2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于单向耦合法的不确定复杂网络间有限时间同步

张檬 韩敏

张檬,  韩敏.  基于单向耦合法的不确定复杂网络间有限时间同步.  自动化学报,  2021,  47(7): 1624−1632 doi: 10.16383/j.aas.c180102
引用本文: 张檬,  韩敏.  基于单向耦合法的不确定复杂网络间有限时间同步.  自动化学报,  2021,  47(7): 1624−1632 doi: 10.16383/j.aas.c180102
Zhang Meng,  Han Min.  Finite-time synchronization between uncertain complex networks based on unidirectional coupling method.  Acta Automatica Sinica,  2021,  47(7): 1624−1632 doi: 10.16383/j.aas.c180102
Citation: Zhang Meng,  Han Min.  Finite-time synchronization between uncertain complex networks based on unidirectional coupling method.  Acta Automatica Sinica,  2021,  47(7): 1624−1632 doi: 10.16383/j.aas.c180102

基于单向耦合法的不确定复杂网络间有限时间同步

doi: 10.16383/j.aas.c180102
基金项目: 国家自然科学基金(61773087), 中央高校基本科研业务费专项资金(DUT20LAB114, DUT2018TB06), 沈阳航空航天大学引进人才科研启动基金(19YB70) 资助
详细信息
    作者简介:

    张檬:沈阳航空航天大学人工智能学院讲师. 主要研究方向为复杂网络, 混沌控制与同步.E-mail: mengzhang@sau.edu.cn

    韩敏:大连理工大学电子信息与电气工程学部教授. 主要研究方向为模式识别, 复杂系统建模与分析,时间序列预测. 本文通信作者.E-mail: minhan@dlut.edu.cn

Finite-time Synchronization Between Uncertain Complex Networks Based on Unidirectional Coupling Method

Funds: Supported by National Natural Science Foundation of China (61773087), the Special Funds for Fundamental Research Funds of the Central Universities (DUT20LAB114, DUT2018TB06), the Scientific Research Started Foundation for Introduced Talents of Shenyang Aerospace University (19YB70)
More Information
    Author Bio:

    ZHANG Meng Lecturer at School of Artificial Intelligence, Shenyang Aerospace University. Her research interest covers complex networks, chaos control and synchronization

    HAN Min Professor at the Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology. Her research interest covers pattern recognition, modeling and analysis of complex system, and time series prediction. Corresponding author of this paper

  • 摘要:

    针对具有不确定性的复杂网络有限时间同步问题, 提出一种新颖的单向耦合控制方法. 构建含有未知参量及未知拓扑结构的驱动−响应复杂网络模型, 考虑两个网络具有不同的节点数, 同时受到时变耦合时滞的影响, 并且网络内部分别具有不同的节点系统. 基于有限时间稳定性理论和线性矩阵不等式变换, 通过在响应网络中引入单向耦合项, 实现两个网络间的有限时间同步, 同时准确辨识未知参量及未知拓扑结构. 仿真实验验证所提同步方法的有效性, 对比实验结果表明所提方法在减少耦合数量的同时具有更快的同步速率及更小的波动范围.

  • 图  1  同步误差的演化${e_{i1}}(t),{e_{i2}}(t),{e_{i3}}(t)\ (i = 1,2, \cdots ,10)$

    Fig.  1  Synchronous errors${e_{i1}}(t),\;{e_{i2}}(t),\;{e_{i3}}(t)\left(i = 1,2, \cdots ,10\right)$

    图  2  未知参量的辨识${\hat a_{1i}}\left( {i = 1,2, \cdots ,5} \right)$

    Fig.  2  Identification of the unknown parameters${\hat a_{1i}}\left( {i = 1,2, \cdots ,5} \right)$

    图  3  未知参量的辨识${\hat d_{2i}}\left( {i = 6,7, \cdots ,10} \right)$

    Fig.  3  Identification of the unknown parameters${\hat d_{2i}}\left( {i = 6,7, \cdots ,10} \right)$

    图  4  未知拓扑结构的辨识${\hat{c}_{ij}}$

    Fig.  4  Identification of network structure${\hat{c}_{ij}}$

    图  5  未知拓扑结构的辨识${\hat{c}_{ij}}$

    Fig.  5  Identification of network structure${\hat{c}_{ij}}$

    图  6  未知拓扑结构的辨识${\hat{c}_{ij}}$

    Fig.  6  Identification of network structure${\hat{c}_{ij}}$

    图  7  未知拓扑结构的辨识${\hat{c}_{ij}}$

    Fig.  7  Identification of network structure${\hat{c}_{ij}}$

    图  8  本文方法与文献[14]定理1方法的平均误差曲线

    Fig.  8  The average error of our method and Theorem 1 in [14]

