2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

针对信息物理系统远程状态估计的隐蔽虚假数据注入攻击

金增旺 刘茵 刁靖东 王震 孙长银 刘志强

金增旺, 刘茵, 刁靖东, 王震, 孙长银, 刘志强. 针对信息物理系统远程状态估计的隐蔽虚假数据注入攻击. 自动化学报, 2025, 51(2): 1−10 doi: 10.16383/j.aas.c240527
引用本文: 金增旺, 刘茵, 刁靖东, 王震, 孙长银, 刘志强. 针对信息物理系统远程状态估计的隐蔽虚假数据注入攻击. 自动化学报, 2025, 51(2): 1−10 doi: 10.16383/j.aas.c240527
Jin Zeng-Wang, Liu Yin, Diao Jing-Dong, Wang Zhen, Sun Chang-Yin, Liu Zhi-Qiang. Stealthy false data injection attacks on remote state estimation of cyber-physical systems. Acta Automatica Sinica, 2025, 51(2): 1−10 doi: 10.16383/j.aas.c240527
Citation: Jin Zeng-Wang, Liu Yin, Diao Jing-Dong, Wang Zhen, Sun Chang-Yin, Liu Zhi-Qiang. Stealthy false data injection attacks on remote state estimation of cyber-physical systems. Acta Automatica Sinica, 2025, 51(2): 1−10 doi: 10.16383/j.aas.c240527

针对信息物理系统远程状态估计的隐蔽虚假数据注入攻击

doi: 10.16383/j.aas.c240527 cstr: 32138.14.j.aas.c240527
基金项目: 国家重点研发计划(2022YFB3104005), 国家自然科学基金(U21B2008, U23B2039), 2022年度太仓市基础研究计划(TC2022JC17), 宁波市自然科学基金(2021J046)资助
详细信息
    作者简介:

    金增旺:西北工业大学网络空间安全学院副教授. 主要研究方向为信息物理系统安全, 多智能体系统安全, 网络攻防下无人系统的安全估计与安全控制, 故障诊断与容错控制. E-mail: jin_zengwang@nwpu.edu.cn

    刘茵:西北工业大学网络空间安全学院硕士研究生. 主要研究方向为信息物理系统安全. E-mail: liuyin828@mail.nwpu.edu.cn

    刁靖东:中国空间技术研究院钱学森空间技术实验室博士. 主要研究方向为空间信息融合, 多源多目标跟踪和集值系统辨识. 本文通信作者. E-mail: diaojingdong@spacechina.com

    王震:西北工业大学网络空间安全学院教授. 主要研究方向为人工智能, 网络空间智能对抗, 智能无人系统基础与应用. E-mail: wzhen@nwpu.edu.cn

    孙长银:安徽大学人工智能学院教授. 主要研究方向为智能控制与优化, 强化学习, 神经网络. E-mail: cysun@ahu.edu.cn

    刘志强:西北工业大学网络空间安全学院教授. 主要研究方向为网络化系统, 故障诊断及应用. E-mail: zqliu@nwpu.edu.cn

Stealthy False Data Injection Attacks on Remote State Estimation of Cyber-physical Systems

Funds: Supported by National Key Research and Development Program of China (2022YFB3104005), National Natural Science Foundation of China (U21B2008, U23B2039), Basic Research Programs (2022) of Taicang of China (TC2022JC17), and Ningbo Natural Science Foundation of China (2021J046)
More Information
    Author Bio:

    JIN Zeng-Wang Associate professor at the School of Cybersecurity, Northwestern Polytechnical University. His research interest covers security of cyber-physical system, security of multi-agent system, secure estimation and secure control of unmanned system under cyber attack and defense, fault diagnosis and tolerant control

    LIU Yin Master student at the School of Cybersecurity, Northwestern Polytechnical University. Her main research interest is cyber-physical system security

    DIAO Jing-Dong Ph.D. at the Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology. His research interest covers spatial information fusion, multi-source multi-target tracking, and set-valued system identification. Corresponding author of this paper

    WANG Zhen Professor at the School of Cybersecurity, Northwestern Polytechnical University. His research interest covers artificial intelligence, intelligent countermeasures in cyberspace, and foundation and application of intelligent unmanned system

