2.793

2018影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

串联弹性驱动器设计、建模及在机器人上的应用

孙宁 程龙

孙宁, 程龙. 串联弹性驱动器设计、建模及在机器人上的应用. 自动化学报, 2021, 47(x): 1−17 doi: 10.16383/j.aas.c200202
引用本文: 孙宁, 程龙. 串联弹性驱动器设计、建模及在机器人上的应用. 自动化学报, 2021, 47(x): 1−17 doi: 10.16383/j.aas.c200202
Sun Ning, Cheng Long. Overview of design and modeling of series elastic actuators with applications on robotics. Acta Automatica Sinica, 2021, 47(x): 1−17 doi: 10.16383/j.aas.c200202
Citation: Sun Ning, Cheng Long. Overview of design and modeling of series elastic actuators with applications on robotics. Acta Automatica Sinica, 2021, 47(x): 1−17 doi: 10.16383/j.aas.c200202

串联弹性驱动器设计、建模及在机器人上的应用

doi: 10.16383/j.aas.c200202
基金项目: 国家自然科学基金(U1913209, 62025307) 以及北京市自然科学基金(JQ19020, L182060)资助
详细信息
    作者简介:

    孙宁:中国科学院自动化研究所博士研究生. 主要研究方向为手部康复外骨骼机器人, 柔性驱动技术. E-mail: sunning2018@ia.ac.cn

    程龙:博士, 中国科学院自动化研究所复杂系统管理与控制国家重点实验室研究员. 主要研究方向是机器人与智能控制. E-mail: long.cheng@ia.ac.cn

Overview of Design and Modeling of Series Elastic Actuators with Applications on Robotics

Funds: Supported by National Natural Science Foundation of China (U1913209, 62025307) and Beijing Municipal Natural Science Foundation (JQ19020, L182060)
  • 摘要: 相比于传统的刚性驱动器, 串联弹性驱动器具有被动柔顺性、阻抗低、抗冲击、力感知等诸多优点, 因而已经广泛地应用到各种机器人系统当中. 本文首先根据弹性和阻尼特性将串联弹性驱动器分为: 弹性型、阻尼型和弹性-阻尼型串联弹性驱动器, 介绍不同类型串联弹性驱动器的优缺点, 并详细概述弹性和阻尼特性的机械实现方式; 然后对各类串联弹性驱动器作为力传感器的建模方法进行介绍; 接下来叙述串联弹性驱动器在机器人中的主要应用: 力传感器、安全保护、降低能耗; 最后展望串联弹性驱动器未来的发展方向.
  • 图  1  弹性型串联弹性驱动器的示意简图

    Fig.  1  Schematic diagram of elastic series elastic actuator

    图  2  基于直线压缩弹簧的弹性装置: (a)单直线压缩弹簧; (b)多直线压缩弹簧; (c)对抗放置双直线压缩弹簧; (d)对抗放置双直线压缩弹簧输出双向旋转扭矩; (e)多直线压缩弹簧输出双向旋转扭矩

    Fig.  2  The elastic device based on linear compression spring: (a) Single linear compression spring; (b) Multiple linear compression spring; (c) Two linear compression springs placed against each other; (d) Two linear compress ion springs placed against each other generate bidirectional rotational torque; (e) Multiple linear compression spring generate bidirectional rotational torque

    图  3  基于直线拉伸弹簧的弹性装置: (a)多直线拉伸弹簧; (b)对抗放置双直线拉伸弹簧; (c)对抗放置双直线拉伸弹簧输出双向旋转扭矩; (d)多直线压缩弹簧输出双向旋转扭矩

    Fig.  3  The elastic device based on linear tension spring: (a) Multiple linear tension spring; (b) Two linear tension springs placed against each other; (c) Two linear tension springs placed against each other generate bidirectional rotational torque; (d) Multiple linear tension spring generate bidirectional rotational torque

    图  4  基于螺旋扭转弹簧的弹性装置: (a)单螺旋扭转弹簧; (b)对抗放置双螺旋扭转弹簧

    Fig.  4  The elastic device based on helical torsion spring: (a)Single helical torsion spring; (b)Double helical torsion spring placed against each other

    图  5  基于结构弹簧的弹性装置

    Fig.  5  The elastic device based on structural spring

    图  6  阻尼型串联弹性驱动器示意简图

    Fig.  6  Schematic diagram of damped series elastic actuator

    图  7  阻尼型串联弹性驱动器

    Fig.  7  Damped series elastic actuator

    图  8  弹性-阻尼型串联弹性驱动器示意简图

    Fig.  8  Schematic diagram of elastic-damped series elastic actuator

    图  9  粘弹性元件: (a)圆柱形; (b)花瓣形; (c)圆环形; (d)方块形; (e)梁形

    Fig.  9  The viscoelastic elements: (a) Cylinder; (b) Petaloid; (c) Circular ring; (d) Block; (e) Beam shape

