2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高超声速飞行器指定时间时变高增益反馈跟踪控制

张康康 周彬 蔡光斌 侯明哲

张康康, 周彬, 蔡光斌, 侯明哲. 高超声速飞行器指定时间时变高增益反馈跟踪控制. 自动化学报, 2024, 50(6): 1151−1159 doi: 10.16383/j.aas.c210895
引用本文: 张康康, 周彬, 蔡光斌, 侯明哲. 高超声速飞行器指定时间时变高增益反馈跟踪控制. 自动化学报, 2024, 50(6): 1151−1159 doi: 10.16383/j.aas.c210895
Zhang Kang-Kang, Zhou Bin, Cai Guang-Bin, Hou Ming-Zhe. Prescribed-time tracking control of hypersonic vehicles by time-varying high-gain feedback. Acta Automatica Sinica, 2024, 50(6): 1151−1159 doi: 10.16383/j.aas.c210895
Citation: Zhang Kang-Kang, Zhou Bin, Cai Guang-Bin, Hou Ming-Zhe. Prescribed-time tracking control of hypersonic vehicles by time-varying high-gain feedback. Acta Automatica Sinica, 2024, 50(6): 1151−1159 doi: 10.16383/j.aas.c210895

高超声速飞行器指定时间时变高增益反馈跟踪控制

doi: 10.16383/j.aas.c210895
基金项目: 国家杰出青年科学基金(62125303), 国家自然科学基金委基础科学中心项目(62188101), 国家自然科学基金(61773387, 62073096)资助
详细信息
    作者简介:

    张康康:哈尔滨工业大学博士研究生. 主要研究方向为有限时间控制, 非线性控制和飞行器控制. E-mail: kangkang_kkz@163.com

    周彬:哈尔滨工业大学控制理论与制导技术研究中心教授. 主要研究方向为约束控制, 时滞系统, 时变系统, 非线性控制, 多智能体系统和飞行器控制. 本文通信作者. E-mail: binzhou@hit.edu.cn

    蔡光斌:博士, 火箭军工程大学导弹工程学院副教授. 主要研究方向为新型飞行器制导与控制, 快速轨迹优化, 智能控制理论及应用. E-mail: cgb0712@163.com

    侯明哲:哈尔滨工业大学控制理论与制导技术研究中心教授. 2011年获哈尔滨工业大学控制科学与工程专业博士学位. 主要研究方向为非线性控制和飞行器控制.E-mail: hithyt@hit.edu.cn

Prescribed-time Tracking Control of Hypersonic Vehicles by Time-varying High-gain Feedback

Funds: Supported by National Science Fund for Distinguished Young Scholars (62125303), Science Center Program of National Natural Science Foundation of China (62188101), and National Natural Science Foundation of China (61773387, 62073096)
More Information
    Author Bio:

    ZHANG Kang-Kang Ph.D. candidate at Harbin Institute of Technology. His research interest covers finite-time control, nonlinear control, and aircraft control

    ZHOU Bin Professor at the Center for Control Theory and Guidance Technology, Harbin Institute of Technology. His research interest covers constrained control, time-delay systems, time-varying systems, nonlinear control, multi-agent systems, and aircraft control. Corresponding author of this paper

    CAI Guang-Bin Ph.D., associate professor at the College of Missile Engineering, Rocket Force University of Engineering. His research interest covers novel aircraft guidance and control, rapid trajectory optimization, and intelligent control theory and applications

    HOU Ming-Zhe Professor at the Center for Control Theory and Guidance Technology, Harbin Institute of Technology. He received his Ph.D. degree in control science and engineering from Harbin Institute of Technology in 2011. His research interest covers nonlinear control and aircraft control

  • 摘要: 研究了高超声速飞行器控制通道存在未知环境干扰时的指定时间跟踪控制问题. 基于高超声速飞行器的输入输出线性化模型, 借助参量 Lyapunov方程的一些性质, 设计一种光滑、有界的时变高增益控制律. 相比于现有的高超声速飞行器有限/固定时间控制方法, 该算法不会出现抖振现象, 同时收敛时间不依赖于初始状态且可以事先设定. 当高超声速飞行器存在未知的有界环境匹配干扰时, 该控制器能使高度和速度在指定时间跟踪上参考信号. 仿真结果验证了方法的有效性.
  • 图  1  速度、飞行航迹角、高度和攻角变化曲线

    Fig.  1  The curves of changes in velocity, flight path angle, altitude and angle of attack

    图  2  俯仰角速率、发动机节流阀开度及其导数变化曲线

    Fig.  2  The curves of changes in pitch rate, engine throttle setting and their time-derivative

