2021年 第47卷 第3期
集群是鱼类生物中一种常见的现象, 特定编队的集群运动可以显著提高鱼群的游动效率. 鱼集群游动节能机理的研究为机器人集群编队设计和控制提供启发与帮助, 得到了研究人员的广泛关注. 本文介绍了鱼集群游动节能机理研究的主要方法及最新的研究成果, 将研究方法分为鱼群观察分析法、计算流体力学仿真法和实验装置研究法, 并基于此对近些年的研究成果进行了综述和分析, 最后列举了鱼集群游动节能机理研究的主要问题与未来发展方向.
Wiener在控制论(Cybernetics)中强调了两大类控制对象: 机器与动物. 半个世纪以来, 机器控制领域已形成一套较为完备且先进的控制理论, 而在生物控制方面, 由于生物系统的特殊性和复杂性, 对生命的基本组成单位—细胞的控制仍然进展缓慢. 近年来, 随着合成生物学技术的发展, 基于细胞—计算机交互的胞外控制手段开始引起研究者们的关注, 为细胞控制带来了前所未有的机遇. 胞机交互的方式能够适应生物系统的特殊性, 发挥计算机控制的优势, 实现细胞的自动化实时控制, 为人类研究细胞内部基因调控机制与其他各项生命活动提供了大量的数据与方法支持. 本文根据目前基于胞机交互的细胞控制工作, 归纳与总结了胞机交互中常用的生物学工具以及控制算法, 分析了细胞控制的特殊性与难点, 指出研究实现细胞智能控制的可行性与重要性.
流程工业是制造业的重要组成部分, 是国民经济发展的重要基础, 主要包括化工、冶金、石化等行业, 其安全高效的生产对国家而言具有重要的战略意义. 然而, 流程工业物理化学变化反应复杂、流程间能质流严重耦合、多目标冲突、在线实验风险大, 给生产流程系统建模与高效协同优化带来极大困难, 严重制约了生产质量和资源利用率的进一步提升. 随着信息技术与人工智能的发展, 建立虚实结合、协同优化运行的流程工业数字孪生生产线所需技术逐渐成熟, 其在流程工业的应用价值与潜力日益凸显. 本文首先阐述数字孪生在流程工业应用的必要性与重要性, 并通过边界定义法将数字孪生与信息物理系统(Cyber-physical system, CPS)、工业互联网等概念进行对比分析,从而明确数字孪生的基本内涵与功能边界. 其次描述流程工业抽象模型和数字孪生理论模型间的映射关系, 并分析了如何用数字孪生技术解决流程工业系统建模与高效协同优化的瓶颈问题. 最后, 从数字孪生系统构建的角度探讨数字孪生发展的关键技术, 并以一条炼铁生产线为例, 展示数字孪生技术在实际工业中的应用解决方案.
信息时代产生的大量数据使机器学习技术成功地应用于许多领域. 大多数机器学习技术需要满足训练集与测试集独立同分布的假设, 但在实际应用中这个假设很难满足. 域适应是一种在训练集和测试集不满足独立同分布条件下的机器学习技术. 一般情况下的域适应只适用于源域目标域特征空间与标签空间都相同的情况, 然而实际上这个条件很难满足. 为了增强域适应技术的适用性, 复杂情况下的域适应逐渐成为研究热点, 其中标签空间不一致和复杂目标域情况下的域适应技术是近年来的新兴方向. 随着深度学习技术的崛起, 深度域适应已经成为域适应研究领域中的主流方法. 本文对一般情况与复杂情况下的深度域适应的研究进展进行综述, 对其缺点进行总结, 并对其未来的发展趋势进行预测. 首先对迁移学习相关概念进行介绍, 然后分别对一般情况与复杂情况下的域适应、域适应技术的应用以及域适应方法性能的实验结果进行综述, 最后对域适应领域的未来发展趋势进行展望并对全文内容进行总结.
在计算机视觉领域, 全景分割是一个新颖且重要的研究主题, 它是机器感知、自动驾驶等新兴前沿技术的基石, 具有十分重要的研究意义. 本文综述了基于深度学习的全景分割研究的最新进展, 首先总结了全景分割任务的基本处理流程, 然后对已发表的全景分割工作基于其网络结构特点进行分类, 并进行了全面的介绍与分析, 最后对全景分割任务目前面临的问题以及未来的发展趋势做出了分析, 并针对所面临的问题提出了一些切实可行的解决思路.
