.16383/j.aas.2018.c170600
WANG Gong-Ming, QIAO Jun-Fei, WANG Lei. A Generative Adversarial Network Based on Energy Function. ACTA AUTOMATICA SINICA, 2018, 44(5): 793-803. doi: 10.16383/j.aas.2018.c170600
Citation: WANG Gong-Ming, QIAO Jun-Fei, WANG Lei. A Generative Adversarial Network Based on Energy Function. ACTA AUTOMATICA SINICA, 2018, 44(5): 793-803. doi: 10.16383/j.aas.2018.c170600

一种能量函数意义下的生成式对抗网络

doi: 10.16383/j.aas.2018.c170600
基金项目: 

国家自然科学基金 61533002

详细信息
    作者简介:

    王功明  北京工业大学信息学部博士研究生.主要研究方向为深度学习, 神经网络结构设计与优化.E-mail:xiaowangqsd@163.com

    王磊  北京工业大学信息学部博士研究生.主要研究方向为神经网络结构设计与优化.E-mail:jade wanglei@163.com

    通讯作者:

    乔俊飞  北京工业大学信息学部教授.主要研究方向为污水处理过程智能控制, 神经网络结构设计与优化.本文通信作者.E-mail:junfeq@bjut.edu.cn

A Generative Adversarial Network Based on Energy Function

Funds: 

National Natural Science Foundation of China 61533002

More Information
    Author Bio:

     Ph. D. candidate at the Faculty of Information Technology, Beijing University of Technology. His research interest covers deep learning, structure design and optimization of neural networks

     Ph. D. candidate at the Faculty of Information Technology, Beijing University of Technology. His research interest covers structure design and optimization of neural networks

    Corresponding author: QIAO Jun-Fei  Professor at the Faculty of Information Technology, Beijing University of Technology. His research interest covers intelligent control of wastewater treatment process, structure design and optimization of neural networks. Corresponding author of this paper
  • 摘要: 生成式对抗网络(Generative adversarial network,GAN)是目前人工智能领域的一个研究热点,引起了众多学者的关注.针对现有GAN生成模型效率低下和判别模型的梯度消失问题,本文提出一种基于重构误差的能量函数意义下的生成式对抗网络模型(Energy reconstruction error GAN,E-REGAN).首先,将自适应深度信念网络(Adaptive deep belief network,ADBN)作为生成模型,来快速学习给定样本数据的概率分布并进一步生成相似的样本数据.其次,将自适应深度自编码器(Adaptive deep autoencoder,ADAE)的重构误差(Reconstruction error,RE)作为一个表征判别模型性能的能量函数,能量越小表示GAN学习优化过程越趋近纳什均衡的平衡点,否则反之.同时,通过反推法给出了E-REGAN的稳定性分析.最后在MNIST和CIFAR-10标准数据集上的实验结果表明,相较于现有的类似模型,E-REGAN在学习速度和数据生成能力两方面均有较大提高.
    1)  本文责任编委 王坤峰
  • 图  1  E-REGAN结构原理图

    Fig.  1  Structure and scheme of E-REGAN

    图  2  ARBM结构图

    Fig.  2  Structure of ARBM

    图  3  ADAE结构原理图

    Fig.  3  Structure and scheme of ADAE

    图  4  生成模型ADBN的训练RMSE

    Fig.  4  RMSE curve of generative model ADBN

    图  5  E-REGAN的能量函数变化曲线

    Fig.  5  Energy function curves of E-REGAN

    图  6  E-REGAN生成的样本图像

    Fig.  6  Sample images generated by E-REGAN

    图  7  SS-E-REGAN生成的样本图像

    Fig.  7  Sample images generated by SS-E-REGAN

    图  8  SN-E-REGAN生成的样本图像

    Fig.  8  Sample images generated by SN-E-REGAN

    图  9  g-GAN生成的样本图像

    Fig.  9  Sample images generated by g-GAN

    图  10  LS-GAN生成的样本图像

    Fig.  10  Sample images generated by LS-GAN

    图  11  生成模型ADBN的训练RMSE

    Fig.  11  RMSE curve of generative model ADBN

    图  12  E-REGAN的能量函数变化曲线

    Fig.  12  Energy function curves of E-REGAN

    图  13  E-REGAN生成的样本图像

    Fig.  13  Sample images generated by E-REGAN

    图  14  LS-GAN生成的样本图像

    Fig.  14  Sample images generated by LS-GAN

    图  15  LR-GAN生成的样本图像

    Fig.  15  Sample images generated by LR-GAN

    图  16  Bayesian GAN生成的样本图像

    Fig.  16  Sample images generated by Bayesian

    表  1  MNIST数据集测试中ADBN的固有参数

    Table  1  Fixed parameters of ADBN on MNIST dataset

    $\eta_0$ $\tau$ $t$ $u$ $v$ $\lambda$ $\gamma $
    0.1 200 2 1.5 0.7 0.02 0.01
    $ \eta _0 $表示学习率的初始值
    下载: 导出CSV

