2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于UDP的电力广域保护系统可靠通信方法

袁凯 李俊娥 刘开培 陆秋余 倪明 罗剑波

袁凯,  李俊娥,  刘开培,  陆秋余,  倪明,  罗剑波.  一种基于UDP的电力广域保护系统可靠通信方法.  自动化学报,  2021,  47(7): 1598−1609 doi: 10.16383/j.aas.c180641
引用本文: 袁凯,  李俊娥,  刘开培,  陆秋余,  倪明,  罗剑波.  一种基于UDP的电力广域保护系统可靠通信方法.  自动化学报,  2021,  47(7): 1598−1609 doi: 10.16383/j.aas.c180641
Yuan Kai,  Li Jun-E,  Liu Kai-Pei,  Lu Qiu-Yu,  Ni Ming,  Luo Jian-Bo.  A reliability communication approach for power wide area protection system based on UDP.  Acta Automatica Sinica,  2021,  47(7): 1598−1609 doi: 10.16383/j.aas.c180641
Citation: Yuan Kai,  Li Jun-E,  Liu Kai-Pei,  Lu Qiu-Yu,  Ni Ming,  Luo Jian-Bo.  A reliability communication approach for power wide area protection system based on UDP.  Acta Automatica Sinica,  2021,  47(7): 1598−1609 doi: 10.16383/j.aas.c180641

一种基于UDP的电力广域保护系统可靠通信方法

doi: 10.16383/j.aas.c180641
基金项目: 国家自然科学基金(51977155, 51377122), 国家电网公司科技项目(针对网络攻击的电网信息物理系统协同运行态势感知与主动防御方法研究)资助
详细信息
    作者简介:

    袁凯:武汉大学电气与自动化学院博士研究生. 主要研究方向为智能电网通信QoS保障与可靠性分析.E-mail: aishen890523@126.com

    李俊娥:武汉大学国家网络安全学院/空天信息安全与可信计算教育部重点实验室教授. 2004年获得武汉大学计算机应用技术专业博士学位. 主要研究方向为网络体系结构, 网络安全, 信息物理系统和电力工业控制安全. 本文通信作者.E-mail: jeli@whu.edu.cn

    刘开培:武汉大学电气与自动化学院教授. 2001年获武汉大学计算机应用技术专业博士学位. 主要研究方向为直流输电, 可再生能源和智能电网, 电能质量和数据分析.E-mail: kpliu@whu.edu.cn

    陆秋余:武汉大学国家网络安全学院硕士研究生. 主要研究方向为智能电网通信QoS保障和网络安全. E-mail: luqiuyu_0623@163.com

    倪明:国电南瑞科技股份有限公司研究员级高级工程师, 电网规划分析首席专家. 1996年获得东南大学电气工程博士学位. 主要研究方向为信息物理电力系统, 电力系统安全稳定控制. E-mail: ni-ming@sgepri.sgcc.com.cn

    罗剑波:南瑞集团有限公司/国家电网电力科学研究院研究员级高级工程师. 主要研究方向为电网安全稳定分析, 综合防御与控制.E-mail: luojianbo@sgepri.sgcc.com.cn

A Reliability Communication Approach for Power Wide Area Protection System Based on UDP

Funds: Supported by National Natural Science Foundation of China (51977155, 51377122) and the Science and Technology Project of State Grid Corporation of China (Research on Cooperative Situation Awareness and Active Defense Method of Cyber Physical Power System for Cyber Attack)
More Information
    Author Bio:

    YUAN Kai Ph.D. candidate at the School of Electrical Engineering and Automation, Wuhan University. His research interest covers QoS guarantee and reliability analysis for communications of smart grid

    LI Jun-E Professor at the School of Cyber Science and Engineering, Wuhan University. She received her Ph.D. degree in computer application technology from Wuhan University in 2004. Her research interest covers network architecture, cyber security, cyber-physical systems, and the security of power industrial control systems. Corresponding author of this paper

    LIU Kai-Pei Professor at the School of Electrical Engineering and Automation, Wuhan University. He received his Ph.D. degree in computer application technology from Wuhan University in 2001. His research interest covers DC transmission, renewable energy and smart grid, power quality, and data analysis

    LU Qiu-Yu Master student at the School of Cyber Science and Engineering, Wuhan University. Her research interest covers QoS guarantee for communications of smart grid and cyber security

    NI Ming Senior engineer at NARI Technology Co. Ltd. and principal expert for grid planning. He received his Ph.D. degree in electrical engineering from Southeast University in 1996. His research interest covers cyber physical power systems (CPPSs), and safety and stability control of power systems