随着5G商用规模部署、下一代互联网IPv6的深化应用, 新一代网络技术的发展引发产业界的关注. 网络的智能化被认为是新一代网络发展的趋势. 网络为数字化社会的信息传输提供了基础, 而网络本身的数字化是智能化发展的先决条件. 面向数字化、智能化的新一代网络发展目标, 本文首次系统化提出了 “数字孪生网络(DTN: Digital twin network)” 的概念, 给出了系统架构设计, 分析了DTN的关键技术. 通过对DTN发展挑战的分析, 本文指出了未来 “数字孪生网络” 的发展方向.
无纺布生产过程中产生的疵点会严重影响产品质量并限制生产效率. 提高疵点检测的自动化程度对于无纺布的生产效率和质量管控至关重要. 传统疵点检测方法难以应对纹理、疵点类型以及环境变化等问题, 限制了其应用范围. 近年来基于卷积神经网络的方法在疵点检测领域得到了广泛应用, 具有泛化性强、准确度高的特点. 但是在无纺布生产过程中, 布匹宽度大、速度快的特点会产生大量图像数据, 基于卷积神经网络的方法难以实现实时检测. 针对上述难题, 本文提出了一种基于最大稳定极值区域分析与卷积神经网络协同的疵点实时检测方法, 并设计了分布式计算处理架构应对数据流过大的问题. 在实际生产部署应用中, 本文所设计的系统与算法无需使用专用计算硬件(GPU、FPGA等), 通过8台工控机与16路工业摄像头对复卷机上布宽2.8 m、速度30 m/min的无纺布进行分布式实时在线检测, 大幅度提高无纺布生产中疵点检测的自动化程度与效率. 本文所提出的系统能够实现对0.3 mm以上疵点召回率100%, 对0.1 mm丝状疵点召回率98.8%.
区块链技术是一种新兴技术, 它具备防篡改、去中心化、分布式存储等特点, 可以有效地解决现有数据共享模型中隐私安全、用户控制权不足以及单点故障问题. 本文以电子病历(Electronic health record, EHR)共享为例提出一种基于集成信用度评估智能合约的数据共享访问控制模型, 为患者提供可信EHR共享环境和动态访问控制策略接口. 实验表明所提模型有效解决了患者隐私安全和对EHR控制权不足的问题. 同时就模型的特点、安全性以及性能进行了分析.
双流卷积神经网络能够获取视频局部空间和时间特征的一阶统计信息, 测试阶段将多个视频局部特征的分类器分数平均作为最终的预测. 但是, 一阶统计信息不能充分建模空间和时间特征分布, 测试阶段也未考虑使用多个视频局部特征之间的更高阶统计信息. 针对这两个问题, 本文提出一种基于二阶聚合的视频多阶信息融合方法. 首先, 通过建立二阶双流模型得到视频局部特征的二阶统计信息, 与一阶统计信息形成多阶信息. 其次, 将基于多阶信息的视频局部特征分别进行二阶聚合, 形成高阶视频全局表达. 最后, 采用两种策略融合该表达. 实验表明, 本文方法能够有效提高行为识别精度, 在HMDB51和UCF101数据集上的识别准确率比双流卷积神经网络分别提升了8 % 和2.1 %, 融合改进的密集点轨迹(Improved dense trajectory, IDT) 特征之后, 其性能进一步提升.
城市污水处理过程(Municipal wastewater treatment process, MWWTP)是一个典型的复杂流程工业过程, 其优化运行涉及到多个动态性能指标. 为了实现城市污水处理运行过程的优化控制, 本文提出了一种城市污水处理过程动态多目标智能优化控制方法(Dynamic multiobjective intelligent optimal control, DMIOC). 首先, 建立了一种基于自适应核函数的动态性能指标模型, 实现了城市污水处理关键性能指标的准确描述; 其次, 设计了一种基于自适应飞行参数调整机制的动态多目标粒子群优化算法(Dynamic multiobjective particle swarm optimization, DMOPSO), 可有效平衡粒子的多样性和收敛性, 完成了溶解氧和硝态氮优化设定值的实时获取; 最后, 利用多回路PID控制方法对溶解氧和硝态氮优化设定值进行控制, 实现了城市污水处理过程安全稳定运行. 将提出的DMIOC应用于城市污水处理基准仿真平台, 实验结果显示: DMIOC 能够提高溶解氧和硝态氮的控制效果, 实现城市污水处理过程出水水质达标, 并降低运行成本.