    表  2  MNIST数据集实验结果对比

    Table  2  Result comparison on MNIST dataset

    方法 能量函数(RE) 分类正确率(%) 平均运行时间(s)
    均值 方差
    E-REGAN 0.0037 0.0790 92 58.62
    SS-E-REGAN 0.0405 2.0618 84 56.94
    SN-E-REGAN 0.1873 2.7724 82 60.31
    标准GAN 79 87.23
    LS-GAN[27] 87 74.61
    LR-GAN[28] 90 71.36
    Bayesian GAN[29] 85 77.48
    粗体表示最优值.
    下载: 导出CSV

    表  3  CIFAR-10数据集测试中ADBN的固有参数

    Table  3  Fixed parameters of ADBN on CIFAR-10 dataset

    $\eta_0$ $\tau$ $t$ $u$ $v$ $\lambda$ $\gamma $
    0.1 300 2 1.7 0.5 0.05 0.02
    $ \eta _0 $表示学习率的初始值.
    下载: 导出CSV

    表  4  CIFAR-10数据集实验结果对比

    Table  4  Result comparison on CIFAR-10 dataset

    方法 能量函数 测试误差 平均运行时间(s)
    均值 方差 均值 方差
    E-REGAN 0.0048 0.0831 0.0160 0.0831 65.38
    SS-E-REGAN 0.0473 2.2406 0.0431 2.2406 65.75
    SN-E-REGAN 0.2097 2.8119 0.0633 2.8119 67.92
    标准GAN 0.0802 1.9227 90.68
    LS-GAN[27] 0.0358 0.1076 78.24
    LR-GAN[28] 0.0263 0.1547 84.36
    Bayesian GAN[29] 0.0386 0.2037 86.19
    粗体表示最优值.
    下载: 导出CSV
  • [1] Goodfellow I J, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial nets. In: Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal, Canada: MIT Press, 2014. 2672-2680
    [2] Makhzani A, Shlens J, Jaitly N, Goodfellow I, Frey B. Adversarial autoencoders. arXiv preprint arXiv: 1511. 05644, 2015.
    [3] Mao X D, Li Q, Xie H R, Lau R Y K, Wang Z, Smolley S P. Least squares generative adversarial networks. arXiv preprint ArXiv: 1611. 04076, 2016.
    [4] Durugkar I, Gemp I, Mahadevan S. Generative multi-adversarial networks. arXiv preprint arXiv: 1611. 01673, 2016.
    [5] Huang X, Li Y X, Poursaeed O, Hopcroft J, Belongie1 S. Stacked generative adversarial networks. arXiv preprint arXiv: 1612. 04357, 2016.
    [6] Saito M, Matsumoto E, Saito S. Temporal generative adversarial nets with singular value clipping. In: Proceedings of the 2017 IEEE Conference on Computer Vision. Venice, Italy: ICCV, 2017. 2849-2858
    [7] Che T, Li Y R, Zhang R X, Hjelm R D, Li W J, Song Y Q, etal. Maximum-likelihood augmented discrete generative adversarial networks. arXiv preprint arXiv: 1702. 07983, 2017.
    [8] 王坤峰, 苟超, 段艳杰, 林懿伦, 郑心湖, 王飞跃.生成式对抗网络GAN的研究进展与展望.自动化学报, 2017, 43(3):321-332 http://www.aas.net.cn/CN/abstract/abstract19012.shtml

    Wang Kun-Feng, Gou Chao, Duan Yan-Jie, Lin Yi-Lun, Zheng Xin-Hu, Wang Fei-Yue. Generative adversarial networks:the state of the art and beyond. Acta Automatica Sinica, 2017, 43(3):321-332 http://www.aas.net.cn/CN/abstract/abstract19012.shtml
    [9] Arjovsky M, Chintala S, Bottou L. Wasserstein GAN. arXiv preprint arXiv: 1701. 07875, 2017.
    [10] Donahue J, Krähenbühl P, Darrell T. Adversarial feature learning. arXiv preprint arXiv: 1605. 09782, 2016.
    [11] LeCun Y, Huang F. Loss functions for discriminative training of energy-based models. In: Proceedings of the 10th International Workshop on Artificial Intelligence and Statistics. Barbados: AIS, 2005. 206-213
    [12] 乔俊飞, 潘广源, 韩红桂.一种连续型深度信念网的设计与应用.自动化学报, 2015, 41(12):2138-2146 http://www.aas.net.cn/CN/abstract/abstract18786.shtml

    Qiao Jun-Fei, Pan Guang-Yuan, Han Hong-Gui. Design and application of continuous deep belief network. Acta Automatica Sinica, 2015, 41(12):2138-2146 http://www.aas.net.cn/CN/abstract/abstract18786.shtml
    [13] 乔俊飞, 王功明, 李晓理, 韩红桂, 柴伟.基于自适应学习率的深度信念网设计与应用.自动化学报, 2017, 43(8):1339-1349 http://www.aas.net.cn/CN/abstract/abstract19108.shtml

