[1]
|
杨涛, 杨博, 殷允强, 虞文武, 夏元清, 洪奕光. 多智能体系统协同控制与优化专刊序言. 控制与决策, 2023, 38(5): 1153−1158Yang Tao, Yang Bo, Yin Yun-Qiang, Yu Wen-Wu, Xia Yuan-Qing, Hong Yi-Guang. Guest editorial of special issue on cooperative control and optimization for multi-agent systems. Control and Decision, 2023, 38(5): 1153−1158
|
[2]
|
Moreau L. Stability of multiagent systems with time-dependent communication links. IEEE Transactions on Automatic Control, 2005, 50(2): 169−182 doi: 10.1109/TAC.2004.841888
|
[3]
|
Cao M, Morse A S, Anderson B D O. Reaching a consensus in a dynamically changing environment: Convergence rates, measurement delays, and asynchronous events. SIAM Journal on Control and Optimization, 2008, 47(2): 601−623 doi: 10.1137/060657029
|
[4]
|
Shi G D, Johansson K H. The role of persistent graphs in the agreement seeking of social networks. IEEE Journal on Selected Areas in Communications, 2013, 31(9): 595−606 doi: 10.1109/JSAC.2013.SUP.0513052
|
[5]
|
Qin J H, Gao H J. A sufficient condition for convergence of sampled-data consensus for double-integrator dynamics with nonuniform and time-varying communication delays. IEEE Transactions on Automatic Control, 2012, 57(9): 2417−2422 doi: 10.1109/TAC.2012.2188425
|
[6]
|
Qin J H, Zheng W X, Gao H J. Consensus of multiple second-order vehicles with a time-varying reference signal under directed topology. Automatica, 2011, 47(9): 1983−1991 doi: 10.1016/j.automatica.2011.05.014
|
[7]
|
Qin J H, Gao H J, Zheng W X. Exponential synchronization of complex networks of linear systems and nonlinear oscillators: A unified analysis. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(3): 510−521 doi: 10.1109/TNNLS.2014.2316245
|
[8]
|
Lin Z L. Low Gain Feedback. London: Springer, 1999.
|
[9]
|
Qin J H, Fu W M, Zheng W X, Gao H J. On the bipartite consensus for generic linear multiagent systems with input saturation. IEEE Transactions on Cybernetics, 2017, 47(8): 1948−1958 doi: 10.1109/TCYB.2016.2612482
|
[10]
|
Meskin N, Khorasani K. Actuator fault detection and isolation for a network of unmanned vehicles. IEEE Transactions on Automatic Control, 2009, 54(4): 835−840 doi: 10.1109/TAC.2008.2009675
|
[11]
|
Dimarogonas D V, Frazzoli E, Johansson K H. Distributed event-triggered control for multi-agent systems. IEEE Transactions on Automatic Control, 2012, 57(5): 1291−1297 doi: 10.1109/TAC.2011.2174666
|
[12]
|
Qin J H, Ma Q C, Shi Y, Wang L. Recent advances in consensus of multi-agent systems: A brief survey. IEEE Transactions on Industrial Electronics, 2017, 64(6): 4972−4983 doi: 10.1109/TIE.2016.2636810
|
[13]
|
Qin J H, Yu C B, Gao H J. Coordination for linear multiagent systems with dynamic interaction topology in the leader-following framework. IEEE Transactions on Industrial Electronics, 2014, 61(5): 2412−2422 doi: 10.1109/TIE.2013.2273480
|
[14]
|
Zhang Y Y, Li S. Distributed biased min-consensus with applications to shortest path planning. IEEE Transactions on Automatic Control, 2017, 62(10): 5429−5436 doi: 10.1109/TAC.2017.2694547
|
[15]
|
Qin J H, Gao H J, Zheng W X. Second-order consensus for multi-agent systems with switching topology and communication delay. Systems and Control Letters, 2011, 60(6): 390−397
|
[16]
|
Zhang J F. Preface to special topic on games in control systems. National Science Review, 2020, 7(7): 1115−1115 doi: 10.1093/nsr/nwaa118
|
[17]
|
Shamma J S. Game theory, learning, and control systems. National Science Review, 2020, 7(7): 1118−1119 doi: 10.1093/nsr/nwz163
|
[18]
|
王龙, 黄锋. 多智能体博弈、学习与控制. 自动化学报, 2023, 49(3): 580−613Wang Long, Huang Feng. An interdisciplinary survey of multi-agent games, learning, and control. Acta Automatica Sinica, 2023, 49(3): 580−613
|
[19]
|
Marden J R, Shamma J S. Game theory and control. Annual Review of Control, Robotics, and Autonomous Systems, 2018, 1: 105−134 doi: 10.1146/annurev-control-060117-105102
|
[20]
|
Riehl J, Ramazi P, Cao M. A survey on the analysis and control of evolutionary matrix games. Annual Reviews in Control, 2018, 45: 87−106
|
[21]
|