传统的基于直方图分布的目标颜色模型, 由于跟踪过程的实时性要求其区间划分不宜过细, 因此易导致同一区间有差异的颜色难以区分; 此外, 还存在易受背景干扰的问题. 本文提出一种新的背景抑制目标颜色分布模型, 并在此基础上设计了一个合成式的目标跟踪算法. 新的颜色分布模型将一阶及二阶统计信息纳入模型, 并设计了基于人类视觉特性的权重计算方式, 能有效区分同一区间内的差异色且抑制背景颜色在模型中的比重; 算法基于该颜色模型构建目标的产生式模型, 并引入结合方向梯度直方图(Histogram of oriented gradient, HOG) 特征的相关滤波器对目标形状进行判别式建模, 同时将两个模型相互融合; 针对融合参数不易设计的难点, 分析并建立了一套定性原则, 用于判定模型各自的可信度并指导模型更新; 最终利用粒子群算法的搜索机制对候选目标的位置、尺度进行搜索, 其中适应值函数设计为两个跟踪器的融合结果. 实验结果表明, 本文算法在绝大多数情况下准确率较对比算法更优且能满足实时性要求.
针对挠性航天器系统中同时存在单框架控制力矩陀螺群(Single gimbaled control moment gyroscopes, SGCMGs) 摩擦非线性、电磁干扰力矩、惯量摄动以及外部干扰等问题, 提出了一种有限时间自适应鲁棒控制(Finite-time adaptive robust control, FTARC) 方法. 针对系统中存在未知参数的情况, 分别设计自适应更新律, 使得控制器的设计不依赖参数信息, 同时减小外部干扰对系统的不利影响. 应用Lyapunov稳定性理论证明了闭环系统姿态角误差和姿态角速度误差可在有限时间内收敛到原点附近的邻域内. 仿真结果表明, 所提控制律可实现挠性航天器姿态快速机动, 并获得甚高指向精度.
现有进化算法大都从问题的零初始信息开始搜索最优解, 没有利用先前解决相似问题时获得的历史信息, 在一定程度上浪费了计算资源.将迁移学习的思想扩展到进化优化领域, 本文研究一种基于相似历史信息迁移学习的进化优化框架.从已解决问题的模型库中找到与新问题匹配的历史问题, 将历史问题对应的知识迁移到新问题的求解过程中, 以提高种群的搜索效率.首先, 定义一种基于多分布估计的最大均值差异指标, 用来评价新问题与历史模型之间的匹配程度; 接着, 将相匹配的历史问题的知识迁移到新问题中, 给出一种基于模型匹配程度的进化种群初始化策略, 以加快算法的搜索速度; 然后, 给出一种基于迭代聚类的代表个体保存策略, 保留求解过程中产生的优势信息, 用于更新历史模型库; 最后, 将自适应骨干粒子群优化算法嵌入到所提框架, 给出一种基于相似历史信息迁移学习的骨干粒子群优化算法.针对多个改进的典型测试函数, 实验结果表明, 所提迁移策略可以加速粒子群的搜索过程, 显著提高算法的收敛速度和搜索效率.
针对移动机器人环境认知问题, 受老鼠海马体位置细胞在特定位置放电的启发, 构建动态增减位置细胞认知地图模型(Dynamic growing and pruning place cells-based cognitive map model, DGP-PCCMM), 使机器人在与环境交互的过程中自组织构建认知地图, 进行环境认知. 初始时刻, 认知地图由初始点处激活的位置细胞构成; 随着与环境的交互, 逐渐得到不同位置点处激活的位置细胞, 并建立其之间的连接关系, 实现认知地图的动态增长; 如果机器人在已访问区域发现新的障碍物, 利用动态缩减机制对认知地图进行更新. 此外, 提出一种位置细胞序列规划算法, 该算法以所构建的认知地图作为输入, 进行位置细胞序列规划, 实现机器人导航. 为验证模型的正确性和有效性, 对Tolman的经典老鼠绕道实验进行再现. 实验结果表明, 本文模型能使机器人在与环境交互的过程中动态构建并更新认知地图, 能初步完成对Tolman老鼠绕道实验的再现. 此外, 进行了与四叉树栅格地图、动态窗口法的对比实验和与其他认知地图模型的讨论分析. 结果表明了本文方法在所构建地图的简洁性、完整性和对动态障碍适应性方面的优势.