    图  10  基于弹性与阻尼元件并联组合装置的串联弹性驱动器

    Fig.  10  series elastic actuator based on parallel combination of elastic and damping elements

    图  11  基于弹性元件放置位置的弹性-阻尼性串联弹性驱动器示意简图: (a)电机和减速器之前; (b)减速器之前; (c)减速器之中

    Fig.  11  Schematic diagram of an elastic-damped series elastic actuator based on the placement position of the elastic element: (a)Before motor and reducer; (b)Before reducer; (c)In the reducer

    图  12  理想弹性元件模型特性曲线

    Fig.  12  The characteristic curve of ideal elastic element

    图  13  具有间隙的弹性元件模型特性曲线

    Fig.  13  The characteristic curve of elastic element with gap

    图  14  具有预压缩弹性元件模型特性曲线

    Fig.  14  The characteristic curve of elastic element with pre-compressed

    图  15  基于具有弹性和阻尼特性元件物理特性的建模方法: (a)胡克定律; (b) Kelvin-Voigt模型; (c) Maxwell模型;(d) Standard Linear Solid模型; (e) Burger’s模型

    Fig.  15  The modeling method of element with elastic and damping characteristics by the physical characteristics: (a) Hooke’s Law; (b) Kelvin-Voigt model; (c) Maxwell model; (d) Standard Linear Solid model; (e) Burger’s model

    图  16  Kelvin-Voigt模型和Maxwell模型对应力松弛和蠕变的建模结果: (a) Kelvin-Voigt模型的应力松弛建模结果; (b) Kelvin-Voigt模型的蠕变建模结果; (c) Maxwell模型的应力松弛建模结果; (d) Maxwell模型的蠕变建模结果[97]

    Fig.  16  Stress relaxation and creep behaviour of the Kelvin-Voigt model and the Maxwell model: (a) Stress relaxation behaviour of the Kelvin-Voigt model; (b) Creep behaviour of the Kelvin-Voigt model; (c) Stress relaxation behaviour of the Maxwell model; (d) Creep behaviour of the Maxwell model[97]

    图  17  基于粘弹性元件串联弹性驱动器形变量与输出力矩曲线[66]

    Fig.  17  The curves of deformation and output torque of an series elastic actuator based on viscoelastic element[66]

    表  1  各类串联弹性驱动器机械实现方式及比较

    Table  1  Mechanical realization and comparison of various series elastic actuators

    类型物理特性机械实现方式系统带宽能量特性安全性
    弹性型串联弹性驱动器弹性直线压缩弹簧一般效率高
    直线拉伸弹簧
    螺旋扭转弹簧
    结构弹簧
    阻尼型串联弹性驱动器阻尼磁流变液阻尼器较高效率低
    弹性-阻尼型串联弹性驱动器弹性和阻尼粘弹性元件效率一般一般
    弹性与阻尼元件并联组合装置
    弹性元件放置位置
    下载: 导出CSV