Zhang R R, Guo L. Controllability of Nash equilibrium in game-based control systems. IEEE Transactions on Automatic Control, 2019, 64(10): 4180−4187 doi: 10.1109/TAC.2019.2893150
|
[22]
|
Huo W, Tsang K F E, Yan Y, Johansson K H, Shi L. Distributed Nash equilibrium seeking with stochastic event-triggered mechanism. Automatica, 2024, 162: Article No. 111486
|
[23]
|
Oh K K, Park M C, Ahn H S. A survey of multi-agent formation control. Automatica, 2015, 53: 424−440 doi: 10.1016/j.automatica.2014.10.022
|
[24]
|
Anderson B D O, Shi G D, Trumpf J. Convergence and state reconstruction of time-varying multi-agent systems from complete observability theory. IEEE Transactions on Automatic Control, 2017, 62(5): 2519−2523 doi: 10.1109/TAC.2016.2599274
|
[25]
|
Xiao F, Wang L. Asynchronous consensus in continuous-time multi-agent systems with switching topology and time-varying delays. IEEE Transactions on Automatic Control, 2008, 53(8): 1804−1816 doi: 10.1109/TAC.2008.929381
|
[26]
|
Kim H, Shim H, Back J, Seo J H. Consensus of output-coupled linear multi-agent systems under fast switching network: Averaging approach. Automatica, 2013, 49(1): 267−272 doi: 10.1016/j.automatica.2012.09.025
|
[27]
|
Back J, Kim J S. Output feedback practical coordinated tracking of uncertain heterogeneous multi-agent systems under switching network topology. IEEE Transactions on Automatic Control, 2017, 62(12): 6399−6406 doi: 10.1109/TAC.2017.2651166
|
[28]
|
Valcher M E, Zorzan I. On the consensus of homogeneous multi-agent systems with arbitrarily switching topology. Automatica, 2017, 84: 79−85 doi: 10.1016/j.automatica.2017.07.011
|
[29]
|
Qin J H, Gao H J, Yu C B. On discrete-time convergence for general linear multi-agent systems under dynamic topology. IEEE Transactions on Automatic Control, 2014, 59(4): 1054−1059 doi: 10.1109/TAC.2013.2285777
|
[30]
|
Yang T, Meng Z Y, Shi G D, Hong Y G, Johansson K H. Network synchronization with nonlinear dynamics and switching interactions. IEEE Transactions on Automatic Control, 2016, 61(10): 3103−3108 doi: 10.1109/TAC.2015.2497907
|
[31]
|
Lu M B, Liu L. Distributed feedforward approach to cooperative output regulation subject to communication delays and switching networks. IEEE Transactions on Automatic Control, 2017, 62(4): 1999−2005 doi: 10.1109/TAC.2016.2594151
|
[32]
|
Meng H F, Chen Z Y, Middleton R. Consensus of multiagents in switching networks using input-to-state stability of switched systems. IEEE Transactions on Automatic Control, 2018, 63(11): 3964−3971 doi: 10.1109/TAC.2018.2809454
|
[33]
|
Liu T, Huang J. Leader-following attitude consensus of multiple rigid body systems subject to jointly connected switching networks. Automatica, 2018, 92: 63−71 doi: 10.1016/j.automatica.2018.02.012
|
[34]
|
Meng Z Y, Yang T, Li G Q, Ren W, Wu D. Synchronization of coupled dynamical systems: Tolerance to weak connectivity and arbitrarily bounded time-varying delays. IEEE Transactions on Automatic Control, 2018, 63(6): 1791−1797 doi: 10.1109/TAC.2017.2754219
|
[35]
|
Abdessameud A. Consensus of nonidentical Euler-Lagrange systems under switching directed graphs. IEEE Transactions on Automatic Control, 2019, 64(5): 2108−2114 doi: 10.1109/TAC.2018.2867347
|
[36]
|
Su Y F, Huang J. Stability of a class of linear switching systems with applications to two consensus problems. IEEE Transactions on Automatic Control, 2012, 57(6): 1420−1430 doi: 10.1109/TAC.2011.2176391
|
[37]
|
Wang X P, Zhu J D, Feng J E. A new characteristic of switching topology and synchronization of linear multiagent systems. IEEE Transactions on Automatic Control, 2019, 64(7): 2697−2711 doi: 10.1109/TAC.2018.2869478
|
[38]
|
Ma Q C, Qin J H, Zheng W X, Shi Y, Kang Y. Exponential consensus of linear systems over switching network: A subspace method to establish necessity and sufficiency. IEEE Transactions on Cybernetics, 2022, 52(3): 1565−1574 doi: 10.1109/TCYB.2020.2991540
|
[39]
|