    SUN Chang-Yin Professor at the School of Artificial Intelligence, Anhui University. His research interest covers intelligent control and optimization, reinforcement learning, and neural networks

    LIU Zhi-Qiang Professor at the School of Cybersecurity, Northwestern Polytechnical University. His research interest covers networked system, fault diagnosis and application

  • 摘要: 从攻击者的角度探讨信息物理系统(Cyber-physical system, CPS)中隐蔽虚假数据注入(False data injection, FDI)攻击的最优策略. 选取Kullback-Leibler (K-L)散度作为攻击隐蔽性的评价指标, 设计攻击信号使得攻击保持隐蔽且最大程度地降低CPS远程状态估计的性能. 首先, 利用残差的统计特征计算远程状态估计误差协方差, 将FDI最优策略问题转化为二次约束优化问题. 其次, 在攻击隐蔽性的约束下, 运用拉格朗日乘子法及半正定规划推导出最优策略. 最后, 通过仿真实验验证所提方法与现有方法相比在隐蔽性方面具有显著优势.
  • 图  1  FDI攻击下CPS结构图

    Fig.  1  Diagram of CPS structure under FDI attack

    图  2  稳定系统状态估计性能的退化情况

    Fig.  2  Degradation of state estimation performance of the stable system

    图  3  不稳定系统状态估计性能的退化情况

    Fig.  3  Degradation of state estimation performance of the unstable system

    图  4  稳定系统估计误差协方差迹的演化情况

    Fig.  4  Evolution of trace of estimation error covariance of the stable system

    图  5  稳定系统残差统计特征的演化情况

    Fig.  5  Evolution of statistical characteristics of the residuals of the stable system

    图  6  在不同阈值δ下稳定系统状态估计性能的退化情况

    Fig.  6  Degradation of state estimation performance of the stable system at different thresholds δ

  • [1] Wu W Q, Song C Y, Zhao J, Xu Z H. Physicsinformed gated recurrent graph attention unit network for anomaly detection in industrial cyber-physical systems. Information Sciences, 2023, 629: 618−633 doi: 10.1016/j.ins.2023.01.136
    [2] Muhammad N N, Neetesh S, Alvaro C, Santiago G, Pete B. Smart grid cyber-physical situational awareness of complex operational technology attacks: A review. ACM Computing Surveys, 2023, 55(10): 1−36
    [3] LMarwa O, Fahd N A, Rana A, Majdi K, Mohammed A, Mohamed I A, et al. Artificial intelligence for traffic prediction and estimation in intelligent cyber-physical transportation systems. IEEE Transactions on Consumer Electronics, 2024, 70(1): 1706−1715 doi: 10.1109/TCE.2023.3320513
    [4] 李洪阳, 魏慕恒, 黄洁, 邱伯华, 赵晔, 骆文成, 等. 信息物理系统技术综述. 自动化学报, 2019, 45(1): 37−50

    Li Hong-Yang, Wei Mu-Heng, Huang Jie, Qiu Bo-Hua, Zhao Ye, Luo Wen-Cheng, et al. Survey on cyber-physical systems. Acta Automatica Sinica, 2019, 45(1): 37−50
    [5] Liu W, Zhao F, Shankar A, Maple C, Peter J D, Kim B G, et al. Explainable AI for medical image analysis in medical cyber-physical systems: Enhancing transparency and trustworthiness of IoMT. IEEE Journal of Biomedical and Health Informatics, DOI: 10.1109/JBHI.2023.3336721
    [6] Mouhyemen K, Karel H, Amr M, Khaled A H, Mohammad M H. Mobile target coverage and tracking on drone-be-gone UAV cyber-physical testbed. IEEE Systems Journal, 2017, 12(4): 3485−3496
    [7] 杨光红, 芦安洋, 安立伟. 网络攻击下的信息物理系统安全状态估计研究综述. 控制与决策, 2023, 38(8): 2093−2105