    表  2  各类串联弹性驱动器建模方法

    Table  2  Modeling methods of various series elastic actuators

    类型建模方法模型参数复杂度
    弹性型胡克定律1简单
    阻尼型线性粘性阻尼1简单
    弹性-阻尼型粘弹性元件Maxwell模型、指数模型等复杂
    弹性和阻尼元件并联组合装置线性粘性阻尼与胡克定律
    弹性元件放置位置动力学
    下载: 导出CSV
  • [1] Li J, Li S Q, Tian G H, Shang H C. Muscle tension training method for series elastic actuator (SEA) based on gain-scheduled method. Robotics and Autonomous Systems, 2019, 121: 1−11
    [2] Pratt G A, Williamson M M. Series elastic actuators. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Pittsburgh, USA: IEEE, 1995. 399−406
    [3] Chew C M, Hong G S, Zhou W. Series damper actuator: a novel force/torque control actuator. In: Proceedings of IEEE International Conference on Humanoid Robots. Santa Monica, USA: IEEE, 2004. 533−546
    [4] Hurst J W, Rizzi A, Hobblen D. Series Elastic Actuation: Potential and Pitfalls. In: Proceedings of International Conference on Climbing and Walking Robots. 2004
    [5] Vallery H, Veneman J, Van Asseldonk E, Ekkelenkamp R, Buss M, Van der Kooij H. Compliant actuation of rehabilitation robots - Benefits and limitations of series elastic actuators. IEEE Robotics Automation Magazine, 2008, 15(3): 60−69 doi: 10.1109/MRA.2008.927689
    [6] Refour E R, Sebastian B, Chauhan R J, Ben-Tzvi P. A general purpose robotic hand exoskeleton with series elastic actuation. Journal of Mechanisms and Robotics, 2019, 11(6)
    [7] Bianchi M, Cempini M, Conti R, Meli E, Ridolfi A, Vitiello N, Allotta, B. Design of a series elastic transmission for hand exoskeletons. Mechatronics, 2018, 51: 8−18 doi: 10.1016/j.mechatronics.2018.02.010
    [8] Trigili E, Crea S, Moise M, Baldoni A, Cempini M, Ercolini G, et al. Design and experimental characterization of a shoulder-elbow exoskeleton with compliant joints for post-stroke rehabilitation. IEEE/ASME Transactions on Mechatronics, 2019, 24(4): 1485−1496 doi: 10.1109/TMECH.2019.2907465
    [9] Lee H D, Moon J I, Kang J I, Kan T H. Design of a series elastic tendon actuator based on gait analysis for a walking assistance exosuit. International Journal of Control and Systems, 2019, 17(11): 2940−2947
    [10] Zhang T, Huang H. Design and control of a series elastic actuator with clutch for hip exoskeleton for precise assistive magnitude and timing control and improved mechanical safety. IEEE/ASME Transactions on Mechatronics, 2019, 24(5): 2215−2226 doi: 10.1109/TMECH.2019.2932312
    [11] Guenther F, Quy Vu H, Lida F. Improving legged robot hopping by using coupling-based series elastic actuation. IEEE/ASME Transactions on Mechatronics, 2019, 24(2): 413−423 doi: 10.1109/TMECH.2019.2893235
    [12] Verstraten T, Furnemont R, Beckerle P, Vanderborght B, Lefeber D. A hopping robot driven by a series elastic dual-motor actuator. IEEE Robotics and Automation Letters, 2019, 4(3): 2310−2316 doi: 10.1109/LRA.2019.2902071
    [13] Lee C, Oh S. Development, analysis, and control of series elastic actuator-driven robot leg. Frontiers in Neurorobotics, 2019, 13: 17 doi: 10.3389/fnbot.2019.00017
    [14] Werner A, Henze B, Keppler M, Loeffl F, Leyendecker S, Ott C. Structure preserving multi-contact balance control for series-elastic and visco-elastic humanoid robots. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid, Spain: IEEE, 2018. 1233−1240
    [15] Bellicoso C D, Jenelten F, Fankhauser P, Gehring C, Hwangbo J, Hutter M. Dynamic locomotion and whole-body control for quadrupedal robots. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vancouver, Canada: IEEE, 2017. 3359−3365
    [16] Zhu Q G, Mao Y C, Xiong R, Wu Jun. Adaptive torque and position control for a legged robot based on a series elastic actuator. International Journal of Advanced Robotic Systems, 2016, 13(26)
    [17] Werner A, Turlej W, Ott C. Generation of locomotion trajectories for series elastic and viscoelastic bipedal robots. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vancouver, BC, Canada: IEEE, 2017. 5853−5860
    [18] Pfeifer S, Pagel A, Riener R, Vallery H. Actuator with angle-dependent elasticity for biomimetic transfemoral prostheses. IEEE/ASME Transactions on Mechatronics, 2015, 20(3): 1384−1394 doi: 10.1109/TMECH.2014.2337514
    [19] Convens B, Dong D, Furnemont R, Verstraten T, Cherelle P, Lefeber D, Vanderborght B. Modeling, design and test-bench validation of a semi-active propulsive ankle prosthesis with a clutched series elastic actuator. IEEE Robotics and Automation Letters, 2019, 4(2): 1823−1830 doi: 10.1109/LRA.2019.2897993
    [20] Sun X J, Sugai F, Okada K, Inaba M, Variable transmission series elastic actuator for robotic prosthesis. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA). Brisbane, Australia: IEEE, 2018. 2796−2803
    [21] Sun X J, Sugai F, Okada K, Inaba M. Design, control and preliminary test of robotic ankle prosthesis. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain: IEEE, 2018. 2787−2793
    [22] Zhu J Y, Wang Q N, Wang L. On the design of a powered transtibial prosthesis with stiffness adaptable ankle and toe joints. IEEE Transactions on Industrial Electronics, 2014, 61(9): 4797−4807 doi: 10.1109/TIE.2013.2293691
    [23] Baccelliere L, Kashiri N, Muratore L, Laurenzi A, Kamedula M, Margan A, at el. Development of a human size and strength compliant bi-manual platform for realistic heavy manipulation tasks. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vancouver, BC, Canada: IEEE, 2017. 5594−5601
    [24] Lee Y F, Chu C Y, Xu J Y, Lan C C. A humanoid robotic wrist with two-dimensional series elastic actuation for accurate force/torque. IEEE/ASME Transactions on Mechatronics, 2016, 21(3): 1315−1325 doi: 10.1109/TMECH.2016.2530746
    [25] Gabriele N, Daniele P, Francesco N. Momentum control of humanoid robots with series elastic actuators. In: Proceedings of IEEE International Conference on Intelligent Robots and Systems (IROS), Vancouver, Canada: IEEE, 2017. 2185−2191
    [26] Lee C, Lee J, Malzahn J, Tsagarakis N, Oh S. A two-staged residual for resilient external torque estimation with series elastic actuators. In: Proceedings of IEEE International Conference on Humanoid Robotics, Birmingham, England: IEEE, 2017. 817−823
    [27] Tsagarakis N G, Laffranchi M, Vanderborght B, Caldwell D G. A compact soft actuator unit for small scale human friendly robots. In: Proceedings of IEEE International Conference on Robotics and Automation(ICRA). Kobe, Japan: IEEE, 2009. 4356−4362
    [28] Lee C, Kwak S, Kwak J, Oh S. Generalization of series elastic actuator configurations and dynamic behavior comparison. Actuators, 2017, 6(3)
    [29] Vanderborght B, Albu-Schaeffer A, Bicchi A, Burdet E, Caldwell D G, Carloni R, et al. Variable impedance actuators: A review. Robotics and Autonomous Systems, 2013, 61: 1601−1614 doi: 10.1016/j.robot.2013.06.009
    [30] 魏敦文, 葛文杰, 高涛. 仿生灵感下的弹性驱动器的研究综述. 机器人, 2017, 39(4): 541−550