Ma Q C, Qin J H, Yu X H, Wang L. On necessary and sufficient conditions for exponential consensus in dynamic networks via uniform complete observability theory. IEEE Transactions on Automatic Control, 2021, 66(10): 4975−4981 doi: 10.1109/TAC.2020.3046606
|
[40]
|
Ma Q C, Qin J H, Anderson B D O, Wang L. Exponential consensus of multiple agents over dynamic network topology: Controllability, connectivity, and compactness. IEEE Transactions on Automatic Control, 2023, 68(12): 7104−7119 doi: 10.1109/TAC.2023.3245021
|
[41]
|
Bernstein D S, Michel A N. A chronological bibliography on saturating actuators. International Journal of Robust and Nonlinear Control, 1995, 5(5): 375−380 doi: 10.1002/rnc.4590050502
|
[42]
|
Zhou B, Duan G R, Lin Z L. A parametric Lyapunov equation approach to the design of low gain feedback. IEEE Transactions on Automatic Control, 2008, 53(6): 1548−1554 doi: 10.1109/TAC.2008.921036
|
[43]
|
Su H S, Chen M Z Q, Lam J, Lin Z L. Semi-global leader-following consensus of linear multi-agent systems with input saturation via low gain feedback. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, 60(7): 1881−1889 doi: 10.1109/TCSI.2012.2226490
|
[44]
|
Li Y, Xiang J, Wei W. Consensus problems for linear time-invariant multi-agent systems with saturation constraints. IET Control Theory and Applications, 2011, 5(6): 823−829
|
[45]
|
Meng Z Y, Zhao Z Y, Lin Z L. On global leader-following consensus of identical linear dynamic systems subject to actuator saturation. Systems and Control Letters, 2013, 62(2): 132−142
|
[46]
|
Ren W, Beard R W. Consensus algorithms for double-integrator dynamics. Distributed Consensus in Multi-vehicle Cooperative Control: Theory and Applications. London: Springer, 2008. 77−104
|
[47]
|
Zhao Z Y, Lin Z L. Global leader-following consensus of a group of general linear systems using bounded controls. Automatica, 2016, 68: 294−304 doi: 10.1016/j.automatica.2016.01.027
|
[48]
|
Zhang Y M, Jiang J. Bibliographical review on reconfigurable fault-tolerant control systems. Annual Reviews in Control, 2008, 32(2): 229−252 doi: 10.1016/j.arcontrol.2008.03.008
|
[49]
|
Davoodi M R, Khorasani K, Talebi H A, Momeni H R. Distributed fault detection and isolation filter design for a network of heterogeneous multiagent systems. IEEE Transactions on Control Systems Technology, 2014, 22(3): 1061−1069 doi: 10.1109/TCST.2013.2264507
|
[50]
|
Kashyap N, Yang C W, Sierla S, Flikkema P G. Automated fault location and isolation in distribution grids with distributed control and unreliable communication. IEEE Transactions on Industrial Electronics, 2015, 62(4): 2612−2619 doi: 10.1109/TIE.2014.2387093
|
[51]
|
Teixeira A, Shames I, Sandberg H, Johansson K H. Distributed fault detection and isolation resilient to network model uncertainties. IEEE Transactions on Cybernetics, 2014, 44(11): 2024−2037 doi: 10.1109/TCYB.2014.2350335
|
[52]
|
Wang Y J, Song Y D, Lewis F L. Robust adaptive fault-tolerant control of multiagent systems with uncertain nonidentical dynamics and undetectable actuation failures. IEEE Transactions on Industrial Electronics, 2015, 62(6): 3978−3988
|
[53]
|
Chen S, Ho D W C, Li L L, Liu M. Fault-tolerant consensus of multi-agent system with distributed adaptive protocol. IEEE Transactions on Cybernetics, 2015, 45(10): 2142−2155 doi: 10.1109/TCYB.2014.2366204
|
[54]
|
Tabuada P. Event-triggered real-time scheduling of stabilizing control tasks. IEEE Transactions on Automatic Control, 2007, 52(9): 1680−1685 doi: 10.1109/TAC.2007.904277
|
[55]
|
Cao M T, Xiao F, Wang L. Event-based second-order consensus control for multi-agent systems via synchronous periodic event detection. IEEE Transactions on Automatic Control, 2015, 60(9): 2452−2457 doi: 10.1109/TAC.2015.2390553
|
[56]
|
Lu W L, Han Y J, Chen T P. Synchronization in networks of linearly coupled dynamical systems via event-triggered diffusions. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(12): 3060−3069 doi: 10.1109/TNNLS.2015.2402691
|
[57]
|
