2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于GAN技术的自能源混合建模与参数辨识方法

孙秋野 胡旌伟 杨凌霄 张化光

孙秋野, 胡旌伟, 杨凌霄, 张化光. 基于GAN技术的自能源混合建模与参数辨识方法. 自动化学报, 2018, 44(5): 901-914. doi: 10.16383/j.aas.2018.c170487
引用本文: 孙秋野, 胡旌伟, 杨凌霄, 张化光. 基于GAN技术的自能源混合建模与参数辨识方法. 自动化学报, 2018, 44(5): 901-914. doi: 10.16383/j.aas.2018.c170487
SUN Qiu-Ye, HU Jing-Wei, YANG Ling-Xiao, ZHANG Hua-Guang. We-energy Hybrid Modeling and Parameter Identification With GAN Technology. ACTA AUTOMATICA SINICA, 2018, 44(5): 901-914. doi: 10.16383/j.aas.2018.c170487
Citation: SUN Qiu-Ye, HU Jing-Wei, YANG Ling-Xiao, ZHANG Hua-Guang. We-energy Hybrid Modeling and Parameter Identification With GAN Technology. ACTA AUTOMATICA SINICA, 2018, 44(5): 901-914. doi: 10.16383/j.aas.2018.c170487

基于GAN技术的自能源混合建模与参数辨识方法

doi: 10.16383/j.aas.2018.c170487
基金项目: 

国家自然科学基金 61573094

中央高校基础科研业务费 N140402001

国家自然科学基金重点项目 61433004

详细信息
    作者简介:

    胡旌伟   东北大学信息科学与工程学院博士研究生.主要研究方向为博弈论及其在能源互联网, 微网, 配电网等领域相关应用.E-mail:hjw neu@outlook.com

    杨凌霄   东北大学信息科学与工程学院博士研究生.主要研究方向为机器学习及其在能源互联网, 微网, 配电网等领域相关应用.E-mail:ylxiao66@163.com

    张化光   东北大学信息科学与工程学院教授.主要研究方向为自适应动态规划, 模糊控制, 网络控制, 混沌控制.E-mail:zhanghuaguang@mail.neu.edu.cn

    通讯作者:

    孙秋野   东北大学信息科学与工程学院教授.主要研究方向为网络控制技术, 分布式控制技术, 分布式优化分析及其在能源互联网, 微网, 配电网等领域相关应用.本文通信作者.E-mail:sunqiuye@mail.neu.edu.cn

We-energy Hybrid Modeling and Parameter Identification With GAN Technology

Funds: 

National Natural Science Foundation of China 61573094

The Central University Based Research Fees N140402001

the Key Program of National Natural Science Foundation of China 61433004

More Information
    Author Bio:

     Ph. D. candidate at the School of Information Science and Engineering, Northeastern University. His research interest covers game theory and its various applications in energy internet, microgrid, power distribution network

     Ph. D. candidate at the School of Information Science and Engineering, Northeastern University. Her research interest covers machine learning and its various applications in energy internet, microgrid, power distribution network

     Professor at the School of Information Science and Engineering, Northeastern University. His research interest covers adaptive dynamic programming, fuzzy control, network control, and chaos control

    Corresponding author: SUN Qiu-Ye  Professor at the School of Information Science and Engineering, Northeastern University. His research interest covers network control technology, distributed control technology, distributed optimization analysis and various applications in energy internet, microgrid, power distribution network. Corresponding author of this paper.
  • 摘要: 自能源(We-energy,WE)作为能源互联网的子单元旨在实现能量间的双向传输及灵活转换.由于自能源在不同工况下运行特性存在很大差异,现有方法还不能对其参数精确地辨识.为了解决上述问题,本文根据自能源网络结构提出了一种基于GAN技术的数据——机理混合驱动方法对自能源模型参数辨识.将GAN(Generative adversarial networks)模型中训练数据与专家经验结合进行模糊分类,解决了自能源在不同运行工况下的模型切换问题.通过应用含策略梯度反馈的改进GAN技术对模型进行训练,解决了自能源中输出序列离散的问题.仿真结果表明,提出的模型具有较高的辨识精度和更好的推广性,能有效地拟合系统不同工况下各节点的状态变化.
    1)  本文责任编委 谭营
  • 图  1  自能源结构

