2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于位错理论的距离正则化水平集图像分割算法

张帆 张新红

张帆, 张新红. 基于位错理论的距离正则化水平集图像分割算法. 自动化学报, 2018, 44(5): 943-952. doi: 10.16383/j.aas.2017.c160383
引用本文: 张帆, 张新红. 基于位错理论的距离正则化水平集图像分割算法. 自动化学报, 2018, 44(5): 943-952. doi: 10.16383/j.aas.2017.c160383
ZHANG Fan, ZHANG Xin-Hong. Distance Regularized Level Set Image Segmentation Algorithm by Means of Dislocation Theory. ACTA AUTOMATICA SINICA, 2018, 44(5): 943-952. doi: 10.16383/j.aas.2017.c160383
Citation: ZHANG Fan, ZHANG Xin-Hong. Distance Regularized Level Set Image Segmentation Algorithm by Means of Dislocation Theory. ACTA AUTOMATICA SINICA, 2018, 44(5): 943-952. doi: 10.16383/j.aas.2017.c160383

基于位错理论的距离正则化水平集图像分割算法

doi: 10.16383/j.aas.2017.c160383
基金项目: 

国家科技支撑计划项目 2015BAK01B06

河南省自然科学基金 162300410032

详细信息
    作者简介:

    张帆  河南大学计算机与信息工程学院教授.主要研究方向为模式识别, 数字图像处理, 科学可视化.E-mail:zhangfan@henu.edu.cn

    通讯作者:

    张新红  河南大学软件学院副教授.主要研究方向为模式识别, 数字图像处理.本文通信作者.E-mail:10120039@vip.henu.edu.cn

Distance Regularized Level Set Image Segmentation Algorithm by Means of Dislocation Theory

Funds: 

National Key Technology Research and Development Program 2015BAK01B06

Natural Science Foundation of Henan Province 162300410032

More Information
    Author Bio:

     Professor at the School of Computer and Information Engineering, Henan University. His research interest covers pattern recognition, digital image processing, and scientific visualization

    Corresponding author: ZHANG Xin-Hong  Associate professor at the School of Software, Henan University. Her research interest covers pattern recognition and digital image processing. Corresponding author of this paper
  • 摘要: 把材料科学中的位错理论引入到水平集方法中.图像中水平集曲线的演化被看作刃位错中位错线的滑移过程,运用位错动力学机制推导出驱使水平集曲线演化的位错组态力.结合距离正则化水平集方法,把水平集方法的边缘检测函数替换为基于位错动力学理论的速度停止函数,并构建了新的距离正则化水平集函数演化方程.水平集曲线在位错组态力和速度停止函数的驱使下移动.位错组态力反映了单位长度曲线上的平均受力情况,不仅包括了图像梯度信息,也包括了位错组态力的作用范围等信息,因此可以有效地避免在局部图像梯度异常的情况下发生曲线停止演进的现象,或者避免在弱边缘处由于图像梯度较小发生局部边界泄漏的现象.实验结果表明,本文算法对弱边缘图像具有较好的分割效果.
    1)  本文责任编委 张长水
  • 图  1  图像分割结果

    Fig.  1  Image segmentation results

    图  2  多目标主体图像分割结果

    Fig.  2  Multi-object image segmentation results

    图  3  加噪声图像分割结果

    Fig.  3  Noise image segmentation results

    图  4  不同参数情况下的迭代次数

    Fig.  4  The number of iterations with different parameters

    图  5  不同参数情况下的运算时间

    Fig.  5  Operation time with different parameters

    图  6  弱边缘图像分割对比实验结果

    Fig.  6  The comparison of experimental results of weak boundary image segmentation

    图  7  图像分割对比实验结果

    Fig.  7  The comparison of experimental results of image segmentation

    表  1  图 6所示实验中各算法的迭代次数和运算时间的对比

    Table  1  The comparison of the iteration number and the operation time for the experiments shown in Fig. 6

    算法迭代次数 运算时间(秒)
    Caselles[1] 1 000 54.153543
    CV[2] 1 238 77.922941
    Bernard[3] 11 125.706081
    Shi[4] 129 75.320891
    DRLSE[11] 2 000 555.801824
    Min[6] 527 82.759437
    本文算法 1 833 482.658721
    下载: 导出CSV

    表  2  图 7所示实验中各算法的迭代次数、运算时间、面积重叠误差以及边界平均距离的对比

    Table  2  The comparison of the iteration number, the operation time, area overlap error, and average boundary distance for the experiments shown in Fig. 7