Fan Y, Feng G, Wang Y, Song C. Distributed event-triggered control of multi-agent systems with combinational measurements. Automatica, 2013, 49(2): 671−675 doi: 10.1016/j.automatica.2012.11.010
|
[58]
|
Garcia E, Cao Y C, Casbeer D W. Decentralized event-triggered consensus with general linear dynamics. Automatica, 2014, 50(10): 2633−2640 doi: 10.1016/j.automatica.2014.08.024
|
[59]
|
Seyboth G S, Dimarogonas D V, Johansson K H. Event-based broadcasting for multi-agent average consensus. Automatica, 2013, 49(1): 245−252 doi: 10.1016/j.automatica.2012.08.042
|
[60]
|
Zhu W, Jiang Z P. Event-based leader-following consensus of multi-agent systems with input time delay. IEEE Transactions on Automatic Control, 2015, 60(5): 1362−1367 doi: 10.1109/TAC.2014.2357131
|
[61]
|
Cheng Y, Ugrinovskii V. Event-triggered leader-following tracking control for multivariable multi-agent systems. Automatica, 2016, 70: 204−210 doi: 10.1016/j.automatica.2016.04.003
|
[62]
|
Mu N K, Liao X F, Huang T W. Event-based consensus control for a linear directed multiagent system with time delay. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2015, 62(3): 281−285 doi: 10.1109/TCSII.2014.2368991
|
[63]
|
Altafini C. Consensus problems on networks with antagonistic interactions. IEEE Transactions on Automatic Control, 2013, 58(4): 935−946 doi: 10.1109/TAC.2012.2224251
|
[64]
|
Cartwright D, Harary F. Structural balance: A generalization of Heider's theory. Psychological Review, 1956, 63(5): 277−293 doi: 10.1037/h0046049
|
[65]
|
Meng Z Y, Shi G D, Johansson K H, Cao M, Hong Y G. Behaviors of networks with antagonistic interactions and switching topologies. Automatica, 2016, 73: 110−116 doi: 10.1016/j.automatica.2016.06.022
|
[66]
|
Qin J H, Yu C B, Anderson B D O. On leaderless and leader-following consensus for interacting clusters of second-order multi-agent systems. Automatica, 2016, 74: 214−221 doi: 10.1016/j.automatica.2016.07.008
|
[67]
|
Qin J H, Yu C B. Cluster consensus control of generic linear multi-agent systems under directed topology with acyclic partition. Automatica, 2013, 49(9): 2898−2905 doi: 10.1016/j.automatica.2013.06.017
|
[68]
|
Ren L, Li M, Sun C Y. Semiglobal cluster consensus for heterogeneous systems with input saturation. IEEE Transactions on Cybernetics, 2021, 51(9): 4685−4694 doi: 10.1109/TCYB.2019.2942735
|
[69]
|
Qin J H, Ma Q C, Gao H J, Shi Y, Kang Y. On group synchronization for interacting clusters of heterogeneous systems. IEEE Transactions on Cybernetics, 2017, 47(12): 4122−4133 doi: 10.1109/TCYB.2016.2600753
|
[70]
|
Xia W G, Cao M. Clustering in diffusively coupled networks. Automatica, 2011, 47(11): 2395−2405 doi: 10.1016/j.automatica.2011.08.043
|
[71]
|
Battistelli G, Chisci L, Mugnai G, Farina A, Graziano A. Consensus-based linear and nonlinear filtering. IEEE Transactions on Automatic Control, 2015, 60(5): 1410−1415 doi: 10.1109/TAC.2014.2357135
|
[72]
|
Battistelli G, Chisci L. Stability of consensus extended Kalman filter for distributed state estimation. Automatica, 2016, 68: 169−178 doi: 10.1016/j.automatica.2016.01.071
|
[73]
|
Zhang C, Qin J H, Li H, Wang Y N, Wang S, Zheng W X. Consensus-based distributed two-target tracking over wireless sensor networks. Automatica, 2022, 146: Article No. 110593 doi: 10.1016/j.automatica.2022.110593
|
[74]
|
Chen Q, Yin C, Zhou J, Wang Y, Wang X Y, Chen C Y. Hybrid consensus-based cubature Kalman filtering for distributed state estimation in sensor networks. IEEE Sensors Journal, 2018, 18(11): 4561−4569 doi: 10.1109/JSEN.2018.2823908
|
[75]
|
Guo M, Jayawardhana B. Simultaneous distributed localization, formation, and group motion control: A distributed filter approach. IEEE Transactions on Control of Network Systems, 2024, 11(4): 1867−1878 doi: 10.1109/TCNS.2024.3367448
|
[76]
|
Sun W W, Lv X Y, Qiu M Y. Distributed estimation for stochastic Hamiltonian systems with fading wireless channels. IEEE Transactions on Cybernetics, 2022, 52(6): 4897−4906 doi: 10.1109/TCYB.2020.3023547
|
[77]
|