    LUO Jian-Bo Senior engineer at NARI Group Corporation/State Grid Electric Power Research Institute. His research interest covers analysis, comprehensive defense, and control for safety and stability of power systems

  • 摘要:

    电力广域保护系统从点到点通信逐步走向网络化通信, 如何在拥塞状态下保障业务的实时性和可靠性, 成为亟待解决的问题. 针对传输控制协议(Transmission control protocol, TCP)不能保障实时性以及用户数据报协议(User datagram protocol, UDP)不能保障可靠性的问题, 本文提出一种联合应用层纠错、检错和重发机制的UDP传输方案, 在提供低时延传输服务的同时也能保障报文的可靠性. 考虑到算法的复杂性, 选择本原BCH (Bose-Chaudhuri-Hocquenghem)码作为纠错编码算法, 设计了编码分组方法, 并通过实验验证了分组方法的正确性; 对增加纠错机制后的报文实时性进行了理论分析和仿真验证; 为了解决突发误码和丢包情况下的可靠性问题, 进一步设计了应用层检错和重发机制, 并分析了时延. 分析表明, 在应用层增加本文所设计的纠错、检错和重发机制后增加的时延几乎可以忽略不计. 最后给出了所提方法的联合应用算法, 并进行了可靠性分析, 结果表明本文方案的可靠性高于其他UDP传输方案.

    1)  收稿日期 2018-09-30 录用日期 2019-05-08 Manuscript received September 30, 2018; accepted May 8, 2019 国家自然科学基金 (51977155, 51377122), 国家电网公司科技项目 (针对网络攻击的电网信息物理系统协同运行态势感知与主动防御方法研究) 资助 Supported by National Natural Science Foundation of China (51977155, 51377122) and the Science and Technology Project of State Grid Corporation of China (Research on Cooperative Situation Awareness and Active Defense Method of Cyber Physical Power System for Cyber Attack) 本文责任编委 陈积明 Recommended by Associate Editor CHEN Ji-Ming 1. 武汉大学 武汉 430072 2. 空天信息安全与可信计算教育部重点实验室 武汉 430072 3. 南瑞集团有限公司 (国网电力科学研
    2)  究院有限公司) 南京 211106 4. 国电南瑞科技股份有限公司 南京 211106 5. 智能电网保护和运行控制国家重点实验室 南京 211106 1. Wuhan University, Wuhan 430072 2. Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry of Education, Wuhan 430072 3. NARI Group Corporation (State Grid Electric Power Research Institute), Nanjing 211106 4. NARI Technology Co. Ltd., Nanjing 211106 5. State Key Laboratory of Smart Grid Protection and Control, Nanjing 211106
  • 图  1  纠错算法实验程序流程图

    Fig.  1  Flowchart of the experiment program for error correction algorithm

    图  2  一个省级电力调度数据网络结构

    Fig.  2  The structure of a provincial power dispatch data network

    图  3  网络畅通时采用TCP和UDP的业务最大时延

    Fig.  3  Maximum delays of messages using TCP and UDP when the network is uncongested

    图  4  网络拥塞时采用TCP和UDP的业务最大时延

    Fig.  4  Maximum delays of messages using TCP and UDP when the network is congested

    图  5  网络畅通时TCP和UDP传输下报文的端到端最大时延

    Fig.  5  Maximum end-to-end delays in TCP and UDP transmission modes when network is uncongested

    图  6  4种拥塞流量时TCP和UDP报文的端到端最大时延

    Fig.  6  Maximum end-to-end delay of TCP and UDP packets in four types of congestion traffic

    图  7  报文连续发送N次的总时延构成

    Fig.  7  Composition of the total delay when the message is transmitted N copies

    表  1  一种本原BCH码分组方法

    Table  1  A grouping method of original BCH code

    应用层报文长度 (byte)分组数(n, k)每组加入的纠错码长度 (bit)每组纠错位数 (bit)总纠错位数 (bit)参考信道误比特数
    1~591[511, 493]18221
    60~1154[255, 247]8141
    116~2318[255, 247]8182
    232~46216[255, 247]81164
    463~140064[255, 247]816412
    下载: 导出CSV

    表  2  本文方案与其他方案的对比

    Table  2  Comparison of the proposed scheme with others

    通信方案纠错检错重传可靠性实时性
    本文方案
    文献 [16] 方案
    文献 [17] 方案
    标准 UDP 传输方案
    下载: 导出CSV
  • [1] 严佳梅, 许剑冰, 倪明, 余文杰. 通信系统中断对电网广域保护控制系统的影响. 电力系统自动化, 2016, 40(5): 17−24 doi: 10.7500/AEPS20150820004