    Qiao Jun-Fei, Wang Gong-Ming, Li Xiao-Li, Han Hong-Gui, Chai Wei. Design and application of deep belief network with adaptive learning rate. Acta Automatica Sinica, 2017, 43(8):1339-1349 http://www.aas.net.cn/CN/abstract/abstract19108.shtml
    [14] Lopes N, Ribeiro B. Towards adaptive learning with improved convergence of deep belief networks on graphics processing units. Pattern Recognition, 2014, 47(1):114-127 doi: 10.1016/j.patcog.2013.06.029
    [15] 王功明, 李文静, 乔俊飞.基于PLSR自适应深度信念网络的出水总磷预测.化工学报, 2017, 68(5):1987-1997 http://www.doc88.com/p-6922879556285.html

    Wang Gong-Ming, Li Wen-Jing, Qiao Jun-Fei. Prediction of effluent total phosphorus using PLSR-based adaptive deep belief network. CIESC Journal, 2017, 68(5):1987-1997 http://www.doc88.com/p-6922879556285.html
    [16] Hinton G E. Training products of experts by minimizing contrastive divergence. Neural Computation, 2002, 14(8):1771-1800 doi: 10.1162/089976602760128018
    [17] Le Roux N, Bengio Y. Representational power of restricted boltzmann machines and deep belief networks. Neural Computation, 2008, 20(6):1631-1649 doi: 10.1162/neco.2008.04-07-510
    [18] Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets. Neural Computation, 2006, 18(7):1527-1554 doi: 10.1162/neco.2006.18.7.1527
    [19] Alain G, Bengio Y. What regularized auto-encoders learn from the data-generating distribution. The Journal of Machine Learning Research, 2014, 15(1):3563-3593 http://jmlr.csail.mit.edu/papers/volume15/alain14a/alain14a.pdf
    [20] Chan P P K, Lin Z, Hu X, Tsang E C C, Yeung D S. Sensitivity based robust learning for stacked autoencoder against evasion attack. Neurocomputing, 2017, 267:572-580 doi: 10.1016/j.neucom.2017.06.032
    [21] Huang G B, Chen L, Siew C K. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Transactions on Neural Networks, 2006, 17(4):879-892 doi: 10.1109/TNN.2006.875977
    [22] Leung F H F, Lam H K, Ling S H, Tam P K S. Tuning of the structure and parameters of a neural network using an improved genetic algorithm. IEEE Transactions on Neural networks, 2003, 14(1):79-88 doi: 10.1109/TNN.2002.804317
    [23] de la Rosa E, Yu W. Randomized algorithms for nonlinear system identification with deep learning modification. Information Sciences, 2016, 364-365:197-212 doi: 10.1016/j.ins.2015.09.048
    [24] Zhao J B, Mathieu M, LeCun Y. Energy-based generative adversarial network. arXiv preprint arXiv: 1609. 03126, 2016.
    [25] Larochelle H, Bengio Y, Louradour J, Lamblin P. Exploring strategies for training deep neural networks. The Journal of Machine Learning Research, 2009, 10:1-40 http://www.cs.toronto.edu/~larocheh/publications/jmlr-larochelle09a.pdf
    [26] Wang Y, Wang X G, Liu W Y. Unsupervised local deep feature for image recognition. Information Sciences, 2016, 351:67-75 doi: 10.1016/j.ins.2016.02.044
    [27] Qi G J. Loss-sensitive generative adversarial networks on lipschitz densities. arXiv preprint arXiv: 1701. 06264, 2017.
    [28] Yang J W, Kannan A, Batra D, Parikh D. LR-GAN: layered recursive generative adversarial networks for image generation. arXiv preprint arXiv: 1703. 01560, 2017.
    [29] Saatchi Y, Wilson A. Bayesian GAN. arXiv preprint arXiv: 1705. 09558, 2017.
    [30] Hinton G E, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov R R. Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv: 1207. 0580, 2012.
    [31] Xu B, Wang N Y, Chen T Q, Li M. Empirical evaluation of rectified activations in convolutional network. arXiv preprint arXiv: 1505. 00853, 2015.
    [32] Goroshin R, Bruna J, Tompson J, Eigen D, LeCun Y. Unsupervised learning of spatiotemporally coherent metrics. In: Proceedings of the 2015 IEEE Conference on Computer Vision (ICCV). Santiago, Chile: IEEE, 2015. 4086-4093
    [33] Metz L, Poole B, Pfau D, Sohl-Dickstein J. Unrolled generative adversarial networks. arXiv preprint arXiv: 1611. 02163, 2016.
    [34] Springenberg J T. Unsupervised and semi-supervised learning with categorical generative adversarial networks. arXiv preprint arXiv: 1511. 06390, 2015.
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  2313
  • HTML全文浏览量:  546
  • PDF下载量:  1252
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-31
  • 录用日期:  2017-12-23
  • 刊出日期:  2018-05-20

目录

    /

    返回文章
    返回