Chen W, Wang Z D, Ding D R, Yi X J, Han Q L. Distributed state estimation over wireless sensor networks with energy harvesting sensors. IEEE Transactions on Cybernetics, 2023, 53(5): 3311−3324 doi: 10.1109/TCYB.2022.3179280
|
[78]
|
Kalman R E. A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 1960, 82(1): 35−45 doi: 10.1115/1.3662552
|
[79]
|
Ljung L. Asymptotic behavior of the extended Kalman filter as a parameter estimator for linear systems. IEEE Transactions on Automatic Control, 1979, 24(1): 36−50 doi: 10.1109/TAC.1979.1101943
|
[80]
|
Wan E A, van der Merwe R. The unscented Kalman filter. Kalman Filtering and Neural Networks. New York: Wiley, 2001. 221−280
|
[81]
|
Julier S J, Uhlmann J K. Reduced sigma point filters for the propagation of means and covariances through nonlinear transformations. In: Proceedings of the American Control Conference (IEEE Cat. No. CH37301). Anchorage, USA: IEEE, 2002. 887−892
|
[82]
|
Arasaratnam I, Haykin S. Cubature Kalman filters. IEEE Transactions on Automatic Control, 2009, 54(6): 1254−1269 doi: 10.1109/TAC.2009.2019800
|
[83]
|
Chen B, Hu G Q, Ho D W C, Yu L. Distributed covariance intersection fusion estimation for cyber-physical systems with communication constraints. IEEE Transactions on Automatic Control, 2016, 61(12): 4020−4026 doi: 10.1109/TAC.2016.2539221
|
[84]
|
Yu D D, Xia Y Q, Li L, Zhai D H. Event-triggered distributed state estimation over wireless sensor networks. Automatica, 2020, 118: Article No. 109039 doi: 10.1016/j.automatica.2020.109039
|
[85]
|
Peng H, Zeng B R, Yang L X, Xu Y, Lu R Q. Distributed extended state estimation for complex networks with nonlinear uncertainty. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(9): 5952−5960 doi: 10.1109/TNNLS.2021.3131661
|
[86]
|
Wang S C, Ren W, Chen J. Fully distributed dynamic state estimation with uncertain process models. IEEE Transactions on Control of Network Systems, 2018, 5(4): 1841−1851 doi: 10.1109/TCNS.2017.2763756
|
[87]
|
Yu F, Dutta R G, Zhang T, Hu Y D, Jin Y E. Fast attack-resilient distributed state estimator for cyber-physical systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39(11): 3555−3565 doi: 10.1109/TCAD.2020.3013072
|
[88]
|
Zhang C, Qin J H, Yan C Z, Shi Y, Wang Y N, Li M. Towards invariant extended Kalman filter-based resilient distributed state estimation for moving robots over mobile sensor networks under deception attacks. Automatica, 2024, 159: Article No. 111408 doi: 10.1016/j.automatica.2023.111408
|
[89]
|
Xie L, Choi D H, Kar S, Poor H V. Fully distributed state estimation for wide-area monitoring systems. IEEE Transactions on Smart Grid, 2012, 3(3): 1154−1169 doi: 10.1109/TSG.2012.2197764
|
[90]
|
Qian J C, Duan P H, Duan Z S, Shi L. Event-triggered distributed state estimation: A conditional expectation method. IEEE Transactions on Automatic Control, 2023, 68(10): 6361−6368 doi: 10.1109/TAC.2023.3234453
|
[91]
|
Duan P H, Wang Q S, Duan Z S, Chen G R. A distributed optimization scheme for state estimation of nonlinear networks with norm-bounded uncertainties. IEEE Transactions on Automatic Control, 2022, 67(5): 2582−2589 doi: 10.1109/TAC.2021.3091182
|
[92]
|
Zhang C, Qin J H, Ma Q C, Shi Y, Li M L. Resilient distributed state estimation for LTI systems under time-varying deception attacks. IEEE Transactions on Control of Network Systems, 2023, 10(1): 381−393 doi: 10.1109/TCNS.2022.3203360
|
[93]
|
Wang H J, Liu K, Han D Y, Xia Y Q. Vulnerability analysis of distributed state estimation under joint deception attacks. Automatica, 2023, 157: Article No. 111274 doi: 10.1016/j.automatica.2023.111274
|
[94]
|
Facchinei F, Kanzow C. Generalized Nash equilibrium problems. Annals of Operations Research, 2010, 175(1): 177−211 doi: 10.1007/s10479-009-0653-x
|
[95]
|
Ye M J, Hu G Q. Adaptive approaches for fully distributed Nash equilibrium seeking in networked games. Automatica, 2021, 129 : Article No. 109661
|
[96]
|
Meng Q, Nian X H, Chen Y, Chen Z. Attack-resilient distributed Nash equilibrium seeking of uncertain multiagent systems over unreliable communication networks. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(5): 6365−6379 doi: 10.1109/TNNLS.2022.3209313