    图  9  本文方法与文献[14]定理2方法的平均误差曲线

    Fig.  9  The average error of our method and Theorem 2 in [14]

    表  1  本文方法与文献[14]定理1方法对比结果

    Table  1  The comparison result between our method and the Theorem 1 in [14]

    同步时间 Sync time (s) 波动范围 Fluctuation range
    本文方法 0.657 [−4.5, 5.5]
    文献[14] 定理1 1.698 [−6.5, 7.4]
    下载: 导出CSV

    表  2  本文方法与文献[14]中定理2方法对比结果

    Table  2  The comparison result between our method and the Theorem 2 in [14]

    同步时间
    Sync time (s)
    波动范围
    Fluctuation range
    耦合数量
    Coupling number
    本文方法 0.639 [−4.7, 6.9] 1
    文献[14]定理2 1.095 [−9.5, 8,3] 2
    下载: 导出CSV
  • [1] 席裕庚. 大系统控制论与复杂网络 — 探索与思考. 自动化学报, 2013, 39(11): 1758−1768 doi: 10.3724/SP.J.1004.2013.01758

    Xi Yu-Geng. Large-scale systems control and complex networks-exploration and thinking. Acta Automatica Sinica, 2013, 39(11): 1758−1768 doi: 10.3724/SP.J.1004.2013.01758
    [2] Tran S N, Garcez A S A. Deep logic networks: Inserting and extracting knowledge from deep belief networks. IEEE Transactions on Neural Networks and Learn Systems, 2018, 29(2): 246−258 doi: 10.1109/TNNLS.2016.2603784
    [3] Watts D J, Strogatz S H. Collective dynamics of “small-world” networks. Nature, 1998, 393(6684): 440−442 doi: 10.1038/30918
    [4] Barabási A L, Albert R. Emergence of scaling in random networks. Science, 1999, 286(5439): 509−512 doi: 10.1126/science.286.5439.509
    [5] 陈关荣. 复杂动态网络环境下控制理论遇到的问题与挑战. 自动化学报, 2013, 39(4): 312−321 doi: 10.1016/S1874-1029(13)60032-4

    Chen Guan-Rong. Problems and challenges in control theory under complex dynamical network environments. Acta Automatica Sinica, 2013, 39(4): 312−321 doi: 10.1016/S1874-1029(13)60032-4
    [6] Lakshmanan S, Prakash M, Lim C P, Rakkiyappan R, Balasubramaniam P, Nahavandi S. Synchronization of an inertial neural network with time-varying delays and its application to secure communication. IEEE Transactions on Neural Networks and Learn Systems, 2018, 29(1): 195−207 doi: 10.1109/TNNLS.2016.2619345
    [7] Suarez O J, Vega C J, Sanchez E N, Chen G R, Elviraceja J S, Rodriguez D I. Neural sliding-mode pinning control for output synchronization for uncertain general complex networks. Automatica, 2020, 112: 108694 doi: 10.1016/j.automatica.2019.108694
    [8] 吕金虎. 复杂网络的同步: 理论、方法、应用与展望. 力学进展, 2008, 38(6): 713−722 doi: 10.3321/j.issn:1000-0992.2008.06.007

    Lv Jin-Hu. Synchronization of complex networks: theories, approaches, applications and prospects. Advances in Mechanics, 2008, 38(6): 713−722 doi: 10.3321/j.issn:1000-0992.2008.06.007
    [9] 韦相, 赵军产, 胡春华. 两个异构复杂网络的广义同步与参数识别. 自动化学报, 2017, 43(4): 595−603

    Wei Xiang, Zhao Jun-Chan, Hu Chun-Hua. Generalized synchronization and system parameters identification between two different complex networks. Acta Automatica Sinica, 2017, 43(4): 595−603
    [10] Yang X, Lam J, Ho D W C, Feng Z. Fixed-time synchronization of complex networks with impulsive effects via nonchattering control. IEEE Transactions on Automatic Control, 2017, 62(11): 5511−5521 doi: 10.1109/TAC.2017.2691303
    [11] 韩敏, 张雅美, 张檬. 具有双重时滞的时变耦合复杂网络的牵制外同步研究. 物理学报, 2015, 64(7): 70506