孤独症是一种先天的大脑发育障碍性疾病, 孤独症儿童的早期评估诊断尤为重要. 脑电图(Electroencephalography, EEG)是大脑神经细胞电生理活动在大脑皮层或头皮表面的总体反映. EEG信号中包含了大量的生理与疾病信息, 可为某些脑疾病提供诊断依据. 本文按照国际10-20系统标准电极分布将全脑划分为5个脑区, 采用小波相干性算法对孤独症(Autistic spectrum disorder, ASD)儿童和正常(Typical development, TD)儿童任意两通道之间在不同节律下的连接性进行计算, 按脑区进行划分, 得到脑区内和跨脑区功能连接结果, 随后应用独立样本t检验分析和FDR (False discovery rate)多重校正方法后给出脑区内和跨脑区在不同节律下的组间差异.结果表明, ASD组相对于TD组跨脑区连接和脑区内连接普遍较弱, 除delta频段外其他频段均差异显著, 尤其是额叶与其他脑区连接. 多重校正后通道间长程连接中额叶与枕叶、中央区与枕叶在四个频段差异显著较明显, 通道间短程连接额叶在theta和alpha频段较显著, 其他频段其他脑区对比不显著.
图像风格转化在计算机视觉领域广受关注, 其研究目标在于将输入图像利用计算机转化为具有某种特定艺术风格的图像. 线描画作为一种古老的画种, 它通过简单的线条勾勒物体的轮廓, 具有简约、抽象的风格. 本文提出一种基于方向场正则化的线描画生成算法, 该算法由4部分构成: 1)采用非局部平均滤波对输入图像进行预处理; 2)计算输入图像的方向场, 并基于自表示的思想对方向场进行Tikhonov正则化, 为了提高运算速度, 采用Sherman-Morrison-Woodbury公式来对正则化算法进行加速; 3)以正则方向场作为引导, 对预处理图像作高斯差分滤波; 4)根据人类视觉系统的非线性特点, 设计感知阈值(Perceptual thresholding)算法来对高斯差分滤波的结果进行阈值处理, 得到二值化的线描画图像. 仿真实验表明, 该算法可将输入图像转化为线条流畅且能有效表达输入图像主要信息的线描画图像.
邻域粗糙集可以直接处理数值型数据, F- 粗糙集是第一个动态粗糙集模型. 针对动态变化的数值型数据, 结合邻域粗糙集和F- 粗糙集的优势, 提出了F- 邻域粗糙集和F- 邻域并行约简. 首先, 定义了F- 邻域粗糙集上下近似、边界区域; 其次, 在F- 邻域粗糙集中提出了F- 属性依赖度和属性重要度矩阵; 根据F- 属性依赖度和属性重要度矩阵分别提出了属性约简算法, 证明了两种约简方法的约简结果等价; 最后, 比对实验在UCI数据集、真实数据集和MATLAB生成数据集上完成, 实验结果显示, 与相关算法比较, F- 邻域粗糙集可以获得更好的分类准确率. 为粗糙集在大数据方面的应用增加了一种新方法.
研究了具有拓扑切换特性的离散型不确定时空网络的指数同步问题. 基于稳定性理论, 构造了具有指数形式的Lyapunov函数, 并设计了同步控制器的结构方程, 进而获得了时空网络的同步条件. 同时, 我们设计了未知参数的识别律, 有效地识别了网络中的未知参数. 最后, 选取实际的激光相位共轭波空间扩展系统作为网络节点进行仿真模拟, 验证了同步方案的可行性与控制器的有效性. 通过构造具有指数形式的Lyapunov函数, 能够有效地调节网络的同步速率. 并且获得的同步条件中不包含网络的耦合矩阵项, 消除了拓扑切换特性对同步过程的影响, 使得网络同步性能更加稳定.