|
[97]
|
Ye M J, Han Q L, Ding L, Xu S Y, Jia G B. Distributed Nash equilibrium seeking strategies under quantized communication. IEEE/CAA Journal of Automatica Sinica, 2024, 11(1): 103−112 doi: 10.1109/JAS.2022.105857
|
[98]
|
Zhong Y F, Yuan Y, Yuan H H. Nash equilibrium seeking for multi-agent systems under DoS attacks and disturbances. IEEE Transactions on Industrial Informatics, 2024, 20(4): 5395−5405 doi: 10.1109/TII.2023.3332951
|
[99]
|
Gadjov D, Pavel L. A passivity-based approach to Nash equilibrium seeking over networks. IEEE Transactions on Automatic Control, 2019, 64(3): 1077−1092 doi: 10.1109/TAC.2018.2833140
|
[100]
|
Romano A R, Pavel L. Dynamic gradient play for NE seeking with disturbance rejection. In: Proceedings of the IEEE Conference on Decision and Control (CDC). Miami, USA: IEEE, 2018. 346−351
|
[101]
|
Lou Y C, Hong Y G, Xie L H, Shi G D, Johansson K H. Nash equilibrium computation in subnetwork zero-sum games with switching communications. IEEE Transactions on Automatic Control, 2016, 61(10): 2920−2935 doi: 10.1109/TAC.2015.2504962
|
[102]
|
Lu K H, Jing G S, Wang L. Distributed algorithms for searching generalized Nash equilibrium of noncooperative games. IEEE Transactions on Cybernetics, 2019, 49(6): 2362−2371 doi: 10.1109/TCYB.2018.2828118
|
[103]
|
Chen S B, Cheng R S. Operating reserves provision from residential users through load aggregators in smart grid: A game theoretic approach. IEEE Transactions on Smart Grid, 2019, 10(2): 1588−1598 doi: 10.1109/TSG.2017.2773145
|
[104]
|
Zhu Y N, Yu W W, Wen G H, Chen G R. Distributed Nash equilibrium seeking in an aggregative game on a directed graph. IEEE Transactions on Automatic Control, 2021, 66(6): 2746−2753 doi: 10.1109/TAC.2020.3008113
|
[105]
|
Carnevale G, Fabiani F, Fele F, Margellos K, Notarstefano G. Tracking-based distributed equilibrium seeking for aggregative games. IEEE Transactions on Automatic Control, 2024, 69(9): 6026−6041 doi: 10.1109/TAC.2024.3368967
|
[106]
|
时侠圣, 任璐, 孙长银. 自适应分布式聚合博弈广义纳什均衡算法. 自动化学报, 2024, 50(6): 1210−1220Shi Xia-Sheng, Ren Lu, Sun Chang-Yin. Distributed adaptive generalized Nash equilibrium algorithm for aggregative games. Acta Automatica Sinica, 2024, 50(6): 1210−1220
|
[107]
|
Zhang Y Y, Sun J, Wu C Y. Vehicle-to-grid coordination via mean field game. IEEE Control Systems Letters, 2022, 6: 2084−2089 doi: 10.1109/LCSYS.2021.3139266
|
[108]
|
Alasseur C, ben Taher I, Matoussi A. An extended mean field game for storage in smart grids. Journal of Optimization Theory and Applications, 2020, 184(2): 644−670 doi: 10.1007/s10957-019-01619-3
|
[109]
|
Martinez-Piazuelo J, Quijano N, Ocampo-Martinez C. Nash equilibrium seeking in full-potential population games under capacity and migration constraints. Automatica, 2022, 141: Article No. 110285 doi: 10.1016/j.automatica.2022.110285
|
[110]
|
Zhang J, Lu J Q, Cao J D, Huang W, Guo J H, Wei Y. Traffic congestion pricing via network congestion game approach. Discrete and Continuous Dynamical Systems——Series S, 2021, 14(4): 1553−1567 doi: 10.3934/dcdss.2020378
|
[111]
|
Zeng J, Wang Q Q, Liu J F, Chen J L, Chen H Y. A potential game approach to distributed operational optimization for microgrid energy management with renewable energy and demand response. IEEE Transactions on Industrial Electronics, 2019, 66(6): 4479−4489 doi: 10.1109/TIE.2018.2864714
|
[112]
|
Deng Z H, Luo J. Distributed algorithm for nonsmooth multi-coalition games and its application in electricity markets. Automatica, 2024, 161: Article No. 111494 doi: 10.1016/j.automatica.2023.111494
|
[113]
|
Meng M, Li X X. On the linear convergence of distributed Nash equilibrium seeking for multi-cluster games under partial-decision information. Automatica, 2023, 151: Article No. 110919 doi: 10.1016/j.automatica.2023.110919
|
[114]
|
Bašar T, Olsder G J. Dynamic Noncooperative Game Theory (2nd edition). Philadelphia: SIAM, 1999.