    Wei Dun-Wen, Ge Wen-Jie, Gao Tao. Review of elastic actuator research from bionic inspiration. Robot, 2017, 39(4): 541−550
    [31] Hsieh H C, Chen D F, Chien L, Lan C C. Design of a parallel actuated exoskeleton for adaptive and safe robotic shoulder rehabilitation. IEEE/ASME Transactions on Mechatronics, 2017, 22(5): 2034−2045 doi: 10.1109/TMECH.2017.2717874
    [32] Lee J W, Kim G. Design and control of a lifting assist device for preventing lower back injuries in industrial athletes. International Journal of Precision Engineering and Manufacturing, 2019, 20(10): 1825−1838 doi: 10.1007/s12541-019-00183-0
    [33] 孙雷, 孙伟超, 王萌, 刘景泰. 基于RISE反馈的串联弹性驱动器最优控制方法. 自动化学报, 2018, 44(12): 2170−2178

    Sun Lei, Sun Wei-Chao, Wang Meng, Liu Jing-Tai. Optimal control for series elastic actuator using RISE feedback. Acta Automatica Sinica, 2018, 44(12): 2170−2178
    [34] Rouse E J, Mooney L M, Herr H M. Clutchable series-elastic actuator: implications for prosthetic knee design. International Journal of Robotics Research, 2014, 33(13): 1611−1625 doi: 10.1177/0278364914545673
    [35] Agarwal P, Yun Y, Fox J, Madden K, Deshpande A D. Design, control, and testing of a thumb exoskeleton with series elastic actuation. International Journal of Robotics Research, 2017, 36(3): 355−375 doi: 10.1177/0278364917694428
    [36] Marconi D, Baldoni A, McKinney Z, Cempini Marco, Crea S, Vitiello N. A novel hand exoskeleton with series elastic actuation for modulated torque transfer. Mechatronics, 2019, 61: 69−82 doi: 10.1016/j.mechatronics.2019.06.001
    [37] Gim K G, Hong D W. Design of a series elastic resistance mechanism for exercise and rehabilitation. In: Proceedings of IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids). Cancun, Mexico: IEEE, 2016. 1239−1244
    [38] Yu N B, Zou W L, Tan W, Yang Z. Augmented virtual stiffness rendering of a cable-driven SEA for human-robot interaction. IEEE/CAA Journal of Automatica Sinica, 2017, 4(4): 714−723 doi: 10.1109/JAS.2017.7510637
    [39] Yu N B, Zou W L, Sun Y B. Passivity guaranteed stiffness control with multiple frequency band specifications for a cable-driven series elastic actuator. Mechanical Systems and Signal Processing, 2019, 117: 709−722 doi: 10.1016/j.ymssp.2018.08.007
    [40] Rao P, Deshpande A D. Analyzing and improving cartesian stiffness control stability of series elastic tendon-driven robotic hands. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA). Brisbane, Australia: IEEE, 2018. 5415−5420
    [41] Rao P, Thomas G C, Sentis L, Deshpande A D. Analyzing achievable stiffness control bounds of robotic hands with coupled finger joints. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA). Singapore: IEEE, 2017. 3447−3452
    [42] 尹伟, 孙雷, 王萌, 刘景泰. 针对串联弹性驱动器抖动抑制的轨迹规划和跟踪控制. 自动化学报, 2018, 44(8): 1436−1445