    Fig.  1  Structure of we-energy

    图  2  电力子系统模型

    Fig.  2  Power subsystem model for we-energy

    图  3  热力子系统模型

    Fig.  3  Heating subsystem model for we-energy

    图  4  天然气子系统模型

    Fig.  4  Natural gas pipeline model for we-energy

    图  5  基于模糊分类的GAN模型

    Fig.  5  GAN structure based on fuzzy classification

    图  6  自能源电力子系统运行状态

    Fig.  6  Operating state of power subsystem in WE

    图  7  自能源热力子系统运行状态

    Fig.  7  Operating state of heating network in WE

    图  8  自能源天然气子系统运行状态

    Fig.  8  Operating state of natural gas network in WE

    图  9  三种参数辨识方法的比较结果

    Fig.  9  Comparison results of three parameter identification methods

    图  10  自能源输出拟合曲线

    Fig.  10  Output fitting curves of we-energy

    图  11  电压异常时自能源输出曲线

    Fig.  11  Output curves of we-energy in abnormal voltage

    图  12  液压异常时自能源输出曲线

    Fig.  12  Output curves of WE in abnormal fluid pressure

    图  13  气压异常时自能源输出曲线

    Fig.  13  Output curves of WE in abnormal gas pressure

    表  1  自能源系统设备参数

    Table  1  Parameter of equipment in WE system

    自能源系统 容量(kW) 功率下限(kW) 功率上限(kW)
    光伏发电 40 0 12
    风力发电 1×3 0 30
    电储能 5×3 $-$10 10
    微燃气轮机 80 20 80
    燃气锅炉 40×2 20 80
    电锅炉 5×4 0 20
    热储能 5×2 $-$10 10
    水泵 0.5×4 0.4 0.6
    压缩机 0.3×2 0.25 0.35
    下载: 导出CSV

    表  2  自能源常规运行时模型参数辨识结果

    Table  2  Parameter identification results in regular

    参数 估值 参数 估值 参数 估值
    ${\theta _{11}}$ 0.035 ${\theta _{23}}$ 0.213 ${\theta _{41}}$ $-$0.106
    ${\theta _{12}}$ 0.136 ${\theta _{24}}$ $-$0.622 ${\theta _{42}}$ $-$0.127
    ${\theta _{13}}$ 0.078 ${\theta _{31}}$ 0.296 ${\theta _{43}}$ 0.312
    ${\theta _{14}}$ $-$0.235 ${\theta _{32}}$ 0.065 ${\theta _{44}}$ 0.225
    ${\theta _{15}}$ 0.438 ${\theta _{33}}$ 0.386 ${\theta _{45}}$ 0.064
    ${\theta _{21}}$ 0.164 ${\theta _{34}}$ 0.176 ${\theta _{46}}$ 0.133
    ${\theta _{22}}$ 0.153 ${\theta _{35}}$ 0.217
    下载: 导出CSV

    表  3  自能源在电压异常时模型参数辨识结果

    Table  3  Parameter identification results of WE model in abnormal voltage

    参数 估值 参数 估值 参数 估值
    ${\theta _{11}}$ 0.014 ${\theta _{23}}$ 0.178 ${\theta _{41}}$ $-$0.157
    ${\theta _{12}}$ 0.123 ${\theta _{24}}$ $-$0.534 ${\theta _{42}}$ $-$0.134
    ${\theta _{13}}$ 0.081 ${\theta _{31}}$ 0.237 ${\theta _{43}}$ 0.247
    ${\theta _{14}}$ $-$0.211 ${\theta _{32}}$ 0.049 ${\theta _{44}}$ 0.265
    ${\theta _{15}}$ 0.369 ${\theta _{33}}$ 0.276 ${\theta _{45}}$ 0.067
    ${\theta _{21}}$ 0.145 ${\theta _{34}}$ 0.198 ${\theta _{46}}$ 0.233
    ${\theta _{22}}$ 0.147 ${\theta _{35}}$ 0.234
    下载: 导出CSV

    表  4  自能源在液压异常时模型参数辨识结果

    Table  4  Parameter identification results of WE model in abnormal fluid pressure

