2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2024年  第50卷  第6期

显示方式:
目录
目录
2024, 50(6).
综述
基于区块链的联邦学习: 模型、方法与应用
李程, 袁勇, 郑志勇, 杨东, 王飞跃
2024, 50(6): 1059-1085. doi: 10.16383/j.aas.c230336
摘要:
近年来, 人类社会快速步入大数据时代, 数据安全与隐私保护已成为发展大数据生态及相关数字经济的关键问题. 联邦学习(Federated learning)作为分布式机器学习的一种新范式, 致力于在保护数据隐私的同时从分布式本地数据集中训练全局模型, 因而获得了广泛和深入的研究. 然而, 联邦学习体系面临的中心化架构、激励机制设计和系统安全等技术挑战仍有待进一步研究, 而区块链被认为是应对这些挑战的有效解决方案, 并已成功应用于联邦学习的许多研究和实践场景. 在系统性地梳理现阶段区块链与联邦学习集...
面向算力网络的智慧调度综述
李逸博, 李小平, 王爽, 蒋嶷川
2024, 50(6): 1086-1103. doi: 10.16383/j.aas.c230196
摘要:
分布异构计算资源通过网络连接形成算力网络 (Computing power network, CPN), 其以“连”和“算”为核心. 针对广分布异构性导致可行解空间巨大、强不确定性导致可行解空间易变、高约束复杂性导致可行解孤岛繁多、多目标性导致冲突目标权衡优化难等挑战, 提出一个多层次算力网络体系框架, 包括参数化结构化业务管理、三阶段(计划、调度、执行)闭环调度模式、多模态资源管理三个功能. 提出支持快速、高效、鲁棒的“算法+知识+数据+算力”的算力网络智慧调度框架, 形式化分析可行解空间, ...
基于表征学习的离线强化学习方法研究综述
王雪松, 王荣荣, 程玉虎
2024, 50(6): 1104-1128. doi: 10.16383/j.aas.c230546
摘要:
强化学习(Reinforcement learning, RL)通过智能体与环境在线交互来学习最优策略, 近年来已成为解决复杂环境下感知决策问题的重要手段. 然而, 在线收集数据的方式可能会引发安全、时间或成本等问题, 极大限制了强化学习在实际中的应用. 与此同时, 原始数据的维度高且结构复杂, 解决复杂高维数据输入问题也是强化学习面临的一大挑战. 幸运的是, 基于表征学习的离线强化学习能够仅从历史经验数据中学习策略, 而无需与环境产生交互. 它利用表征学习技术将离线数据集中的特征表示为低维向量...
论文与报告
基于单应性扩散约束的二步网格优化视差图像对齐
陈殷齐, 郑慧诚, 严志伟, 林峻宇
2024, 50(6): 1129-1142. doi: 10.16383/j.aas.c210966
摘要:
目前, 在带有视差场景的图像对齐中, 主要难点在某些无法找到足够匹配特征的区域, 这些区域称为匹配特征缺失区域. 现有算法往往忽略匹配特征缺失区域的对齐建模, 而只将有足够匹配特征区域中的部分单应变换系数(如相似性变换系数)传递给匹配特征缺失区域, 或者采用将匹配特征缺失区域转化为有足够匹配特征区域的间接方式, 因此对齐效果仍不理想. 在客观事实上, 位于相同平面的区域应该拥有相同的完整单应变换而非部分变换参数. 由此出发, 利用单应变换系数扩散的思想设计了一个二步网格优化的图像对齐算法, 简称...
复杂无向图的同构判定方法
王卓, 王成红
2024, 50(6): 1143-1150. doi: 10.16383/j.aas.c230612
摘要:
针对一般复杂无向图的同构判定问题, 给出了基于邻接矩阵之和的特征多项式判定条件; 针对复杂无向连通图的同构判定问题, 给出了基于距离矩阵特征多项式和邻接矩阵特征多项式的同构判定条件, 将该条件用于复杂无向不连通图的各个连通子图, 就可解决复杂无向不连通图的同构判定问题. 上述两个判定条件均是充要条件且当复杂无向图退化为简单无向图时仍然适用.
高超声速飞行器指定时间时变高增益反馈跟踪控制
张康康, 周彬, 蔡光斌, 侯明哲
2024, 50(6): 1151-1159. doi: 10.16383/j.aas.c210895
摘要:
研究了高超声速飞行器控制通道存在未知环境干扰时的指定时间跟踪控制问题. 基于高超声速飞行器的输入输出线性化模型, 借助参量 Lyapunov方程的一些性质, 设计一种光滑、有界的时变高增益控制律. 相比于现有的高超声速飞行器有限/固定时间控制方法, 该算法不会出现抖振现象, 同时收敛时间不依赖于初始状态且可以事先设定. 当高超声速飞行器存在未知的有界环境匹配干扰时, 该控制器能使高度和速度在指定时间跟踪上参考信号. 仿真结果验证了方法的有效性.
基于加权锚点的多视图聚类算法
刘溯源, 王思为, 唐厂, 周思航, 王思齐, 刘新旺
2024, 50(6): 1160-1170. doi: 10.16383/j.aas.c220531
摘要:
大规模多视图聚类旨在解决传统多视图聚类算法中计算速度慢、空间复杂度高, 以致无法扩展到大规模数据的问题. 其中, 基于锚点的多视图聚类方法通过使用整体数据集合的锚点集构建后者对于前者的重构矩阵, 利用重构矩阵进行聚类, 有效地降低了算法的时间和空间复杂度. 然而, 现有的方法忽视了锚点之间的差异, 均等地看待所有锚点, 导致聚类结果受到低质量锚点的限制. 为定位更具有判别性的锚点, 加强高质量锚点对聚类的影响, 提出一种基于加权锚点的大规模多视图聚类算法(Multi-view clusterin...
