2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

融合对抗学习的因果关系抽取

冯冲 康丽琪 石戈 黄河燕

冯冲, 康丽琪, 石戈, 黄河燕. 融合对抗学习的因果关系抽取. 自动化学报, 2018, 44(5): 811-818. doi: 10.16383/j.aas.2018.c170481
引用本文: 冯冲, 康丽琪, 石戈, 黄河燕. 融合对抗学习的因果关系抽取. 自动化学报, 2018, 44(5): 811-818. doi: 10.16383/j.aas.2018.c170481
FENG Chong, KANG Li-Qi, SHI Ge, HUANG He-Yan. Causality Extraction With GAN. ACTA AUTOMATICA SINICA, 2018, 44(5): 811-818. doi: 10.16383/j.aas.2018.c170481
Citation: FENG Chong, KANG Li-Qi, SHI Ge, HUANG He-Yan. Causality Extraction With GAN. ACTA AUTOMATICA SINICA, 2018, 44(5): 811-818. doi: 10.16383/j.aas.2018.c170481

融合对抗学习的因果关系抽取

doi: 10.16383/j.aas.2018.c170481
详细信息
    作者简介:

    康丽琪  北京理工大学计算机学院硕士研究生.主要研究方向为信息抽取, 关系抽取.E-mail:klq207@126.com

    石戈  北京理工大学计算机学院博士研究生.主要研究方向为信息抽取, 事件抽取.E-mail:shige@bit.edu.cn

    黄河燕  北京理工大学计算机学院教授.1989年获中国科学院计算技术研究所计算机科学与技术博士学位.主要研究方向为自然语言处理和机器翻译社交网络与信息检索, 智能处理系统.E-mail:hhy63@bit.edu.cn

    通讯作者:

    冯冲  北京理工大学计算机学院副研究员.2005年获中国科学技术大学计算机科学系博士学位.主要研究方向为自然语言处理, 信息抽取, 机器翻译.本文通信作者.E-mail:fengchong@bit.edu.cn

Causality Extraction With GAN

More Information
    Author Bio:

     Master student at the College of Computer Science and Technology, Beijing Institute of Technology. Her research interest covers information extraction, relation extraction

     Ph. D. candidate at the College of Computer Science and Technology, Beijing Institute of Technology. His research interest covers information extraction, event extraction

     Professor at the College of Computer Science and Technology, Beijing Institute of Technology. She received her Ph. D. degree from the Institute of Computing Technology, Chinese Academy of Sciences. Her research interest covers natural language processing, machine translation, social network, information retrieval, and intelligent processing system

    Corresponding author: FENG Chong  Associate professor at the College of Computer Science and Technology, Beijing Institute of Technology. He received his Ph. D. degree from the Department of Computer Science, University of Science and Technology of China in 2005. His research interest covers natural language processing, information extraction, and machine translation. Corresponding author of this paper
  • 摘要: 因果关系抽取在事件预测、情景生成、问答以及文本蕴涵等任务上都有重要的应用价值.但多数现有的因果关系抽取方法都需要人工定义模式和约束,且严重依赖知识库.为此,本文利用生成式对抗网络(Generative adversarial networks,GAN)的对抗学习特性,将带注意力机制的双向门控循环单元神经网络(Bidirectional gated recurrent units networks,BGRU)与对抗学习相融合,通过重定义生成模型和判别模型,基本的因果关系抽取网络能够与判别网络形成对抗,进而从因果关系解释信息中获得高区分度的特征.实验结果表明,与当前用于因果关系抽取的方法相比较,该方法表现出更优的抽取效果.
    1)  本文责任编委 李力
  • 图  1  GAN结构

    Fig.  1  The structure of GAN

    图  2  模型整体架构

    Fig.  2  The overall architecture of the model

    图  3  带注意力机制的双向门控循环单元神经网络

    Fig.  3  Bidirectional GRU model with attention

    图  4  不同模型的对比实验

    Fig.  4  Comparative experiment of different models

    表  1  数据集的构造说明

    Table  1  Description of the dataset

    关系类型 数据来源 数据条数
    因果关系 SemEval 1 331
    新闻语料人工标注 700
    非因果关系 SemEval 1 900
    下载: 导出CSV

    表  2  BGRU因果关系抽取结果(%)

    Table  2  Results of BGRU causality extraction (%)

    Model P R F1
    B-BGRU 92.93 85.98 89.32
    R-BGRU 93.74 94.39 94.06
    下载: 导出CSV

    表  3  GAN框架下的因果关系抽取(%)

    Table  3  Causality extraction under GAN framework (%)

    Model P R F1
    B-BGRU 92.93 85.98 89.32
    GAN-BGRU 93.75 87.62 90.58
    下载: 导出CSV

    表  4  带注意力机制的GAN框架下的因果关系抽取(%)

    Table  4  Causality extraction under GAN framework with attention (%)