|
[115]
|
Modares H, Lewis F L, Jiang Z P. ${ H_{\infty}}$ tracking control of completely unknown continuous-time systems via off-policy reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(10): 2550−2562 doi: 10.1109/TNNLS.2015.2441749
|
[116]
|
Song R Z, Lewis F L, Wei Q L. Off-policy integral reinforcement learning method to solve nonlinear continuous-time multiplayer nonzero-sum games. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(3): 704−713 doi: 10.1109/TNNLS.2016.2582849
|
[117]
|
Odekunle A, Gao W N, Davari M, Jiang Z P. Reinforcement learning and non-zero-sum game output regulation for multi-player linear uncertain systems. Automatica, 2020, 112: Article No. 108672 doi: 10.1016/j.automatica.2019.108672
|
[118]
|
Li M, Qin J H, Freris N M, Ho D W C. Multiplayer Stackelberg-Nash game for nonlinear system via value iteration-based integral reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(4): 1429−1440 doi: 10.1109/TNNLS.2020.3042331
|
[119]
|
Mukaidani H, Xu H. Stackelberg strategies for stochastic systems with multiple followers. Automatica, 2015, 53: 53−59 doi: 10.1016/j.automatica.2014.12.021
|
[120]
|
李曼, 秦家虎, 王龙. 线性二次二人Stackelberg博弈均衡点求解: 一种Q学习方法. 中国科学: 信息科学, 2022, 52(6): 1083−1097 doi: 10.1360/SSI-2021-0016Li Man, Qin Jia-Hu, Wang Long. Seeking equilibrium for linear-quadratic two-player Stackelberg game: A Q-learning approach. Scientia Sinica Informationis, 2022, 52(6): 1083−1097 doi: 10.1360/SSI-2021-0016
|
[121]
|
Lin Y N. Necessary/sufficient conditions for Pareto optimality in finite horizon mean-field type stochastic differential game. Automatica, 2020, 119: Article No. 108951 doi: 10.1016/j.automatica.2020.108951
|
[122]
|
Vamvoudakis K G, Lewis F L, Hudas G R. Multi-agent differential graphical games: Online adaptive learning solution for synchronization with optimality. Automatica, 2012, 48(8): 1598−1611 doi: 10.1016/j.automatica.2012.05.074
|
[123]
|
Jiao Q, Modares H, Xu S Y, Lewis F L, Vamvoudakis K G. Multi-agent zero-sum differential graphical games for disturbance rejection in distributed control. Automatica, 2016, 69: 24−34 doi: 10.1016/j.automatica.2016.02.002
|
[124]
|
Li M, Qin J H, Ma Q C, Zheng W X, Kang Y. Hierarchical optimal synchronization for linear systems via reinforcement learning: A Stackelberg-Nash game perspective. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(4): 1600−1611 doi: 10.1109/TNNLS.2020.2985738
|
[125]
|
Li M, Qin J H, Wang Y N, Kang Y. Bio-inspired dynamic collective choice in large-population systems: A robust mean-field game perspective. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(5): 1914−1924 doi: 10.1109/TNNLS.2020.3027428
|
[126]
|
Kamalapurkar R, Klotz J R, Walters P, Dixon W E. Model-based reinforcement learning in differential graphical games. IEEE Transactions on Control of Network Systems, 2018, 5(1): 423−433 doi: 10.1109/TCNS.2016.2617622
|
[127]
|
Li J N, Modares H, Chai T Y, Lewis F L, Xie L H. Off-policy reinforcement learning for synchronization in multiagent graphical games. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(10): 2434−2445 doi: 10.1109/TNNLS.2016.2609500
|
[128]
|
Qin J H, Li M, Shi Y, Ma Q C, Zheng W X. Optimal synchronization control of multiagent systems with input saturation via off-policy reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(1): 85−96 doi: 10.1109/TNNLS.2018.2832025
|
[129]
|
孙长银, 穆朝絮. 多智能体深度强化学习的若干关键科学问题. 自动化学报, 2020, 46(7): 1301−1312Sun Chang-Yin, Mu Chao-Xu. Important scientific problems of multi-agent deep reinforcement learning. Acta Automatica Sinica, 2020, 46(7): 1301−1312
|
[130]
|
Arslan G, Yüksel S. Decentralized Q-learning for stochastic teams and games. IEEE Transactions on Automatic Control, 2017, 62(4): 1545−1558 doi: 10.1109/TAC.2016.2598476
|
[131]
|
Shao J Z, Lou Z Q, Zhang H C, Jiang Y H, He S C, Ji X Y. Self-organized group for cooperative multi-agent reinforcement learning. In: Proceedings of the 36th International Conference on Neural Information Processing Systems. New Orleans, USA: Curran Associates Inc., 2022. Article No. 413
|
[132]
|
Wang L, Zhang Y P, Hu Y J, Wang W X, Zhang C J, Gao Y, et al. Individual reward assisted multi-agent reinforcement learning. In: Proceedings of the 39th International Conference on Machine Learning. Baltimore, USA: PMLR, 2022. 23417−23432
|
[133]
|
Leonardos S, Overman W, Panageas I, Piliouras G. Global convergence of multi-agent policy gradient in Markov potential games. In: Proceedings of the 10th International Conference on Learning Representations. Virtual Event: ICLR, 2022.
