2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Regression GAN的原油总氢物性预测方法

郑念祖 丁进良

郑念祖, 丁进良. 基于Regression GAN的原油总氢物性预测方法. 自动化学报, 2018, 44(5): 915-921. doi: 10.16383/j.aas.2018.c170485
引用本文: 郑念祖, 丁进良. 基于Regression GAN的原油总氢物性预测方法. 自动化学报, 2018, 44(5): 915-921. doi: 10.16383/j.aas.2018.c170485
ZHENG Nian-Zu, DING Jin-Liang. Regression GAN Based Prediction for Physical Properties of Total Hydrogen in Crude Oil. ACTA AUTOMATICA SINICA, 2018, 44(5): 915-921. doi: 10.16383/j.aas.2018.c170485
Citation: ZHENG Nian-Zu, DING Jin-Liang. Regression GAN Based Prediction for Physical Properties of Total Hydrogen in Crude Oil. ACTA AUTOMATICA SINICA, 2018, 44(5): 915-921. doi: 10.16383/j.aas.2018.c170485

基于Regression GAN的原油总氢物性预测方法

doi: 10.16383/j.aas.2018.c170485
基金项目: 

教育部科研业务费项目 N161608001

教育部科研业务费项目 N160801001

国家自然科学基金 61590922

国家自然科学基金 61525302

详细信息
    作者简介:

    郑念祖  东北大学流程工业综合自动化国家重点实验室硕士研究生.2016年获得东北大学学士学位.主要研究方向为生成对抗网络, 人工智能与机器学习.E-mail:skyznz@163.com

    通讯作者:

    丁进良  东北大学流程工业综合自动化国家重点实验室教授.主要研究方向为复杂工业过程的建模与运行优化控制, 计算智能及应用.本文通信作者.E-mail:jlding@mail.neu.edu.cn

Regression GAN Based Prediction for Physical Properties of Total Hydrogen in Crude Oil

Funds: 

the Research Funds by the Ministry of Education of China N161608001

the Research Funds by the Ministry of Education of China N160801001

National Natural Science Foundation of China 61590922

National Natural Science Foundation of China 61525302

More Information
    Author Bio:

     Master student at the State Key Laboratory of Synthetical Automation for Process Industies, Northeastern University. He received his bachelor degree from Northeastern University in 2016. His research interest covers generative adversarial nets, artificial intelligence, and machine learning

    Corresponding author: DING Jin-Liang  Professor at the State Key Laboratory of Synthetical Automation for Process Industies, Northeastern University. His research interest covers modeling and operation optimization control of complex industrial process, computational intelligence and its application. Corresponding author of this paper
  • 摘要: 针对生成对抗网络(Generative adversarial network,GAN)不适用于原油物性回归预测的问题,本文提出一种回归生成对抗网络(Regression GAN,RGAN)结构,该结构由生成模型G、判别模型D及回归模型R组成.通过判别模型D与生成模型G间的对抗学习,D提取原油物性核磁共振氢谱(1H NMR)谱图的潜在特征.首层潜在特征是样本空间的浅层表示利于解决回归问题,采用首层潜在特征建立回归模型R,提高了预测的精度及稳定性.通过增加条件变量和生成样本间的互信息约束,并采用回归模型R的MSE损失函数估计互信息下界,生成模型G产生更真实的样本.实验结果表明,RGAN有效地提高了原油总氢物性回归预测精度及稳定性,同时加快了生成模型的收敛速度,提高了谱图的生成质量.
    1)  本文责任编委 谭营
  • 图  1  RGAN模型结构示意图

    Fig.  1  Diagram of model structure of RGAN

    图  2  基于不同特征层RGAN回归模型R的表现

    Fig.  2  Performance of regression model R of RGAN based on different feature maps

    图  3  原油样本核磁共振氢谱

    Fig.  3  $^{1}$H nuclear magnetic resonance spectra of crude oil samples

    图  4  超参数$\lambda{}$对生成模型G的影响

    Fig.  4  Effect of hyper parameter$\lambda{}$ on generative model G

    图  5  超参数$\lambda{}$对回归模型R的影响

    Fig.  5  Effect of hyper parameter$\lambda{}$ on regression model R

    图  6  超参数$\lambda{}$对NMR谱图生成的影响

    Fig.  6  Effect of hyper parameter $\lambda{}$ on generation of $^{1}$H nuclear magnetic resonance spectrum

    表  1  RGAN网络结构及超参数

    Table  1  The network structure and hyperparameters of RGAN

    OperationKernel Strides Feature maps BN Nonlinearity
    $G(z)-121 \times 1$ Input
    Linear(Reshape) N/A N/A 256 × ReLU
    Tansposed Convolution 5$\times{}$1 2$\times{}$1 128 ReLU
    Tansposed Convolution 5$\times{}$1 2$\times{}$1 64 ReLU
    Tansposed Convolution 5$\times{}$1 2$\times{}$1 1 × TANH
    $D(x) - 1 \times 688 \times 1$ Input
    Convolution $(M)$ 10$\times{}$1 2$\times{}$1 64 × Leaky ReLU
    Convolution 10$\times{}$1 2$\times{}$1 128 Leaky ReLU
    $C - 1 \times 177 \times 1$ Input
    Convolution 10$\times{}$1 2$\times{}$1 256 Leaky ReLU
    Fully Connected N/A N/A 1 024 Leaky ReLU
    Fully Connected N/A N/A 1 × NONE
    $R(M) - 1\times 344 \times 64$ Input
    Convolution 10$\times{}$1 1$\times{}$1 128 Leaky ReLU
    Fully Connected N/A N/A 1 024 Leaky ReLU
    Fully Connected N/A N/A 1 TANH
    Optimizer Adam ($\alpha{}=2\times 10^{-4}$, $\beta{}_1=0.9$, $\beta{}_2=0.999$)
    Batch size 32
    Iterations 1 000
    Leaky ReLU slope 0.2
    Weight, bias initialization Isotropic Gaussian ($\mu{}=0, $ $\sigma{}=0.02$)
    下载: 导出CSV

