[1]
|
Xu X F, Zong G D, Hou L L. Passivity-based stabilization and passive synchronization of complex nonlinear networks. Neurocomputing, 2016, 175: 101-109 doi: 10.1016/j.neucom.2015.10.040
|
[2]
|
Wang F, Yang Y Q, Hu M F, Xu X Y. Projective cluster synchronization of fractional-order coupled-delay complex network via adaptive pinning control. Physica A, 2015, 434: 134-143 doi: 10.1016/j.physa.2015.03.089
|
[3]
|
Xu Y H, Zhou W N, Fang J A, Xie C R, Tong D B. Finite-time synchronization of the complex dynamical network with non-derivative and derivative coupling. Neurocomputing, 2016, 173: 1356-1361 doi: 10.1016/j.neucom.2015.09.008
|
[4]
|
Wu H Q, Wang L F, Niu P F, Wang Y. Global projective synchronization in finite time of nonidentical fractionalorder neural networks based on sliding mode control strategy. Neurocomputing, 2017, 235: 264-273 doi: 10.1016/j.neucom.2017.01.022
|
[5]
|
Anbuvithya R, Mathiyalagan K, Sakthivel R, PrakashP. Non-fragile synchronization of memristive BAM networks with random feedback gain fluctuations. Communications in Nonlinear Science and Numerical Simulation, 2015, 29: 427-440 doi: 10.1016/j.cnsns.2015.05.020
|
[6]
|
Yang Y, Wang Y, Li T Z. Outer synchronization of fractional-order complex dynamical networks. Optik, 2016, 127: 7395-7407 doi: 10.1016/j.ijleo.2016.05.029
|
[7]
|
Wang S G, Zheng S, Zhang B W, Cao H T. Modified function projective lag synchronization of uncertaincomplex networks with time-varying coupling strength. Optik, 2016, 127: 4716-4725 doi: 10.1016/j.ijleo.2016.01.085
|
[8]
|
Chandrasekar A, Rakkiyappan R. Impulsive controller design for exponential synchronization of delayed stochastic memristor-based recurrent neural networks. Neurocomputing, 2016, 173: 1348-1355 doi: 10.1016/j.neucom.2015.08.088
|
[9]
|
Srinivasan K, Chandrasekar V K, Gladwin P R, Murali K, Lakshmanan M. Different types of synchronization in coupled network based chaotic circuits. Communications in Nonlinear Science and Numerical Simulation, 2016, 39: 156-168 doi: 10.1016/j.cnsns.2016.03.002
|
[10]
|
Zhai S D. Modulus synchronization in a network of nonlinear systems with antagonistic interactions and switching topologies. Communications in Nonlinear Science and Numerical Simulation, 2016, 33: 184-193 doi: 10.1016/j.cnsns.2015.09.010
|
[11]
|
Wang X, Yang G H. Distributed H$_\infty$ consensus tracking control for multi-agent networks with switching directed topologies. Neurocomputing, 2016, 207: 693-699 doi: 10.1016/j.neucom.2016.05.052
|
[12]
|
Fan J B, Wang Z X, Jiang G P. Quasi-synchronization of heterogeneous complex networks with switching sequentially disconnected topology. Neurocomputing, 2017, 237: 342-349 doi: 10.1016/j.neucom.2017.01.025
|
[13]
|
Dai A D, Zhou W N, Xu Y H, Xiao C. Adaptive exponential synchronization in mean square for Markovian jumping neutral-type coupled neural networks with time-varying delays by pinning control. Neurocomputing, 2016, 173: 809-818 doi: 10.1016/j.neucom.2015.08.034
|
[14]
|
Zhang Q J, Chen G R, Wan L. Exponential synchronization of discrete-time impulsive dynamical networks with time-varying delays and stochastic disturbances. Neurocomputing, 2018, 309: 62-69 doi: 10.1016/j.neucom.2018.04.070
|
[15]
|
Sakthivel R, Sathishkumar M, Kaviarasan B, Marshal Anthoni S. Synchronization and state estimation for stochastic complex networks with uncertain inner coupling. Neurocomputing, 2017, 238: 44-45 doi: 10.1016/j.neucom.2017.01.035
|
[16]
|
Cheng R R, Peng M S, Zuo J. Pinning synchronization of discrete dynamical networks with delay coupling. Physica A, 2016, 450: 444-453 doi: 10.1016/j.physa.2016.01.004
|
[17]
|
Mohammadzadeh A, Ghaemi S. A modified sliding mode approach for synchronization of fractional-order chaotic/hype- rchaotic systems by using new self-structuring hierarchical type-2 fuzzy neural network. Neurocomputing, 2016, 191: 200-213 doi: 10.1016/j.neucom.2015.12.098
|
[18]
|
Zhao L, Jia Y M. Neural network-based distributed adaptive attitude synchronization control of spacecraft formation under modified fast terminal sliding mode. Neurocomputing, 2016, 171: 230-241 doi: 10.1016/j.neucom.2015.06.063
|
[19]
|
Yang L X, Jiang J, Liu X J. Synchronization of fractional-order colored dynamical networks via open-plus-closed-loop control. Physica A, 2016, 443: 200-211 doi: 10.1016/j.physa.2015.09.062
|
[20]
|
Fan Y Q, Xing K Y, Wang Y H, Wang L Y. Projective synchronization adaptive control for different chaoticneural networks with mixed time delays. Optik, 2016, 127: 2551-2557 doi: 10.1016/j.ijleo.2015.11.227
|
[21]
|
Li J M, He C, Zhang W Y, Chen M L. Adaptive synchronization of delayed reaction-diffusion neural networks with unknown non-identical time-varying coupling strengths. Neurocomputing, 2017, 219: 144-153 doi: 10.1016/j.neucom.2016.09.006
|
[22]
|
Ahmed M A A, Liu Y R, Zhang W B, Alsaadi F E. Exponential synchronization via pinning adaptive control for complex networks of networks with time delays. Neurocomputing, 2017, 225: 198-204 doi: 10.1016/j.neucom.2016.11.022
|
[23]
|
Xu Q, Zhuang S X, Liu S J, Xiao J. Decentralized adaptive coupling synchronization of fractional-order complex-vari- able dynamical networks. Neurocomputing, 2016, 186: 119-126 doi: 10.1016/j.neucom.2015.12.072
|
[24]
|
Han X M, Wu H Q, Fang B L. Adaptive exponential synchronization of memristive neural networks with mixed time-varying delays. Neurocomputing, 2016, 201: 40-50 doi: 10.1016/j.neucom.2015.11.103
|
[25]
|
Ahmed M A A, Liu Y R, Zhang W B, Alsaedi A, Hayat T. Exponential synchronization for a class of complex networks of networks with directed topology and time delay. Neurocomputing, 2017, 266: 274-283 doi: 10.1016/j.neucom.2017.05.039
|
[26]
|
Dai H, Chen W S, Jia J P, Liu J Y, Zhang Z Q. Exponential synchronization of complex dynamical networks with time-varying inner coupling via event-triggered communication. Robotics and Autonomous Systems, 2017, 245: 124-132
|
[27]
|
Beli M R, Stojkov P. Chaos in phase-conjugate resonators as a multimodal mapping. Optical and Quantum Electronics, 1990, 22: 157-165 doi: 10.1007/BF02189951
|
[28]
|
Kaneko K. Spatial period-doubling in open flow. Physics Letters A, 1980, 111: 321-325 http://www.sciencedirect.com/science/article/pii/0375960185903597
|