    参数 估值 参数 估值 参数 估值
    ${\theta _{11}}$ 0.041 ${\theta _{23}}$ 0.206 ${\theta _{41}}$ $-$0.067
    ${\theta _{12}}$ 0.089 ${\theta _{24}}$ $-$0.598 ${\theta _{42}}$ $-$0.131
    ${\theta _{13}}$ 0.196 ${\theta _{31}}$ 0.256 ${\theta _{43}}$ 0.276
    ${\theta _{14}}$ $-$0.158 ${\theta _{32}}$ 0.124 ${\theta _{44}}$ 0.256
    ${\theta _{15}}$ 0.367 ${\theta _{33}}$ 0.267 ${\theta _{45}}$ 0.065
    ${\theta _{21}}$ 0.146 ${\theta _{34}}$ 0.203 ${\theta _{46}}$ 0.118
    ${\theta _{22}}$ 0.145 ${\theta _{35}}$ 0.178
    下载: 导出CSV

    表  5  自能源在气压异常时模型参数辨识结果

    Table  5  Parameter identification results of WE model in abnormal gas pressure

    参数 估值 参数 估值 参数 估值
    ${\theta _{11}}$ 0.045 ${\theta _{23}}$ 0.157 ${\theta _{41}}$ $-$0.095
    ${\theta _{12}}$ 0.246 ${\theta _{24}}$ $-$0.576 ${\theta _{42}}$ $-$0.108
    ${\theta _{13}}$ 0.069 ${\theta _{31}}$ 0.146 ${\theta _{43}}$ 0.289
    ${\theta _{14}}$ $-$0.246 ${\theta _{32}}$ 0.068 ${\theta _{44}}$ 0.227
    ${\theta _{15}}$ 0.398 ${\theta _{33}}$ 0.356 ${\theta _{45}}$ 0.074
    ${\theta _{21}}$ 0.148 ${\theta _{34}}$ 0.269 ${\theta _{46}}$ 0.145
    ${\theta _{22}}$ 0.169 ${\theta _{35}}$ 0.235
    下载: 导出CSV
  • [1] 孙秋野, 滕菲, 张化光, 马大中.能源互联网动态协调优化控制体系构建.中国电机工程学报, 2015, 35(14):3667-3677 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zgdc201514023&dbname=CJFD&dbcode=CJFQ

    Sun Qiu-Ye, Teng Fei, Zhang Hua-Guang, Ma Da-Zhong. Construction of dynamic coordinated optimization control system for energy internet. Proceedings of the CSEE, 2015, 35(14):3667-3677 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zgdc201514023&dbname=CJFD&dbcode=CJFQ
    [2] 孙秋野, 滕菲, 张化光.能源互联网及其关键控制问题.自动化学报, 2017, 43(2):176-194 http://www.aas.net.cn/CN/abstract/abstract18999.shtml

    Sun Qiu-Ye, Teng Fei, Zhang Hua-Guang. Energy internet and its key control issues. Acta Automatica Sinica, 2017, 43(2):176-194 http://www.aas.net.cn/CN/abstract/abstract18999.shtml
    [3] Hu J W, Sun Q Y, Teng F. A game-theoretic pricing model for energy internet in day-ahead trading market considering distributed generations uncertainty. In: Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence (SSCI). Athens, Greece: IEEE, 2016. 1-7
    [4] Son S E, Lee S H, Choi D H, Song K B, Park J D, Kwon Y H, et al. Improvement of composite load modeling based on parameter sensitivity and dependency analyses. IEEE Transactions on Power Systems, 2014, 29(1):242-250 doi: 10.1109/TPWRS.2013.2281455
    [5] Kim J K, An K, Ma J, Shin J, Song K B, Park J D, et al. Fast and reliable estimation of composite load model parameters using analytical similarity of parameter sensitivity. IEEE Transactions on Power Systems, 2016, 31(1):663-671 doi: 10.1109/TPWRS.2015.2409116
    [6] Duquette J, Rowe A, Wild P. Thermal performance of a steady state physical pipe model for simulating district heating grids with variable flow. Applied Energy, 2016, 178:383-393 doi: 10.1016/j.apenergy.2016.06.092
    [7] Behrooz H A, Boozarjomehry R B. Modeling and state estimation for gas transmission networks. Journal of Natural Gas Science and Engineering, 2015, 22:551-570 doi: 10.1016/j.jngse.2015.01.002
    [8] Pambour K A, Bolado-Lavin R, Dijkema G P J. An integrated transient model for simulating the operation of natural gas transport systems. Journal of Natural Gas Science and Engineering, 2016, 28:672-690 doi: 10.1016/j.jngse.2015.11.036
    [9] Haben S, Singleton C, Grindrod P. Analysis and clustering of residential customers energy behavioral demand using smart meter data. IEEE Transactions on Smart Grid, 2016, 7(1):136-144 doi: 10.1109/TSG.2015.2409786
    [10] Fernandes M P, Viegas J L, Vieira S M, Sousa J M. Analysis of residential natural gas consumers using fuzzy c-means clustering. In: Proceedings of the 2016 IEEE International Conference on Fuzzy Systems. Vancouver, Canada: IEEE, 2016. 1484-1491
    [11] Sun G, Cong Y, Hou D D, Fan H J, Xu X W, Yu H B. Joint household characteristic prediction via smart meter data. IEEE Transactions on Smart Grid, DOI: 10.1109/TSG.2017.2778428
    [12] 孙明轩, 毕宏博.学习辨识:最小二乘算法及其重复一致性.自动化学报, 2012, 38(5):698-706 http://www.aas.net.cn/CN/abstract/abstract13741.shtml