    图  3  控制输入和推力变化曲线

    Fig.  3  The curves of changes in control input and thrust

    图  4  速度误差及其导数变化曲线

    Fig.  4  The curves of changes in velocity errors and their time-derivatives

    图  5  高度误差及其导数变化曲线

    Fig.  5  The curves of changes in altitude errors and their time-derivatives

    表  1  高超声速飞行器参数以及飞行环境参数

    Table  1  The parameters of the hypersonic vehicle and the flight environment

    模型参数 符号
    质量 $m$ 136817.841 kg
    地球半径 $R_{{\rm{e}}}$ 6371386.8 m
    参考面积 $S$ 334.729653 m2
    平均气动弦长 $\bar{c}$ 80
    升降副翼弦长 $c_{{\rm{e}}}$ 0.029 2
    绕$ y $轴的转动惯量 $ I_{yy} $9.4907 × 106 kg$\cdot\; {\rm{m} }^2$
    空气密度 $\rho$ 0.0125 kg/m3
    重力常数 $\mu $ 3.9360 × 1014 m3/s2
    下载: 导出CSV
  • [1] Hu Q L, Meng Y, Wang C L, Zhang Y M. Adaptive backstepping control for air-breathing hypersonic vehicles with input nonlinearities. Aerospace Science and Technology, 2018, 73: 289−299 doi: 10.1016/j.ast.2017.12.001
    [2] 孙长银, 穆朝絮, 余瑶. 近空间高超声速飞行器控制的几个科学问题研究. 自动化学报, 2013, 39(11): 1901−1913 doi: 10.3724/SP.J.1004.2013.01901

    Sun Chang-Yin, Mu Chao-Xu, Yu Yao. Some control problems for near space hypersonic vehicles. Acta Automatica Sinica, 2013, 39(11): 1901−1913 doi: 10.3724/SP.J.1004.2013.01901
    [3] Hu X X, Wu L G, Hu C H, Gao H J. Fuzzy guaranteed cost tracking control for a flexible air-breathing hypersonic vehicle. IET Control Theory and Applications, 2012, 6(9): 1238−1249
    [4] Xu H J, Mirmirani M D, Ioannou P A. Adaptive sliding mode control design for a hypersonic flight vehicle. Journal of Guidance, Control, and Dynamics, 2004, 27(5): 829−838 doi: 10.2514/1.12596
    [5] Wang Q, Stengel R F. Robust nonlinear control of a hypersonic aircraft. Journal of Guidance, Control, and Dynamics, 2000, 23(1): 15−26
    [6] Zong Q, Wang J, Tao Y. Adaptive high-order dynamic sliding mode control for a flexible air-breathing hypersonic vehicle. International Journal of Robust and Nonlinear Control, 2013, 23(15): 1718−1736 doi: 10.1002/rnc.3040
    [7] Mu C X, Zong Q, Tian B L, Xu W. Continuous sliding mode controller with disturbance observer for hypersonic vehicles. IEEE/CAA Journal of Automatica Sinica, 2015, 2(1): 45−55 doi: 10.1109/JAS.2015.7032905
    [8] Mu C X, Ni Z, Sun C Y, He H B. Air-breathing hypersonic vehicle tracking control based on adaptive dynamic programming. IEEE Transactions on Neural Networks and Learning Systems, 2016, 28(3): 584−598
    [9] Sun H B, Li S H, Sun C Y. Finite time integral sliding mode control of hypersonic vehicles. Nonlinear Dynamics, 2013, 73(1): 229−244
    [10] Bhat S P, Bernstein D S. Finite-time stability of continuous autonomous systems. SIAM Journal on Control and Optimization, 2000, 38(3): 751−766 doi: 10.1137/S0363012997321358
    [11] 丁世宏, 李世华. 有限时间控制问题综述. 控制与决策, 2011, 26(2): 161−169

    Ding Shi-Hong, Li Shi-Hua. A survey for finite-time control problems. Control and Decision, 2011, 26(2): 161−169
    [12] 刘洋, 井元伟, 刘晓平, 李小华. 非线性系统有限时间控制研究综述. 控制理论与应用, 2020, 37(1): 1−12 doi: 10.7641/CTA.2019.90351

    Liu Yang, Jing Yuan-Wei, Liu Xiao-Ping, Li Xiao-Hua. Survey on finite-time control for nonlinear systems. Control Theory and Applications, 2020, 37(1): 1−12 doi: 10.7641/CTA.2019.90351
    [13] 张檬, 韩敏. 基于单向耦合法的不确定复杂网络间有限时间同步. 自动化学报, 2021, 47(7): 1624−1632

    Zhang Meng, Han Min. Finite-time synchronization between uncertain complex networks based on unidirectional coupling method. Acta Automatica Sinica, 2021, 47(7): 1624−1632
    [14] 李小华, 胡利耀. 一类$p$规范型非线性系统预设性能有限时间$H_{\infty}$跟踪控制. 自动化学报, 2021, 47(12): 2870−2880

    Li Xiao-Hua, Hu Li-Yao. Prescribed performance finite-time $H_{\infty}$ tracking control for a class of $p{\text{-}}{\rm{normal}}$ form nonlinear systems. Acta Automatica Sinica, 2021, 47(12): 2870−2880
    [15] 孙经广, 宋申民, 陈海涛, 李学辉. 高超声速飞行器有限时间饱和跟踪控制. 控制理论与应用, 2017, 34(10): 1349−1360 doi: 10.7641/CTA.2017.60705