    Yin Wei, Sun Lei, Wang Meng, Liu Jing-Tai. Motion planning and tracking control of series elastic actuator for vibration suppression. Acta Automatica Sinica, 2018, 44(8): 1436−1445
    [43] Yin W, Sun L, Wang M, Liu J T. Position control of a series elastic actuator based on global sliding mode controller design. IEEE/CAA Journal of Automatica Sinica, 2019, 6(3): 850−858 doi: 10.1109/JAS.2019.1911498
    [44] Chen T Y, Casas R, Lum P S. An elbow exoskeleton for upper limb rehabilitation with series elastic actuator and cable-driven differential. IEEE Transactions on Robotics, 2019, 35(6): 1464−1474 doi: 10.1109/TRO.2019.2930915
    [45] Jung Y, Bae J. An asymmetric cable-driven mechanism for force control of exoskeleton systems. Mechatronics, 2016, 40: 41−50 doi: 10.1016/j.mechatronics.2016.10.013
    [46] Deboon B, Nokleby S, Delfa N L, Rossa C. Differentially-clutched series elastic actuator for robot-aided musculoskeletal rehabilitation. In: Proceedings of IEEE International Conference on Robotics and Automation(ICRA). Montreal, Canada: IEEE, 2019. 1507−1513
    [47] Ates S, Sluiter V I, Lammertse P, Stienen H A. ServoSEA concept: cheap, miniature series-elastic actuators for orthotic, prosthetic and robotic hands. In: Proceedings of IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob). Sao Paulo, Brazil: IEEE, 2014. 752−757
    [48] Agarwal P, Deshpande A D. Series elastic actuators for small-scale robotic applications. Journal of Mechanisms and Robotics, 2017, 9(3)
    [49] Carpino G, Accoto D, Sergi F, Tagliamonte N L, Guglielmelli E. A novel compact torsional spring for series elastic actuators for assistive wearable robots. Journal of Mechanical Design, 2012, 134(12)
    [50] Irmscher C, Woschke E, May E, Daniel C. Design, optimisation and testing of a compact, inexpensive elastic element for series elastic actuators. Medical Engineering & Physics, 2018, 52: 84−89
    [51] Ruiken D, Cummings J P, Savaria U R, Sup F C, Grupen R A. uBot-7: A dynamically balancing mobile manipulator with series elastic actuators. In: Proceedings of International Conference on Humanoid Robotics. Birmingham, England: IEEE, 2017. 676−682
    [52] Lagoda C, Schouten A C, Stienen A H A, Hekman E E G, Kooij H V D. Design of an electric series elastic actuated joint for robotic gait rehabilitation training. In: Proceedings of International Conference on Biomedical Robotics and Biomechatronics. Tokyo, Japan: IEEE, 2010. 21−26
    [53] Wang Y P, Chen Y L, Chen K B, Wu Y X, Huang Y J. A flat torsional spring with corrugated flexible units for series elastic actuators. In: Proceedings of International Conference on Advanced Robotics and Mechatronics (ICARM). Hefei, China: IEEE, 2017. 138−143
    [54] Santos W M D, Caurin G A P, Siqueira A A G. Torque control characterization of a rotary series elastic actuator for knee rehabilitation. In: Proceedings of International Conference on Advanced Robotics. Montevideo, Uruguay: IEEE, 2013
    [55] Yildirim M C, Sendur P, Bilgin O, Gulek B, Yapici G G, Ugurlu B. An integrated design approach for a series elastic actuator stiffness formulation, fatigue analysis, thermal management. In: Proceedings of International Conference on Humanoid Robotics. Birmingham, England: IEEE, 2017. 384−389
    [56] Georgiev N, Burdick J. Design and analysis of planar rotary springs. In: Proceedings of International Conference on Intelligent Robots and Systems (IROS). Vancouver, BC, Canada: IEEE, 2017. 4777−4784
    [57] Zhang T, Tran M, Huang H. Design and experimental verification of hip exoskeleton with balance capacities for walking assistance. IEEE/ASME Transactions on Mechatronics, 2018, 23(1): 274−285 doi: 10.1109/TMECH.2018.2790358
    [58] Koopaee M J, Bal S, Pretty C, Chen X Q. Design and development of a wheel-less snake robot with active stiffness control for adaptive pedal wave locomotion. Journal of Bionic Engineering, 2019, 16(4): 593−607 doi: 10.1007/s42235-019-0048-x
