2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类非线性时变时滞系统的稳定性分析与吸引域估计

杨仁明 王玉振

杨仁明, 王玉振. 一类非线性时变时滞系统的稳定性分析与吸引域估计. 自动化学报, 2012, 38(5): 716-724. doi: 10.3724/SP.J.1004.2012.00716
引用本文: 杨仁明, 王玉振. 一类非线性时变时滞系统的稳定性分析与吸引域估计. 自动化学报, 2012, 38(5): 716-724. doi: 10.3724/SP.J.1004.2012.00716
YANG Ren-Ming, WANG Yu-Zhen. Stability Analysis and Estimate of Domain of Attraction for a Class of Nonlinear Time-varying Delay Systems. ACTA AUTOMATICA SINICA, 2012, 38(5): 716-724. doi: 10.3724/SP.J.1004.2012.00716
Citation: YANG Ren-Ming, WANG Yu-Zhen. Stability Analysis and Estimate of Domain of Attraction for a Class of Nonlinear Time-varying Delay Systems. ACTA AUTOMATICA SINICA, 2012, 38(5): 716-724. doi: 10.3724/SP.J.1004.2012.00716

一类非线性时变时滞系统的稳定性分析与吸引域估计

doi: 10.3724/SP.J.1004.2012.00716
详细信息
    通讯作者:

    杨仁明, 山东大学控制学院博士研究生.2006 年获得山东师范大学硕士学位.主要研究方向为非线性、非线性时滞系统的稳定性和控制设计.

Stability Analysis and Estimate of Domain of Attraction for a Class of Nonlinear Time-varying Delay Systems