    Sun Jing-Guang, Song Shen-Min, Chen Hai-Tao, Li Xue-Hui. Finite-time tracking control of the hypersonic vehicle with input saturation. Control Theory and Applications, 2017, 34(10): 1349−1360 doi: 10.7641/CTA.2017.60705
    [16] Wang X, Guo J, Tang S J, Qi S. Fixed-time disturbance observer based fixed-time backstepping control for an air-breathing hypersonic vehicle. ISA Transactions, 2019, 88: 233−245 doi: 10.1016/j.isatra.2018.12.013
    [17] Kwon W, Pearson A. A modified quadratic cost problem and feedback stabilization of a linear system. IEEE Transactions on Automatic Control, 1977, 22(5): 838−842 doi: 10.1109/TAC.1977.1101619
    [18] Rekasius Z. An alternate approach to the fixed terminal point regulator problem. IEEE Transactions on Automatic Control, 1964, 9(3): 290−292 doi: 10.1109/TAC.1964.1105700
    [19] Zarchan P. Tactical and Strategic Missile Guidance. Washington DC: AIAA Inc, 2012. 11−28
    [20] Song Y D, Wang Y J, Holloway J, Krstic M. Time-varying feedback for regulation of normal-form nonlinear systems in prescribed finite time. Automatica, 2017, 83: 243−251 doi: 10.1016/j.automatica.2017.06.008
    [21] Zhou B. Finite-time stabilization of linear systems by bounded linear time-varying feedback. Automatica, 2020, 113: Article No. 108760 doi: 10.1016/j.automatica.2019.108760
    [22] Zhou B. Finite-time stability analysis and stabilization by bounded linear time-varying feedback. Automatica, 2020, 121: Article No. 109191 doi: 10.1016/j.automatica.2020.109191
    [23] Sun J G, Xu S L, Song S M, Dong X J. Finite-time tracking control of hypersonic vehicle with input saturation. Aerospace Science and Technology, 2017, 71: 272−284 doi: 10.1016/j.ast.2017.09.036
    [24] Yin X M, Wang B, Liu L, Wang Y J. Disturbance observer-based gain adaptation high-order sliding mode control of hypersonic vehicles. Aerospace Science and Technology, 2019, 89: 19−30 doi: 10.1016/j.ast.2019.03.030
    [25] Slotine J J, Sastry S S. Tracking control of non-linear systems using sliding surfaces, with application to robot manipulators. International Journal of Control, 1983, 38(2): 465−492 doi: 10.1080/00207178308933088
    [26] 高为炳. 变结构控制的理论及设计方法. 北京: 科学出版社, 1996. 21−40

    Gao Wei-Bing. Theory and Design Method of Variable Structure Control. Beijing: Science Press, 1996. 21−40
    [27] Levant A. Sliding order and sliding accuracy in sliding mode control. International Journal of Control, 1993, 58(6): 1247−1263 doi: 10.1080/00207179308923053
    [28] Xu J X, Lee T H, Wang M, Yu X H. Design of variable structure controllers with continuous switching control. International Journal of Control, 1996, 65(3): 409−431 doi: 10.1080/00207179608921704
    [29] Wong L K, Leung F H F, Tam P K S. A chattering elimination algorithm for sliding mode control of uncertain non-linear systems. Mechatronics, 1998, 8(7): 765−775 doi: 10.1016/S0957-4158(98)00031-2
    [30] An H, Wu Q Q, Wang C H. Differentiator based full-envelope adaptive control of air-breathing hypersonic vehicles. Aerospace Science and Technology, 2018, 82: 312−322
    [31] Zhou B. On asymptotic stability of linear time-varying systems. Automatica, 2016, 68: 266−276 doi: 10.1016/j.automatica.2015.12.030
    [32] Khalil H K. Nonlinear Systems (3rd ed.). Englewood Cliffs: Prentice-Hall, 2002. 102−103
    [33] Ding Y B, Wang X G, Bai Y L, Cui N G. Adaptive higher order super-twisting control algorithm for a flexible air-breathing hypersonic vehicle. Acta Astronautica, 2018, 152: 275−288 doi: 10.1016/j.actaastro.2018.08.010
    [34] Parker J T, Serrani A, Yurkovich S, Bolender M A, Doman D B. Control-oriented modeling of an air-breathing hypersonic vehicle. Journal of Guidance, Control, and Dynamics, 2007, 30(3): 856−869 doi: 10.2514/1.27830
    [35] Zhou B, Shi Y. Prescribed-time stabilization of a class of nonlinear systems by linear time-varying feedback. IEEE Transactions on Automatic Control, 2021, 66(12): 6123−6130 doi: 10.1109/TAC.2021.3061645
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  799
  • HTML全文浏览量:  420
  • PDF下载量:  242
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-15
  • 录用日期:  2022-03-01
  • 网络出版日期:  2022-05-06
  • 刊出日期:  2024-06-27

目录

    /

    返回文章
    返回