    算法迭代次数 运算时间(秒) $E_{\rm overlap}$ $D_{\rm mean}$
    Caselles[1] 5 000 159.536302 - -
    CV[2] 2 915 103.690744 21.19 $\%$ 13.62
    Bernard[3] 18 121.678605 14.68 $\%$ 9.54
    Shi[4] 798 184.167387 18.81 $\%$ 11.71
    DRLSE[11] 2 320 383.120423 0.42 $\%$ 0.31
    Min[6] 500 71.325241 - -
    Wang[7] 2 032 258.625021 0.65 $\%$ 0.48
    本文算法 1 865 285.869702 0.36 $\%$ 0.27
    下载: 导出CSV
  • [1] Caselles V, Kimmel R, Sapiro G. Geodesic active contours. International Journal of Computer Vision, 1997, 22(1):61-79 doi: 10.1023/A:1007979827043
    [2] Chan T F, Vese L A. Active contours without edges. IEEE Transactions on Image Processing, 2001, 10(2):266-277 http://dl.acm.org/citation.cfm?id=2320071
    [3] Bernard O, Friboulet D, Thévenaz P, Unser M. Variational b-spline level-set:a linear filtering approach for fast deformable model evolution. IEEE Transactions on Image Processing, 2009, 18(6):1179-1191 doi: 10.1109/TIP.2009.2017343
    [4] Shi Y G, Karl W C. A real-time algorithm for the approximation of level-set-based curve evolution. IEEE Transactions on Image Processing, 2008, 17(5):645-656 doi: 10.1109/TIP.2008.920737
    [5] Li C M, Huang R, Ding Z H, Gatenby J C, Metaxas D N, Gore J C. A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Transactions on Image Processing, 2011, 20(7):2007-2016 doi: 10.1109/TIP.2011.2146190
    [6] Min H, Jia W, Wang X F, Zhao Y, Hu R X, Luo Y T, Xue F, Lu J T. An intensity-texture model based level set method for image segmentation. Pattern Recognition, 2015, 48(4):1547-1562 doi: 10.1016/j.patcog.2014.10.018
    [7] Wang X F, Min H, Zou L, Zhang Y G. A novel level set method for image segmentation by incorporating local statistical analysis and global similarity measurement. Pattern Recognition, 2015, 48(1):189-204 doi: 10.1016/j.patcog.2014.07.008
    [8] Zhao Y Q, Wang X H, Wang X F, Shih F Y. Retinal vessels segmentation based on level set and region growing. Pattern Recognition, 2014, 47(7):2437-2446 doi: 10.1016/j.patcog.2014.01.006
    [9] 周则明, 孟勇, 黄思训, 胡宝鹏.基于能量最小化的星载SAR图像建筑物分割方法.自动化学报, 2016, 42(2):279-289 http://www.aas.net.cn/CN/abstract/abstract18817.shtml

    Zhou Ze-Ming, Meng Yong, Huang Si-Xun, Hu Bao-Peng. Building segmentation of spaceborne SAR images based on energy minimization. Acta Automatica Sinica, 2016, 42(2):279-289 http://www.aas.net.cn/CN/abstract/abstract18817.shtml
    [10] 张迎春, 郭禾.基于粗糙集和新能量公式的水平集图像分割.自动化学报, 2015, 41(11):1913-1925 http://www.aas.net.cn/CN/abstract/abstract18766.shtml

    Zhang Ying-Chun, Guo He. Level set image segmentation based on rough set and new energy formula. Acta Automatica Sinica, 2015, 41(11):1913-1925 http://www.aas.net.cn/CN/abstract/abstract18766.shtml
    [11] Adalsteinsson D, Sethian J A. A fast level set method for propagating interfaces. Journal of Computational Physics, 1995, 118(2):269-277 doi: 10.1006/jcph.1995.1098
    [12] Li C M, Kao C Y, Gore J C, Ding Z H. Minimization of region-scalable fitting energy for image segmentation. IEEE Transactions on Image Processing, 2008, 17(10):1940-1949 doi: 10.1109/TIP.2008.2002304
    [13] Li C M, Xu C Y, Gui C F, Fox M D. Distance regularized level set evolution and its application to image segmentation. IEEE Transactions on Image Processing, 2010, 19(12):3243-3254 doi: 10.1109/TIP.2010.2069690
    [14] Lemoine G, Delannay L, Idrissi H, Colla M S, Pardoen T. Dislocation and back stress dominated viscoplasticity in freestanding sub-micron Pd films. Acta Materialia, 2016, 111:10-21 doi: 10.1016/j.actamat.2016.03.038
    [15] Nagasako N, Asahi R, Isheim D, Seidman D N, Kuramoto S, Furuta T. Microscopic study of gum-metal alloys:a role of trace oxygen for dislocation-free deformation. Acta Materialia, 2016, 105:347-354 doi: 10.1016/j.actamat.2015.12.011
    [16] Guiu F. The stress dependence of the dislocation velocity in molybdenum. Physica Status Solidi, 2016, 25(1):203-207 http://www.researchgate.net/publication/243143363_The_stress_dependence_of_the_dislocation_velocity_in_molybdenum
    [17] Yuan R, Beyerlein I J, Zhou C Z. Statistical dislocation activation from grain boundaries and its role in the plastic anisotropy of nanotwinned copper. Acta Materialia, 2016, 110:8-18 doi: 10.1016/j.actamat.2016.02.064
    [18] Luo Y S, Chung A C S. Nonrigid image registration with crystal dislocation energy. IEEE Transactions on Image Processing, 2013, 22(1):229-243 http://ieeexplore.ieee.org/document/6220249/
    [19] Xiang Y, Chung A C S, Ye J. An active contour model for image segmentation based on elastic interaction. Journal of Computational Physics, 2006, 219(1):455-476 doi: 10.1016/j.jcp.2006.03.026
    [20] Badakhshannoory H, Saeedi P. A model-based validation scheme for organ segmentation in CT scan volumes. IEEE Transactions on Biomedical Engineering, 2011, 58(9):2681-2693 doi: 10.1109/TBME.2011.2161987
    [21] Heimann T, van Ginneken B, Styner M A, Arzhaeva Y, Aurich V, Bauer C, et al. Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Transactions on Medical Imaging, 2009, 28(8):1251-1265 doi: 10.1109/TMI.2009.2013851
    [22] Zhang K H, Zhang L, Yang M H. Fast compressive tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(10):2002-2015 doi: 10.1109/TPAMI.2014.2315808
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  2066
  • HTML全文浏览量:  210
  • PDF下载量:  918
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-09
  • 录用日期:  2017-05-04
  • 刊出日期:  2018-05-20

目录

    /

    返回文章
    返回