  • 摘要: 针对一类非线性时变时滞系统,研究其稳定性和吸引域的估计问题. 首先,通过坐标变换和正交分解法,将这类系统转化为一个等价形式. 其次,基于正交条件和引入自由权矩阵, 给出了这类系统具有较小保守性的稳定性和吸引域估计结果. 最后,仿真例子验证了所提出方法的有效性.
  • [1] Gu K Q, Kharitonov V L, Chen J. Stability of Time-Delay Systems. Berlin: Springer, 2003. 322-323[2] Quan Quan, Yang De-Dong, Cai Kai-Yuan. Adaptive compensation for robust tracking of uncertain dynamic delay systems. Acta Automatica Sinica, 2010, 36(8): 1189-1194[3] Cong Shen, Zhang Hai-Tao, Zou Yun. A new exponential stability condition for delayed systems with Markovian switching. Acta Automatica Sinica, 2010, 36(7): 1025-1028[4] Li Q K, Zhao J, Dimirovski G M, Liu X J. State convergence property of perturbed switched linear time-delay systems. IET Control Theory and Applications, 2010, 4(2): 273-281[5] Sun Xin, Zhang Qing-Ling, Yang Chun-Yu, Shao Yong-Yun, Su Zhan. Delay-dependent stability analysis and stabilization of discrete-time singular delay systems. Acta Automatica Sinica, 2010, 36(10): 1477-1483[6] Xu S Y, Lam J. Improved delay-dependent stability criteria for time-delay systems. IEEE Transactions on Automatic Control, 2005, 50(3): 384-387[7] He Y, Wang Q G, Lin C, Wu M. Delay-range-dependent stability for systems with time-varying delay. Automatica, 2007, 43(2): 371-376[8] Han Q L. A delay decomposition approach to stability of linear neutral systems. In: Proceedings of the 17th International Federation of Automatic Control (IFAC) World Congress. Seoul, Korea: IEEE, 2008. 2607-2612[9] Fu Y S, Tian Z H, Shi S J. Output feedback stabilization for a class of stochastic time-delay nonlinear systems. IEEE Transactions on Automatic Control, 2005, 50(6): 847-851[10] Zemouche A, Boutayeb M, Bara G I. On observers design for nonlinear time-delay systems. In: Proceedings of the American Control Conference. Minneapolis, Minnesota, USA: IEEE, 2006. 4025-4030[11] Gong Q X, Zhang H G, Song C H, Liu D R. Disturbance decoupling control for a class of nonlinear time-delay system. In: Proceedings of the 6th World Congress on Intelligent Control and Automation. Dalian, China, IEEE: 2006. 878-882[12] Yang R M, Wang Y Z. Stability analysis and H∞ control design for a class of nonlinear time-delay systems. Asian Journal of Control, 2012, 14(1): 153-162[13] Nguang S K. Robust stabilization of a class of time-delay nonlinear systems. IEEE Transactions on Automatic Control, 2000, 45(4): 756-762[14] Sun W W, Wang Y Z, Yang R M. L2 disturbance attenuation for a class of time-delay Hamiltonian systems. Journal of Systems Science and Complexity, 2011, 24(4): 672-682[15] Papachristodoulou A. Analysis of nonlinear time-delay systems using the sum of squares decomposition. In: Proceedings of the American Control Conference. Pasadena CA, USA: IEEE, 2004. 4153-4158[16] Coutinho D F, de Souza C E. Delay-dependent robust stability and L2-gain analysis of a class of nonlinear time-delay systems. Automatica, 2008, 44(8): 2006-2018[17] Fridman E, Dambrine M, Yeganefar N. On input-to-state stability of systems with time-delay: a matrix inequalities approach. Automatica, 2008, 44(9): 2364-2369[18] Zhang W, Cai X S, Han Z Z. Robust stability criteria for systems with interval time-varying delay and nonlinear perturbations. Journal of Computational and Applied Mathematics, 2010, 234(1): 174-180[19] Ramakrishnan K, Ray G. Improved stability criteria for lurie type systems with time-varying delay. Acta Automatica Sinica, 2011, 37(5): 639-644[20] Lin Jin-Xing, Fei Shu-Min. Robust exponential admissibility of uncertain switched singular time-delay systems. Acta Automatica Sinica, 2010, 36(12): 1773-1779[21] Khalil H K. Nonlinear Systems (3rd Edition). USA: Prentice Hall, 2002. 312-322[22] Cao J D. An estimation of the domain of attraction and convergence rate for Hopfield continuous feedback neural networks. Physics Letters A, 2004, 325(5-6): 370-374[23] Melchor-Aguilar D, Niculescu S I. Estimates of the attraction region for a class of nonlinear time-delay systems. IMA Journal of Mathematical Control and Information, 2007, 24(4): 523-550[24] Mazenc F, Bliman P A. Backstepping design for time-delay nonlinear systems. IEEE Transactions on Automatic Control, 2006, 51(1): 149-154[25] Wang Y Z, Li C W, Cheng D Z. Generalized Hamiltonian realization of time-invariant nonlinear systems. Automatica, 2003, 39(8): 1437-1443[26] Boyd S, El Ghaoui L, Feron E, Balakrishnan V. Linear Matrix Inequalities in System and Control Theory. Philadelphia: SIAM, 1994. 23-24[27] Lu W M, Doyle J C. Robustness analysis and synthesis for nonlinear uncertain systems. IEEE Transactions on Automatic Control, 1997, 42(12): 1654-1662[28] Zhang X P, Tsiotras P, Knospe C. Stability analysis of LPV time-delayed systems. International Journal of Control, 2002, 75(7): 538-558[29] Wu F, Grigoriadis K M. LPV systems with parameter-varying time delays: analysis and control. Automatica, 2001, 37(2): 221-229[30] Kiriakidis K. Control synthesis for a class of uncertain nonlinear systems. In: Proceedings of the American Control Conference. San Diego, California, USA: IEEE, 1999. 4073-4074
  • 加载中
计量
  • 文章访问数:  2089
  • HTML全文浏览量:  87
  • PDF下载量:  1052
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-28
  • 修回日期:  2011-12-02
  • 刊出日期:  2012-05-20

目录

    /

    返回文章
    返回