    表  2  RGAN与不同预测模型的比较

    Table  2  Comparison between RGAN and different prediction models

    Models $R_p$ MSEP
    SVM 0.573 0.084
    PLS 0.755 0.028
    CNN 0.727 0.030
    CGAN + R 0.756 0.027
    RGAN $(\lambda{}=0)$ 0.768 0.026
    RGAN $(\lambda{}=0.001)$ 0.787 0.024
    RGAN $(\lambda{}=1)$ 0.792 0.023
    RGAN $(\lambda{}=5)$ 0.776 0.025
    下载: 导出CSV
  • [1] Jackman L M, Sternhell S. Application of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry:International Series in Organic Chemistry (2nd edition). Amsterdam:Elsevier, 2013.
    [2] Simmler C, Napolitano J G, McAlpine J B, Chen S N, Pauli G F. Universal quantitative NMR analysis of complex natural samples. Current Opinion in Biotechnology, 2014, 25:51-59 doi: 10.1016/j.copbio.2013.08.004
    [3] Molina V D, Angulo R, Dueñez F Z, Gunmán A. Partial least squares (PLS) and multiple linear correlations between heithaus stability parameters (P0) and the colloidal instability indices (CⅡ) with the 1H nuclear magnetic resonance (NMR) spectra of Colombian crude oils. Energy and Fuels, 2014, 28(3):1802-1810 doi: 10.1021/ef4022224
    [4] Adams A, Piechatzek A, Schmitt G, Siegmund G. Single-sided nuclear magnetic resonance for condition monitoring of cross-linked polyethylene exposed to aggressive media. Analytica Chimica Acta, 2015, 887:163-171 doi: 10.1016/j.aca.2015.07.005
    [5] Chen J J, Hürlimann M, Paulsen J, Freed D, Mandal S, Song Y Q. Dispersion of T1 and T2 nuclear magnetic resonance relaxation in crude oils. ChemPhysChem, 2014, 15(13):2676-2681 doi: 10.1002/cphc.v15.13
    [6] Duarte L M, Filgueiras P R, Dias J C M, Oliveira L M S L, Castro E V R, de Oliveira M A L. Study of distillation temperature curves from Brazilian crude oil by 1H nuclear magnetic resonance spectroscopy in association with partial least squares regression. Energy and Fuels, 2017, 31(4):3892-3897 doi: 10.1021/acs.energyfuels.7b00187
    [7] Zhang Y D, Chen S F, Wang S H, Yang J F, Phillips P. Magnetic resonance brain image classification based on weighted-type fractional Fourier transform and nonparallel support vector machine. International Journal of Imaging Systems and Technology, 2015, 25(4):317-327 doi: 10.1002/ima.v25.4
    [8] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553):436-444 doi: 10.1038/nature14539
    [9] Goodfellow I J, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial nets. In: Proceedings of the 27th International Conference on Neural Information Processing Systems. Montréal, Canada: NIPS, 2014. 2672-2680
    [10] Kingma D P, Rezende D J, Mohamed S, Welling M. Semi-supervised learning with deep generative models. In: Proceedings of the 27th International Conference on Neural Information Processing Systems. Montréal, Canada: NIPS, 2014. 3581-3589
    [11] Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv: 1511.06434, 2015. http://www.oalib.com/paper/4054347
    [12] Springenberg J T. Unsupervised and semi-supervised learning with categorical generative adversarial networks. arXiv preprint arXiv: 1511.06390, 2015. http://arxiv.org/abs/1511.06390
    [13] Mirza M, Osindero S. Conditional generative adversarial nets. arXiv preprint arXiv: 1411.1784, 2014. http://www.oalib.com/paper/4066323
    [14] Zhao J B, Mathieu M, LeCun Y. Energy-based generative adversarial network. arXiv preprint arXiv: 1609.03126, 2016. http://arxiv.org/abs/1609.03126
    [15] Arjovsky M, Chintala S, Bottou L. Wasserstein gan. arXiv preprint arXiv: 1701.07875, 2017. http://arxiv.org/abs/1701.07875
    [16] Chen X, Duan Y, Houthooft R, Schulman J, Sutskever I, Abbeel P. Infogan: interpretable representation learning by information maximizing generative adversarial nets. In: Proceedings of the 29th International Conference on Neural Information Processing Systems. Barcelona, Spain: NIPS, 2016. 2172-2180 http://arxiv.org/abs/1606.03657
    [17] Kingma D P, Welling M. Auto-encoding variational Bayes. arXiv preprint arXiv: 1312.6114, 2013. http://www.oalib.com/paper/4042889
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  1799
  • HTML全文浏览量:  360
  • PDF下载量:  967
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-31
  • 录用日期:  2017-12-23
  • 刊出日期:  2018-05-20

目录

    /

    返回文章
    返回