    Model P R F1
    B-Att-BGRU 92.91 88.79 90.80
    R-Att-BGRU 94.63 94.63 94.63
    GAN-Att-BGRU 93.17 89.25 91.17
    下载: 导出CSV
  • [1] Radinsky K, Davidovich S, Markovitch S. Learning causality for news events prediction. In: Proceedings of the 21st International Conference on World Wide Web. Lyon, France: ACM, 2012. 909-918
    [2] Hashimoto C, Torisawa K, Kloetzer J, Sano M, Varga I, Oh J H, et al. Toward future scenario generation: extracting event causality exploiting semantic relation, context, and association features. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Baltimore, MD, USA: ACL, 2014. 987-997
    [3] Girju R. Automatic detection of causal relations for question answering. In: Proceedings of the 2003 ACL Workshop on Multilingual Summarization and Question Answering. Sapporo, Japan: ACL, 2003. 76-83
    [4] Oh J H, Torisawa K, Hashimoto C, Sano M, De Saeger S, Ohtake K. Why-question answering using intra-and inter-sentential causal relations. In: Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics. Sofia, Bulgaria: ACL, 2013. 1733-1743
    [5] Goodfellow I J, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial nets. In: Proceedings of the 28th Annual Conference on Neural Information Processing Systems. Montreal, QC, Canada: NIPS, 2014. 2672-2680
    [6] Abe S, Inui K, Matsumoto Y. Two-phased event relation acquisition: coupling the relation-oriented and argument-oriented approaches. In: Proceedings of the 22nd International Conference on Computational Linguistics. Manchester, United Kingdom: ACM, 2008. 1-8
    [7] Do Q X, Chan Y S, Roth D. Minimally supervised event causality identification. In: Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing. Edinburgh, United Kingdom: ACM, 2011. 294-303
    [8] Hashimoto C, Torisawa K, De Saeger S, Oh J H, Kazama J. Excitatory or inhibitory: a new semantic orientation extracts contradiction and causality from the web. In: Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Jeju Island, Korea: ACM, 2012. 619-630
    [9] Rink B, Harabagiu S. UTD: classifying semantic relations by combining lexical and semantic resources. In: Proceedings of the 5th International Workshop on Semantic Evaluation. Los Angeles, California, USA: ACM, 2010. 256-259
    [10] Zeng D J, Liu K, Lai S W, Zhou G Y, Zhao J. Relation classification via convolutional deep neural network. In: Proceedings of the 25th International Conference on Computational Linguistics. Dublin, Ireland: ACL, 2014. 2335-2344
    [11] Mikolov T, Karafiát M, Burget L, Černocký J, Khudanpur S. Recurrent neural network based language model. In: Proceedings of the 11th Annual Conference of the International Speech Communication Association. Makuhari, Chiba, Japan: DBLP, 2010. 1045-1048
    [12] Zhang D X, Wang D. Relation classification via recurrent neural network. arXiv: 1508. 01006, 2015.
    [13] Zhang S, Zheng D Q, Hu X C, Yang M. Bidirectional long short-term memory networks for relation classification. In: Proceedings of the 29th Pacific Asia Conference on Language, Information and Computation. Shanghai, China: PACLIC, 2015. 73-78
    [14] Zhou P, Shi W, Tian J, Qi Z Y, Li B C, Hao H W, et al. Attention-based bidirectional long short-term memory networks for relation classification. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Berlin, Germany: ACL, 2016. 207-212
    [15] Chung J Y, Gulcehre C, Cho K H, Bengio Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv: 1412. 3555, 2014.
    [16] Zhang Y Z, Gan Z, Carin L. Generating text via adversarial training. In: Proceedings of the 2016 Workshop on Adversarial Training. Barcelona, Spain: NIPS, 2016.
    [17] Yu L T, Zhang W N, Wang J, Yu Y. SeqGAN: sequence generative adversarial nets with policy gradient. In: Proceedings of the 31st AAAI Conference on Artificial Intelligence. San Francisco, California, USA: AAAI, 2017. 2852-2858
    [18] Li J W, Monroe W, Shi T L, Jean S, Ritter A, Jurafsky D. Adversarial learning for neural dialogue generation. arXiv: 1701. 06547, 2017.
    [19] Arjovsky M, Chintala S, Bottou L. Wasserstein GAN. arXiv: 1701. 07875, 2017.
    [20] Gulrajani I, Ahmed F, Arjovsky M, Dumoulin V, Courville A. Improved training of Wasserstein GANs. In: Proceedings of the 31st Annual Conference on Neural Information Processing Systems. Long Beach, CA, USA: NIPS, 2017. 5769-5779
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  2973
  • HTML全文浏览量:  812
  • PDF下载量:  1704
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-31
  • 录用日期:  2018-01-08
  • 刊出日期:  2018-05-20

目录

    /

    返回文章
    返回