    [59] Paine N, Mehling J S, Holley J, Radford N A, Johnson G, et al. Actuator control for the NASA-JSC valkyrie humanoid robot a decoupled dynamics approach for torque control of series elastic robots. Journal of Field Robotics, 2015, 32(3): 378−396 doi: 10.1002/rob.21556
    [60] Yasuda K, Ikeura R, Hayakawa S, Sawai H. Stability of impedance control of a series elastic actuator with a torque controlled actuator for improving the system performance. In: Proceedings of International Conference on Robotics and Biomimetics(ROBIO), Zhuhai, China: IEEE, 2015. 2163−2168
    [61] Lee Y F, Chu C Y, Xu J Y, Lan C C. A humanoid robotic wrist with two-dimensional series elastic actuation for accurate force torque interaction. IEEE/ASME Transactions on Mechatronics, 2016, 21(3): 1315−1325 doi: 10.1109/TMECH.2016.2530746
    [62] Bianchi M, Cempini M, Conti R, Meli E, Ridolfi A, Vitiello N, Allotta B. Design of a series elastic transmission for hand exoskeletons. Mechatronics, 2018, 51: 8−18 doi: 10.1016/j.mechatronics.2018.02.010
    [63] Zhou W, Chew C M, Hong G S. Inverse dynamics control for series damper actuator based on MR. In: Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Monterey, California, USA: IEEE, 2005. 473−478
    [64] Zhou W, Chew C W, Hong G S. Design of series damper actuator. Robotica, 2009, 27(3): 379−387 doi: 10.1017/S0263574708004797
    [65] Westerveld A J, Aalderink B J, Hagedoorn W, Buijze M, Schouten A C, Kooij H V D. A damper driven robotic end-point manipulator for functional rehabilitation exercises after stroke. IEEE Transactions on Biomedical Engineering, 2013, 61(10): 2646−2654
    [66] Kim D H, Oh J H. Hysteresis modeling for torque control of an elastomer series elastic actuator. IEEE/ASME Transactions on Mechatronics, 2019, 24(3): 1316−1324 doi: 10.1109/TMECH.2019.2906698
    [67] Rollinson D S. Control and Design of Snake Robots[Ph. D. dissertation], Carnegie Mellon University, 2014
    [68] Jarrett C, McDaid A. Modeling and feasibility of an elastomer-based series elastic actuator as a haptic interaction sensor for exoskeleton robotics. IEEE/ASME Transactions on Mechatronics, 2019, 24(3): 1325−1333 doi: 10.1109/TMECH.2019.2906918
    [69] Austin J, Schepelmann A, Geyer H. Control and evaluation of series elastic actuators with nonlinear. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Hamburg, Germany: IEEE, 2015. 6563−6568
    [70] Shepherd M K, Rouse E J. Design and validation of a torque-controllable knee exoskeleton for sit-to-stand assistance. IEEE/ASME Transactions on Mechatronics, 2017, 22(4): 1695−1704 doi: 10.1109/TMECH.2017.2704521
    [71] Dijk W V, Meijneke C, Kooij H V D. Evaluation of the achilles ankle exoskeleton. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(2): 151−160 doi: 10.1109/TNSRE.2016.2527780
    [72] Kang I, Hsu H, Young A. The effect of hip assistance levels on human energetic cost using robotic hip exoskeletons. IEEE Robotics and Automation Letters, 2019, 4(2): 430−437 doi: 10.1109/LRA.2019.2890896
    [73] Caputo J M, Collins S H. A universal ankle-foot prosthesis emulator for human locomotion experiments. Journal of Biomechanical Engineering, 2014, 136(3)
    [74] Senturk Y M, Patoglu V. MRI-VisAct: A Bowden-cable-driven MRI compatible series viscoelastic actuator. Transactions of the Institute of Measurement and Control, 2018, 40(8): 2440−2453 doi: 10.1177/0142331217730429
    [75] Oblak J, Matjacic Z. Design of a series visco-elastic actuator for multi-purpose rehabilitation haptic device. Journal of Neuroengineering and Rehabilitation, 2011, 8(3)
    [76] Mancisidor A, Zubizarreta A, Cabanes I, Bengoa P, Marcos M, Jung J H. Enhanced force control using force estimation and nonlinearity compensation for the universal haptic pantograph. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Hamburg, Germany: IEEE, 2015. 5599−5604