    Han Min, Zhang Ya-Mei, Zhang Meng. Outer synchronization analysis of two time-varying networks with double delays based on pinning control. Acta Physica Sinica, 2015, 64(7): 70506
    [12] Zhang Z M, He Y, Wu M. Exponential synchronization of neural networks with time-varying delays via dynamic intermittent output feedback control. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49(3): 612−622 doi: 10.1109/TSMC.2017.2753944
    [13] Xu Y H, Zhou W N, Fang J A, Lu H Q. Structure identification and adaptive synchronization of uncertain general complex dynamical networks. Physics Letters A, 2009, 374(2): 272−278 doi: 10.1016/j.physleta.2009.10.079
    [14] Mei J, Jiang M, Wang J. Finite-time structure identification and synchronization of drive-response systems with uncertain parameter. Communications in Nonlinear Science and Numerical Simulation, 2013, 18(4): 999−1015 doi: 10.1016/j.cnsns.2012.08.039
    [15] Han M, Zhang M, Zhang Y M. Projective synchronization between two delayed networks of different sizes with nonidentical nodes and unknown parameters. Neurocomputing, 2016, 171(1): 605−614
    [16] 杜洪越, 孙琬双, 胡革, 齐丽华. 两个分数阶复杂动态网络的函数投影同步. 自动化学报, 2016, 42(2): 226−234

    Du Hong-Yue, Sun Wan-Shuang, Hu Ge, Qi Li-Hua. Function projective synchronization of two fractional-order complex dynamical networks. Acta Automatica Sinica, 2016, 42(2): 226−234
    [17] Andrieu V, Jayawardhana B, Tarbouriech S. Some results on exponential synchronization of nonlinear systems. IEEE Transactions on Automatic Control, 2018, 63(4): 1213−1219 doi: 10.1109/TAC.2017.2789244
    [18] Perruquetti W, Floquet T, Moulay E. Finite-time observers: application to secure communication. IEEE Transactions on Automatic Control, 2008, 53(1): 356−360 doi: 10.1109/TAC.2007.914264
    [19] He P, Ma S H, Fan T. Finite-time mixed outer synchronization of complex networks with coupling time-varying delay. Chaos, 2012, 22(4): 043151(1−11
    [20] Velmurugan G, Rakkiyappan R, Cao J. Finite-time synchronization of fractional-order memristor-based neural networks with time delays. Neural Networks, 2016, 73: 36−46 doi: 10.1016/j.neunet.2015.09.012
    [21] Yang X, Lu J. Finite-time synchronization of coupled networks with Markovian topology and impulsive effects. IEEE Transactions on Automatic Control, 2016, 61(8): 2256−2261 doi: 10.1109/TAC.2015.2484328
    [22] Gao J, Zhu P, Alsaedi A, Alsaadi F E, Hayat T. A new switching control for finite-time synchronization of memristor-based recurrent neural networks. Neural Networks, 2017, 86: 1−9 doi: 10.1016/j.neunet.2016.10.008
    [23] Liu H, Lu J A, Lü J, Hill D J. Structure identification of uncertain general complex dynamical networks with time delay. Automatica, 2009, 45(8): 1799−1807 doi: 10.1016/j.automatica.2009.03.022
    [24] Che Y Q, Li R X, Han C X, Cui S G, Wang J, Wei X L, Deng B. Topology identification of uncertain nonlinearly coupled complex networks with delays based on anticipatory synchronization. Chaos, 2013, 23(1): 013127−7 doi: 10.1063/1.4793541
    [25] Mei J, Jiang M, Xu W, Wang B. Finite-time synchronization control of complex dynamical networks with time delay. Communications in Nonlinear Science and Numerical Simulation, 2013, 18(9): 2462−2478 doi: 10.1016/j.cnsns.2012.11.009
    [26] Abdurahman A, Jiang H, Hu C, Teng Z. Parameter identification based on finite-time synchronization for Cohen-Grossberg neural networks with time-varying delays. Nonlinear Analysis: Real World Applications, 2015, 20(3): 348−366
    [27] Jing T Y, Chen F Q, Li Q H. Finite-time mixed outer synchronization of complex networks with time-varying delay and unknown parameters. Applied Mathematical Modelling, 2015, 39(23): 23−24
    [28] 罗毅平, 周笔锋. 时滞扩散性复杂网络同步保性能控制. 自动化学报, 2015, 41(1): 147−156

    Luo Yi-Ping, Zhou Bi-Feng. Guaranteed cost synchronization control of diffusible complex network systems with time delay. Acta Automatica Sinica, 2015, 41(1): 147−156
    [29] Lorenz E N. Deterministic nonperiodic flow. Journal of the atmospheric sciences, 1963, 20(2): 130−141 doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
    [30] Chen G, Ueta T. Yet another chaotic attractor. International Journal of Bifurcation and chaos, 1999, 9(7): 1465−1466 doi: 10.1142/S0218127499001024
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  1141
  • HTML全文浏览量:  269
  • PDF下载量:  153
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-22
  • 录用日期:  2018-05-07
  • 网络出版日期:  2021-07-27
  • 刊出日期:  2021-07-27

目录

    /

    返回文章
    返回