    Yan Jian-Mei, Xu Jian-Bing, Ni Ming, Yu Wen-Jie. Impact of communication system interruption on power system wide area protection and control system. Automation of Electric Power Systems, 2016, 40(5): 17−24 doi: 10.7500/AEPS20150820004
    [2] Teng S H, Wu N Q, Zhu H B. SVM-DT-based adaptive and collaborative intrusion detection. IEEE/CAA Journal of Automatica Sinica, 2018, 5(1): 108−118 doi: 10.1109/JAS.2017.7510730
    [3] 梅生伟, 朱建全. 智能电网中的若干数学与控制科学问题及其展望. 自动化学报, 2013, 39(2): 119−131 doi: 10.1016/S1874-1029(13)60014-2

    Mei Sheng-Wei, Zhu Jian-Quan. Mathematical and control scientic issues of smart grid and its prospects. Acta Automatica Sinica, 2013, 39(2): 119−131 doi: 10.1016/S1874-1029(13)60014-2
    [4] 杨飞生, 汪璟, 潘泉, 康沛沛. 网络攻击下信息物理融合电力系统的弹性事件触发控制. 自动化学报, 2019, 45(1): 110−119

    Yang Fei-Sheng, Wang Jing, Pan Quan, Kang Pei-Pei. Resilient event-triggered control of grid cyber-physical systems against cyber attack. Acta Automatica Sinica, 2019, 45(1): 110−119
    [5] Liu N, Zhang J H, Liu W X. Toward key management for communications of wide area primary and backup protection. IEEE Transactions on Power Delivery, 2010, 25(3): 2030−2032 doi: 10.1109/TPWRD.2010.2045930
    [6] Begovic M, Novosel D, Karlsson D, Henville C, Michel G. Wide-area protection and emergency control. Proceedings of the IEEE, 2005, 93(5): 876−891 doi: 10.1109/JPROC.2005.847258
    [7] 汪剑, 韩蕾, 覃琴, 杜鑫. 广域保护通信网络综述. 电力系统通信, 2012, 33(240): 5−8

    Wang Jian, Han Lei, Qin Qin, Du Xin. Summary of wide-area protection communication network. Telecommunications for Electric Power System, 2012, 33(240): 5−8
    [8] 朱海婷, 丁伟, 缪丽华, 龚俭. UDP流量对TCP往返延迟的影响. 通信学报, 2013, 34(1): 19−29

    Zhu Hai-Ting, Ding Wei, Miao Li-Hua, Gong Jian. Effect of UDP traffic on TCP' s round-trip delay. Journal on Communications, 2013, 34(1): 19−29
    [9] 罗万明, 林闯, 阎保平. TCP/IP拥塞控制研究. 计算机学报, 2001, 24(1): 1−17 doi: 10.3321/j.issn:0254-4164.2001.01.001

    Luo Wan-Ming, Lin Chuang, Yan Bao-Ping. A survey of congestion control in the internet. Chinese Journal of Computers, 2001, 24(1): 1−17 doi: 10.3321/j.issn:0254-4164.2001.01.001
    [10] Serizawa Y, Imamura H, Kiuchi M. Performance evaluation of IP-based relay communications for wide-area protection employing external time synchronization. Proceeding of Power Engineering Society Summer Meeting, 2001, 2: 909−914
    [11] Stahlhut J W, Browne T J, Heydt G T, Vittal V. Latency viewed as a stochastic process and its impact on wide area power system control signals. IEEE Transactions on Power Systems, 2008, 23(1): 84−91 doi: 10.1109/TPWRS.2007.913210
    [12] 熊小萍. 电力系统广域通信网络可靠性分析与优化设计[博士学位论文]. 广西大学, 中国, 2014.

    Xiong Xiao-Ping. Reliability Analysis and Optimal Design of Wide Area Communication Network in Power System [Ph.D. dissertation]. Guangxi University, China, 2014.
    [13] 王阳光. 应对灾变的广域保护信息处理及通信技术研究[博士学位论文]. 华中科技大学, 中国, 2010.

    Wang Yang-Guang. Research on Information Management and Communication Technology of Wide Area Protection Coping with Power Grid Catastrophe [Ph.D. dissertation]. Huazhong University of Science and Technology, China, 2010.
    [14] 邢宁哲. 智能电网中通信网络可靠性保障技术的研究[博士学位论文]. 北京交通大学, 中国, 2017.