    [77] Iwata H, Sugano S. Design of human symbiotic robot TWENDY-ONE. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA). Kobe, Japan: IEEE, 2009. 580−586
    [78] Garcia E, Arevalo J C, Munoz G, Gonzalez-de-Santos P. Combining series elastic actuation and magneto-rheological damping for the control of agile locomotion. Robotics and Autonomous Systems, 2011, 59: 827−839 doi: 10.1016/j.robot.2011.06.006
    [79] Paine N, Oh S, Sentis L. Design and control considerations for high-performance series elastic actuators. IEEE/ASME Transactions on Mechatronics, 2014, 19(3): 1080−1091 doi: 10.1109/TMECH.2013.2270435
    [80] Lee H, Kwak S, Oh S. Force control of series elastic actuators-driven parallel robot. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA). Brisbane, Australia: IEEE, 2018. 5401−5406
    [81] Isik K, He S, Ho J, Sentis L. Re-engineering a high performance electrical series elastic actuator for low-cost industrial applications. Actuators, 2017, 6(5)
    [82] Lens T, Stryk O V. Design and dynamics model of a lightweight series elastic tendon-driven robot arm. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA). Karlsruhe, Germany: IEEE, 2013. 4512−4518
    [83] Lee C, Oh S. Configuration and performance analysis of a compact planetary geared elastic actuator. In: Proceedings of the 42nd Annual Conference of the IEEE on Industrial Electronics Society (IECON). Florence, Italy: 2016. 6391−6396
    [84] Lauria M, Legault M A, Lavoie M A, Michaud F. Differential elastic actuator for robotic interaction tasks. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA). Pasadena, CA, USA: IEEE, 2008. 3606−3611
    [85] Kim S, Bae J. Force-mode control of rotary series elastic actuators in a lower extremity exoskeleton using model-inverse time delay control. IEEE/ASME Transactions on Mechatronics, 2017, 22(3): 1392−1400 doi: 10.1109/TMECH.2017.2687979
    [86] Oh S, Kong K. High-precision robust force control of a series elastic actuator. IEEE/ASME Transactions on Mechatronics, 2017, 22(1): 71−80 doi: 10.1109/TMECH.2016.2614503
    [87] Kim S, Bae J. Force-mode control of rotary series elastic actuators in a lower extremity exoskeleton using model-inverse time delay control (MiTDC). In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea: IEEE, 2016. 3836−3841
    [88] Oh S, Lee C, Kong K. Force control and force observer design of series elastic actuator based on its dynamic characteristics. In: Proceedings of the 41st Annual Conference of the IEEE Industrial Electronics Society(IECON), Yokohama, Japan: IEEE, 2015. 004639−004644
    [89] Calanca A, Fiorini P. A rationale for acceleration feedback in force control of series elastic actuators. IEEE Transactions on Robotics, 2018, 34(1): 48−61 doi: 10.1109/TRO.2017.2765667
    [90] Zhao Y, Paine N, Jorgensen S J, Sentis L. Impedance control and performance measure of series elastic actuators. IEEE Transactions on Industrial Electronics, 2018, 65(3): 2817−2827 doi: 10.1109/TIE.2017.2745407
    [91] Zhang J J, Collins S H. The passive series stiffness that optimizes torque tracking for a lower-limb exoskeleton in human walking. Frontiers in Neurorobotics, 2017, 11: 68 doi: 10.3389/fnbot.2017.00068
    [92] Calanca A, Muradore R, Fiorini. Impedance control of series elastic actuators: Passivity and acceleration-based control. Mechatronics, 2017, 47: 37−48 doi: 10.1016/j.mechatronics.2017.08.010
    [93] Lee Y H, Lee Y H, Lee H, Phan L T, Kang H, Kim Y B, Choi H R. Development of torque controllable leg for running robot, AiDIN-IV. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vancouver, BC, Canada: IEEE, 2017. 4125-−4130
    [94] Mao Y C. Hopping and Adaptive Balance Control of Bionic Legged Robot based on Series Elastic Actuators[Ph. D. dissertation], Zhejiang University, 2018
    [95] 李占卫, 李治军. 磁流变阻尼器动力学模型的研究现状. 机械制造及自动化, 2012, 1: 142−145