    Yang Guang-Hong, Lu An-Yang, An Li-Wei. A survey on secure state estimation of cyber-physical systems under cyber attacks. Control and Decision, 2023, 38(8): 2093−2105
    [8] Ding K M, Li Y Z, Daniel E Q, Subhrakanti D, Shi L. A multi-channel transmission schedule for remote state estimation under DoS attacks. Automatica, 2017, 78: 194−201 doi: 10.1016/j.automatica.2016.12.020
    [9] Qin J H, Li M L, Shi L, Yu X H. Optimal denial-of-service attack scheduling with energy constraint over packet-dropping networks. IEEE Transactions on Automatic Control, 2017, 63(6): 1648−1663
    [10] Li Y, Zhu S Y, Chen C L, Guan X P. Optimal denial-of-service attack strategy on state estimation over infinite-time horizon. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2021, 68(8): 2860−2864 doi: 10.1109/TCSII.2021.3057134
    [11] Ye D, Song Y B. Optimal periodic DoS attack with energy harvester in cyber-physical systems. Neurocomputing, 2020, 390: 69−77 doi: 10.1016/j.neucom.2020.01.075
    [12] Guo H B, Sun J, Pang Z H, Liu G P. Event-based optimal stealthy false data-injection attacks against remote state estimation systems. IEEE Transactions on Cybernetics, 2023, 53(10): 6714−6724 doi: 10.1109/TCYB.2023.3255583
    [13] 张淇瑞, 孟思琪, 王兰豪, 刘坤, 代伟. 隐蔽攻击下信息物理系统的安全输出反馈控制. 自动化学报, 2024, 50(7): 1001−1010

    Zhang Qi-Rui, Meng Si-Qi, Wang Lan-Hao, Liu Kun, Dai Wei. Secure output-feedback control for cyber-physical systems under stealthy attacks. Acta Automatica Sinica, 2024, 50(7): 1001−1010
    [14] 应晨铎, 伍益明, 徐明, 郑宁, 何熊熊. 欺骗攻击下具备隐私保护的多智能体系统均值趋同控制. 自动化学报, 2023, 49(2): 425−436

    Ying Chen-Duo, Wu Yi-Ming, Xu Ming, Zheng Ning, He Xiong-Xiong. Privacy-preserving average consensus control formultiagent systems under deception attacks. Acta Automatica Sinica, 2023, 49(2): 425−436
    [15] Ye D, Zhang T Y. Summation detector for false data injection attack in cyber-physical systems. IEEE Transactions on Cybernetics, 2020, 50(6): 2338−2345 doi: 10.1109/TCYB.2019.2915124
    [16] Mo Y L, Bruno S. On the performance degradation of cyber-physical systems under stealthy integrity attacks. IEEE Transactions on Automatic Control, 2016, 61(9): 2618−2624 doi: 10.1109/TAC.2015.2498708
    [17] Guo Z Y, Shi D W, Karl H J, Shi L. Optimal linear cyber-attack on remote state estimation. IEEE Transactions on Control of Network Systems, 2016, 4(1): 4−13
    [18] Guo Z Y, Shi D W, Karl H J, Shi L. Worst-case stealthy innovation-based linear attack on remote state estimation. Automatica, 2018, 89: 117−124 doi: 10.1016/j.automatica.2017.11.018
    [19] Rijha S, Syed A P, Syed T A. False data injection attacks on networked control systems. Journal of Control and Decision, 2023, 11 (4): 650−659
    [20] Li Y G, Yang G H. Worst-case ϵ-stealthy false data injection attacks in cyber-physical systems. Information Sciences, 2020, 515: 352−364 doi: 10.1016/j.ins.2019.12.029
    [21] Andrew C B. The accuracy of the gaussian approximation to the sum of independent variates. Transactions of the American Mathematical Society, 1941, 49(1): 122−136 doi: 10.1090/S0002-9947-1941-0003498-3
    [22] Shang J, Chen T W. Optimal stealthy integrity attacks on remote state estimation: The maximum utilization of historical data. Automatica, 2021, 128: Artacle No. 109555 doi: 10.1016/j.automatica.2021.109555
    [23] Anderson B D, Moore J B. Optimal filtering. Courier Corporation. New York: Dover Publications, 2005.
    [24] Pang Z H, Fu Y, Guo H B, Sun J. Analysis of stealthy false data injection attacks against networked control systems: Three case studies. Journal of Systems Science and Complexity, 2023, 36(4): 1407−1422 doi: 10.1007/s11424-022-2120-6
  • 加载中
图(6)
计量
  • 文章访问数:  171
  • HTML全文浏览量:  84
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-26
  • 录用日期:  2024-10-28
  • 网络出版日期:  2024-11-18

目录

    /

    返回文章
    返回