    Xing Ning-Zhe. Research on the Guarantee Technologies of Communication Networks Reliability in Smart Grid [Ph.D. dissertation]. Beijing Jiaotong University, China, 2017.
    [15] 董雪源. 基于互联网技术的电力系统广域保护通信体系研究[博士学位论文]. 西南交通大学, 中国, 2012.

    Dong Xue-Yuan. Studies on the Internet Technology Based Communication System in Power System Wide Area Protection [Ph.D. dissertation]. Southwest Jiaotong University, China, 2012.
    [16] 范开俊, 徐丙垠, 陈羽, 韩国政, 逯怀东. 配电网分布式控制实时数据的GOOSE over UDP传输方式. 电力系统自动化, 2016, 40(4): 115−120 doi: 10.7500/AEPS20150615006

    Fan Kai-Jun, Xu Bing-Yin, Chen Yu, Han Guo-Zheng, Lu Huai-Dong. Goose over UDP transmission mode for real-time data of distributed control application in distribution networks. Automation of Electric Power Systems, 2016, 40(4): 115−120 doi: 10.7500/AEPS20150615006
    [17] 肖行诠, 苟骁毅, 肖岚, 李乐, 温丽丽, 段刚, 等. 基于UDP协议的局域网 WAMS数据低延迟可靠传输方法. 电力自动化设备, 2011, 31(10): 148−152 doi: 10.3969/j.issn.1006-6047.2011.10.031

    Xiao Xing-Quan, Gou Xiao-Yi, Xiao Lan, Li Le, Wen Li-Li, Duan Gang, et al. UDP-based small-delay and reliable transfer of WAMS data in LAN. Electric Power Automation Equipment, 2011, 31(10): 148−152 doi: 10.3969/j.issn.1006-6047.2011.10.031
    [18] 张新昌, 张项安. 层次化保护控制系统及其网络通信技术研究. 电力系统保护与控制, 2014, 42(19): 129−133 doi: 10.7667/j.issn.1674-3415.2014.19.020

    Zhang Xin-Chang, Zhang Xiang-An. Research on hierarchical protection and control system and its communication technology. Power System Protection and Control, 2014, 42(19): 129−133 doi: 10.7667/j.issn.1674-3415.2014.19.020
    [19] 刘育权, 华煌圣, 李力, 王莉, 刘金生. 多层次的广域保护控制体系架构研究与实践. 电力系统保护与控制, 2015, 43(5): 112−122

    Liu Yu-Quan, Hua Huang-Sheng, Li Li, Wang Li, Liu Jin-Sheng. Research and application of multi-level wide-area protection system. Power System Protection and Control, 2015, 43(5): 112−122
    [20] 吴科成, 林湘宁, 鲁文军, 刘沛. 分层式电网区域保护系统的原理和实现. 电力系统自动化, 2007, 31(3): 72−78 doi: 10.3321/j.issn:1000-1026.2007.03.015

    Wu Ke-Cheng, Lin Xiang-Ning, Lu Wen-Jun, Liu Pei. Principle and realization of the hierarchical region protective system for power systems. Automation of Electric Power Systems, 2007, 31(3): 72−78 doi: 10.3321/j.issn:1000-1026.2007.03.015
    [21] Technical Brochure No. 187, CIGRE. System Protection Schemes in Power Networks, June, 2001.
    [22] 徐天奇, 尹项根, 游大海, 王阳光. 3层式广域保护系统通信网络. 电力系统自动化, 2008, 16(32): 28−33

    Xu Tian-Qi, Yin Xiang-Gen, You Da-Hai, Wang Yang-Guang. Communication network for three-level wide area protection system. Automation of Electric Power Systems, 2008, 16(32): 28−33
    [23] Adamiak M G, Apostolov A P, Begovic M M, Henville C F, Martin K E, Michel G L, et al. Wide area protection: technology and infrastructures. IEEE Transactions on Power Delivery, 2006, 21(2): 601−609 doi: 10.1109/TPWRD.2005.855481
    [24] 王新梅, 肖国镇. 纠错码 — 原理与方法. 西安电子科技大学出版社, 2001.

    Wang Xin-Mei, Xiao Guo-Zhen. Error Correction Code: Principles and Methods. Xidian University Press, 2001.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  1240
  • HTML全文浏览量:  229
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-30
  • 录用日期:  2019-05-08
  • 网络出版日期:  2021-07-27
  • 刊出日期:  2021-07-27

目录

    /

    返回文章
    返回