    Sun Ming-Xuan, Bi Hong-Bo. Learning identiflcation:least squares algorithms and their repetitive consistency. Acta Automatica Sinica, 2012, 38(5):698-706 http://www.aas.net.cn/CN/abstract/abstract13741.shtml
    [13] 顾成奎, 王正欧.利用基序列逼近的一类非线性时变系统辨识的实用方法.系统工程, 2001, 19(4):22-26 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xtgc200104005

    Gu Cheng-Kui, Wang Zheng-Ou. A practical method for identiflcation nonlinear time-varying systems using basis sequences. Systems Engineering, 2001, 19(4):22-26 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xtgc200104005
    [14] 王乐一, 赵文虓.系统辨识:新的模式、挑战及机遇.自动化学报, 2013, 39(7):933-942 http://www.aas.net.cn/CN/abstract/abstract18122.shtml

    Wang Le-Yi, Zhao Wen-Xiao. System identiflcation:new paradigms, challenges, and opportunities. Acta Automatica Sinica, 2013, 39(7):933-942 http://www.aas.net.cn/CN/abstract/abstract18122.shtml
    [15] 杨刚, 王乐, 戴丽珍, 杨辉, 陆荣秀.基于AQPSO的RBF神经网络自组织学习.控制与决策, DOI: 10.13195/j.kzyjc.2017.0595

    Yang Gang, Wang Le, Dai Li-Zhen, Yang Hui, Lu Rong-Xiu. AQPSO-based self-organization learning of RBF neural network. Control and Decision, DOI: 10.13195/j.kzyjc.2017.0595
    [16] 钱富才, 黄姣茹, 秦新强.基于鲁棒优化的系统辨识算法研究.自动化学报, 2014, 40(5):988-993 http://www.aas.net.cn/CN/abstract/abstract18368.shtml

    Qian Fu-Cai, Huang Jiao-Ru, Qin Xin-Qiang. Research on algorithm for system identiflcation based on robust optimization. Acta Automatica Sinica, 2014, 40(5):988-993 http://www.aas.net.cn/CN/abstract/abstract18368.shtml
    [17] Xu J P, Tan P N, Zhou J Y, Luo L F. Online multi-task learning framework for ensemble forecasting. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(6):1268-1280 doi: 10.1109/TKDE.2017.2662006
    [18] Cong Y, Sun G, Liu J, Yu H B, Luo J B. User attribute discovery with missing labels. Pattern Recognition, 2018, 73:33-46 doi: 10.1016/j.patcog.2017.07.012
    [19] 汤涌.电力负荷的数学模型与建模技术.北京:科学出版社, 2012. 30-32

    Tang Yong. Mathematical Model and Modeling Technology of Power Load. Beijing:Science Press, 2012. 30-32
    [20] 朱建全, 李颖, 谭伟.基于特性融合的电力负荷建模.电网技术, 2015, 39(5):1358-1364 http://www.cqvip.com/QK/91996X/201505/664676915.html

    Zhu Jian-Quan, Li Ying, Tan Wei. Characteristic fusion based on electric load modeling. Power System Technology, 2015, 39(5):1358-1364 http://www.cqvip.com/QK/91996X/201505/664676915.html
    [21] Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, WardeFarley D, Ozair S, et al. Generative adversarial nets. In: Proceedings of the 2014 Conference on Advances in Neural Information Processing Systems 27. Montreal, Canada: Curran Associates, Inc., 2014. 2672-2680
    [22] 王坤峰, 苟超, 段艳杰, 林懿伦, 郑心湖, 王飞跃.生成式对抗网络GAN的研究进展与展望.自动化学报, 2017, 43(3):321-332 http://www.aas.net.cn/CN/abstract/abstract19012.shtml