基于多变量时空融合网络的风机数据缺失值插补研究
詹兆康, 胡旭光, 赵浩然, 张思琪, 张峻凯, 马大中
2024, 50(6): 1171-1184. doi: 10.16383/j.aas.c230534
摘要:
风电场数据的完整性会因恶劣天气、输入信号丢失、传感器故障等原因遭到破坏, 而大面积的数据缺失将给风机设备的运行和维护带来严峻考验. 因此, 提出一个多变量时空融合网络(Multivariate spatiotemporal integration network, MSIN)来解决缺失数据问题. 首先, 提出包含缺失值定位−指引机制的MSIN结构, 揭示缺失部分数据的潜在信息, 确保插补数据符合真实分布. 其次, 在网络中设计多视角时空卷积模块, 捕捉同一风机多个变量与多个风机同一变量之间的局部...
不确定性环境下维纳模型的随机变分贝叶斯学习
刘切, 李俊豪, 王浩, 曾建学, 柴毅
2024, 50(6): 1185-1198. doi: 10.16383/j.aas.c210925
摘要:
多重不确定性环境下的非线性系统辨识是一个开放问题. 贝叶斯学习在描述、处理不确定性方面具有显著优势, 已在线性系统辨识方面得到广泛应用, 但在非线性系统辨识的应用较少, 且面临概率估计复杂、计算量大等难题. 针对上述问题, 以典型维纳(Wiener)非线性过程为对象, 提出基于随机变分贝叶斯的非线性系统辨识方法. 首先对过程噪声、测量噪声以及参数不确定性进行概率描述; 然后利用随机变分贝叶斯方法对模型参数进行后验估计. 在估计过程中, 利用随机优化思想, 仅利用部分中间变量概率信息估计模型参数分...
基于自组织递归小波神经网络的污水处理过程多变量控制
苏尹, 杨翠丽, 乔俊飞
2024, 50(6): 1199-1209. doi: 10.16383/j.aas.c220679
摘要:
污水处理过程(Wastewater treatment process, WWTP)是一个包含多个生化反应的复杂过程, 具有非线性和动态特性. 因此, 实现污水处理过程的精准控制是一项挑战. 为解决这个问题, 提出一种基于自组织递归小波神经网络(Self-organized recurrent wavelet neural network, SRWNN)的污水处理过程多变量控制. 首先, 针对污水处理过程的动态特性, 根据小波基的激活强度设计一种自组织机制来动态调整递归小波神经网络控制器的结构,...
自适应分布式聚合博弈广义纳什均衡算法
时侠圣, 任璐, 孙长银
2024, 50(6): 1210-1220. doi: 10.16383/j.aas.c230584
摘要:
随着信息物理系统技术的发展, 面向多智能体系统的分布式协同优化问题得到广泛研究. 主要研究面向多智能体系统的受约束分布式聚合博弈问题, 其中局部智能体成本函数受到全局聚合项约束和全局等式耦合约束. 首先, 面向一阶积分型多智能体系统设计一种基于估计梯度下降的纳什均衡求解算法. 其中, 利用多智能体系统平均一致性方法设计一种自适应估计策略, 以实现全局聚合项约束分布式估计, 并据此计算出梯度函数估计值. 其次, 利用状态反馈策略和输出反馈策略将上述算法推广至状态信息可测和状态信息不可测一般线性异构...
知识和数据驱动的污水处理反硝化脱氮过程协同优化控制
韩红桂, 王玉爽, 刘峥, 孙浩源, 乔俊飞
2024, 50(6): 1221-1233. doi: 10.16383/j.aas.c230695
摘要:
为有效提升城市污水处理过程的脱氮效果, 提出一种知识和数据驱动的反硝化脱氮过程协同优化控制(Knowledge-data-driven cooperative optimal control, KDDCOC). 所提方法主要有以下两个方面: 首先, 建立一种基于自适应知识核函数的协同优化控制目标模型, 动态描述出水水质(Effluent quality, EQ)以及泵送能耗(Pumping energy consumption, PE)、关键变量的协同关系; 其次, 提出一种知识引导的协同优化算...
多尺度视觉语义增强的多模态命名实体识别方法
王海荣, 徐玺, 王彤, 陈芳萍
2024, 50(6): 1234-1245. doi: 10.16383/j.aas.c230573
摘要:
为解决多模态命名实体识别(Multimodal named entity recognition, MNER)方法研究中存在的图像特征语义缺失和多模态表示语义约束较弱等问题, 提出多尺度视觉语义增强的多模态命名实体识别方法(Multi-scale visual semantic enhancement for multimodal named entity recognition method, MSVSE). 该方法提取多种视觉特征用于补全图像语义, 挖掘文本特征与多种视觉特征间的语义交互关系...
多层异构生物网络候选疾病基因识别
丁苍峰, 王君, 张紫芸
2024, 50(6): 1246-1260. doi: 10.16383/j.aas.c210577
摘要:
现有大多数用于识别候选疾病基因的随机游走方法通常优先访问高度连接的基因, 而可能与已知疾病有关的不知名或连接性差的基因易被忽略或难以识别. 此外, 这些方法仅访问单个基因网络或各种基因数据的聚合网络, 导致偏差和不完整性. 因此, 设计一种能控制随机游走运动方向和整合多种数据源的候选疾病基因识别方法将是一个迫切需要解决的问题. 为此, 首先构建多层网络和多层异构基因网络. 然后, 提出一种游走于多层网络和多层异构网络的拓扑偏置重启随机游走(Biased random walk with rest...