    Li Zhan-Wei, Li Zhi-Jun. Status of researching on dynamical models of MR damper. Machine Building & Automation, 2012, 1: 142−145
    [96] Parietti F, Baud-Bovy G, Gatti E, Riener R, Guzzella L, Vallery H. Series viscoelastic actuators can match human force perception. IEEE/ASME Transactions on Mechatronics, 2011, 16(5): 853−860 doi: 10.1109/TMECH.2011.2162076
    [97] Karlsson A, Persson A. Modelling Non-linear Dynamics of Rubber Bushings-Parameter Identification and validation[Master dissertation], Lund University, 2003
    [98] Abe K, Suga T, Fujimoto Y. Control of a biped robot driven by elastomer-based series elastic actuator. In: Proceedings of IEEE International Workshop on Advanced Motion Control. Sarajevo, Bosnia and Herzegovina: IEEE, 2012
    [99] Kikuchi M, Aiken I D. An analytical hysteresis model for elastomeric seismic isolation bearings. Earthquake Engineering and Structural Dynamics, 1997, 26(2): 215−231 doi: 10.1002/(SICI)1096-9845(199702)26:2<215::AID-EQE640>3.0.CO;2-9
    [100] Choi W, Won J, Lee J, Park J. Low stiffness design and hysteresis compensation torque control of sea for active exercise rehabilitation robots. Autonomous Robots, 2017, 41: 1221−1242 doi: 10.1007/s10514-016-9591-z
    [101] Schepelmann A, Geberth K A, Geyer H. Compact nonlinear springs with user defined torque-deflection profiles for series elastic actuators. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA). Hong Kong, China: IEEE, 2014. 3411−3416
    [102] Paskarbeit J, Annunziata S, Basa D, Schneider A. A self-contained, elastic joint drive for robotics applications based on a sensorized elastomer coupling-Design and identification. Sensors and Actuators A: Physical, 2013, 199: 56−66 doi: 10.1016/j.sna.2013.04.028
    [103] Laffranchi M, Chen L, Kashiri N, Lee J, Tsagarakis N G, Caldwell D G. Development and control of a series elastic actuator equipped with a semi active friction damper for human friendly robots. Robotics and Autonomous Systems, 2014, 62(12): 1827−1836 doi: 10.1016/j.robot.2014.06.007
    [104] Park Y, Oh S, Zoe H. Dynamic analysis of reaction force sensing series elastic actuator as unlumped two mass system. In: Proceedings of 42nd Annual Conference of the IEEE Industrial Electronics Society(IECON). Florence, Italy: IEEE, 2016. 5784−5789
    [105] Kong K, Bae J, Tomizuka M. A compact rotary series elastic actuator for human assistive systems. IEEE/ASME Transtaction on Mechatronics, 2012, 17(2): 288−297 doi: 10.1109/TMECH.2010.2100046
    [106] Sariyildiz E, Yu H Y. Robust force control of series elastic actuators using sliding mode control and disturbance observer. In: Proceedings of 42nd Annual Conference of the IEEE Industrial Electronics Society(IECON). Florence, Italy: IEEE, 2016. 619−624
    [107] Sariyildiz E, Chen G, Yu H Y. An acceleration-based robust motion controller design for a novel series elastic actuator. IEEE/ASME Transtaction on Industrial Electronics, 2016, 63(3): 1900−1910 doi: 10.1109/TIE.2015.2512228
    [108] Losey D P, Erwin A, McDonald C G, Sergi F, O'Malley M K. A time-domain approach to control of series elastic actuators: adaptive torque and passivity-based impedance control. IEEE/ASME Transtaction on Mechatronics, 2016, 21(4): 2085−2096 doi: 10.1109/TMECH.2016.2557727
    [109] Negrello F, Garabini M, Catalano M G, Malzahn J, Caldwell D G, Bicchi A, Tsagarakis. A modular compliant actuator for emerging high performance and fall-resilient humanoids. In: Proceedings of IEEE-RAS International Conference on Humanoid Robots (Humanoids). Seoul, Korea: IEEE, 2015. 414−420
    [110] Bicchi A, Tonietti G. Fast and "soft-arm" tactics. IEEE Robotics & Automation Magazine, 2004, 11(2): 22−33
    [111] Nieto E A B, Rezazadeh S, Gregg R D. Minimizing energy consumption and peak power of series elastic actuators: a convex optimization framework for elastic element design. IEEE/ASME Transtaction on Mechatronics, 2019, 24(3): 1334−1345 doi: 10.1109/TMECH.2019.2906887
    [112] Roozing W, Malzahn J, Kashiri N, Caldwell D G, Tsagarkis N G. On the stiffness selection for torque-controlled series-elastic actuators. IEEE Robotics and Automation Letters, 2017, 2(4): 2255−2262 doi: 10.1109/LRA.2017.2726141
  • 加载中
计量
  • 文章访问数:  102
  • HTML全文浏览量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-10
  • 录用日期:  2020-11-18
  • 网络出版日期:  2021-01-13

目录

    /

    返回文章
    返回