    Wang Kun-Feng, Gou Chao, Duan Yan-Jie, Lin Yi-Lun, Zheng Xin-Hu, Wang Fei-Yue. Generative adversarial networks:the state of the art and beyond. Acta Automatica Sinica, 2017, 43(3):321-332 http://www.aas.net.cn/CN/abstract/abstract19012.shtml
    [23] Zhang H, Xu T, Li H S, Zhang S T, Huang X L, Wang X G, et al. StackGAN: text to photo-realistic image synthesis with stacked generative adversarial networks. arXiv preprint arXiv: 1612.03242, 2016
    [24] Santana E, Hotz G. Learning a driving simulator. arXiv preprint arXiv: 1608.01230, 2016
    [25] 王飞跃.软件定义的系统与知识自动化:从牛顿到默顿的平行升华.自动化学报, 2015, 41(1):1-8 http://www.aas.net.cn/CN/abstract/abstract18578.shtml

    Wang Fei-Yue. Software-deflned systems and knowledge automation:a parallel paradigm shift from Newton to Merton. Acta Automatica Sinica, 2015, 41(1):1-8 http://www.aas.net.cn/CN/abstract/abstract18578.shtml
    [26] Qi G J. Loss-sensitive generative adversarial networks on Lipschitz densities. arXiv preprint arXiv: 1701.06264, 2017
    [27] Arjovsky M, Chintala S, Bottou L. Wasserstein GAN. arXiv preprint arXiv: 1701.07875, 2017
    [28] Nowozin S, Cseke B, Tomioka R. F-GAN: training generative neural samplers using variational divergence minimization. In: Proceedings of the 2016 Neural Information Processing Systems. Barcelona, Spain: Curran Associates, Inc., 2016. 271-279
    [29] Saito Y, Takamichi S, Saruwatari H. Statistical parametric speech synthesis incorporating generative adversarial networks. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2018, 26(1):84-96 doi: 10.1109/TASLP.2017.2761547
    [30] Chen X, Duan Y, Houthooft R, Schulman J, Sutskever I, Abbeel P. InfoGAN: interpretable representation learning by information maximizing generative adversarial nets. In: Proceedings of the 2016 Neural Information Processing Systems. Barcelona, Spain: Curran Associates, Inc., 2016. 2172-2180
    [31] Yu L T, Zhang W N, Wang J, Yu Y. SeqGAN: sequence generative adversarial nets with policy gradient. In: Proceedings of the 31st AAAI Conference on Artiflcial Intelligence. San Francisco, California, USA: AAAI, 2017. 2852-2858
    [32] Sun Q Y, Zhou J G, Guerrero J M, Zhang H G. Hybrid three-phase/single-phase microgrid architecture with power management capabilities. IEEE Transactions on Power Electronics, 2015, 30(10):5964-5977 doi: 10.1109/TPEL.2014.2379925
    [33] Zhao Z, Chen W H, Wu X M, Chen P C Y, Liu J M. LSTM network:a deep learning approach for short-term tra-c forecast. IET Intelligent Transport Systems, 2017, 11(2):68-75 doi: 10.1049/iet-its.2016.0208
    [34] Palangi H, Deng L, Shen Y L, Gao J F, He X D, Chen J S, et al. Deep sentence embedding using long short-term memory networks:analysis and application to information retrieval. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2016, 24(4):694-707 doi: 10.1109/TASLP.2016.2520371
    [35] Kim Y. Convolutional neural networks for sentence classiflcation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Doha, Qatar: ACL, 2014. 1746-1751
    [36] 孙秋野, 王冰玉, 黄博南, 马大中.狭义能源互联网优化控制框架及实现.中国电机工程学报, 2015, 35(18):4571-4580 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdjgcxb201518002

    Sun Qiu-Ye, Wang Bing-Yu, Huang Bo-Nan, Ma Da-Zhong. The optimization control and implementation for the special energy internet. Proceedings of the CSEE, 2015, 35(18):4571-4580 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdjgcxb201518002
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  3414
  • HTML全文浏览量:  592
  • PDF下载量:  1204
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-31
  • 录用日期:  2018-03-07
  • 刊出日期:  2018-05-20

目录

    /

    返回文章
    返回