|
[134]
|
Zhang K Q, Hu B, Bašar T. On the stability and convergence of robust adversarial reinforcement learning: A case study on linear quadratic systems. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Vancouver, Canada: Curran Associates Inc., 2020. Article No. 1850
|
[135]
|
Yang Y D, Luo R, Li M N, Zhou M, Zhang W N, Wang J. Mean field multi-agent reinforcement learning. In: Proceedings of the 35th International Conference on Machine Learning. Stockholm, Sweden: PMLR, 2018. 5571−5580
|
[136]
|
Ben-Porath E. Rationality, Nash equilibrium and backwards induction in perfect-information games. The Review of Economic Studies, 1997, 64(1): 23−46 doi: 10.2307/2971739
|
[137]
|
Brown N, Sandholm T. Reduced space and faster convergence in imperfect-information games via pruning. In: Proceedings of the 34th International Conference on Machine Learning. Sydney, Australia: PMLR, 2017. 596−604
|
[138]
|
Lowe R, Wu Y, Tamar A, Harb J, Abbeel P, Mordatch I. Multi-agent actor-critic for mixed cooperative-competitive environments. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, USA: Curran Associates Inc., 2017. 6382−6393
|
[139]
|
Sunehag P, Lever G, Gruslys A, Czarnecki W M, Zambaldi V, Jaderberg M, et al. Value-decomposition networks for cooperative multi-agent learning based on team reward. In: Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems. Stockholm, Sweden: International Foundation for Autonomous Agents and Multiagent Systems, 2018. 2085−2087
|
[140]
|
Rashid T, Samvelyan M, de Witt C S, Farquhar G, Foerster J, Whiteson S. Monotonic value function factorisation for deep multi-agent reinforcement learning. The Journal of Machine Learning Research, 2020, 21(1): Article No. 178
|
[141]
|
Ruan J Q, Du Y L, Xiong X T, Xing D P, Li X Y, Meng L H, et al. GCS: Graph-based coordination strategy for multi-agent reinforcement learning. In: Proceedings of the 21st International Conference on Autonomous Agents and Multiagent Systems. Auckland, New Zealand: International Foundation for Autonomous Agents and Multiagent Systems, 2022. 1128−1136
|
[142]
|
Li X S, Li J C, Shi H B, Hwang K S. A decentralized communication framework based on dual-level recurrence for multiagent reinforcement learning. IEEE Transactions on Cognitive and Developmental Systems, 2024, 16(2): 640−649 doi: 10.1109/TCDS.2023.3281878
|
[143]
|
Jiang H B, Ding Z L, Lu Z Q. Settling decentralized multi-agent coordinated exploration by novelty sharing. In: Proceedings of the 38th AAAI Conference on Artificial Intelligence. Vancouver, Canada: AAAI, 2024. 17444−17452
|
[144]
|
Wang H, Yu Y, Jiang Y. Fully decentralized multiagent communication via causal inference. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(12): 10193−10202 doi: 10.1109/TNNLS.2022.3165114
|
[145]
|
van Goor P, Mahony R. EqVIO: An equivariant filter for visual-inertial odometry. IEEE Transactions on Robotics, 2023, 39(5): 3567−3585 doi: 10.1109/TRO.2023.3289587
|
[146]
|
Shan T X, Englot B, Meyers D, Wang W, Ratti C, Rus D. LIO-SAM: Tightly-coupled lidar inertial odometry via smoothing and mapping. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Las Vegas, USA: IEEE, 2020. 5135−5142
|
[147]
|
Shan T X, Englot B, Ratti C, Rus D. LVI-SAM: Tightly-coupled lidar-visual-inertial odometry via smoothing and mapping. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). Xi'an, China: IEEE, 2021. 5692−5698
|
[148]
|
Zhang Z Y, Wang L, Zhou L P, Koniusz P. Learning spatial-context-aware global visual feature representation for instance image retrieval. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Paris, France: IEEE, 2023. 11216−11225
|
[149]
|
Harris C, Stephens M. A combined corner and edge detector. In: Proceedings of the Alvey Vision Conference. Manchester, UK: Alvey Vision Club, 1988. 1−6
|
[150]
|
Fang S, Li H. Multi-vehicle cooperative simultaneous LiDAR SLAM and object tracking in dynamic environments. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(9): 11411−11421 doi: 10.1109/TITS.2024.3360259
|
[151]
|
Zhu F C, Ren Y F, Kong F Z, Wu H J, Liang S Q, Chen N, et al. Swarm-LIO: Decentralized swarm LiDAR-inertial odometry. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). London, UK: IEEE, 2023. 3254–3260
|
[152]
|
Zhang Z J, Wang S, Hong Y C, Zhou L K, Hao Q. Distributed dynamic map fusion via federated learning for intelligent networked vehicles. In: Proceedings of the IEEE International conference on Robotics and Automation (ICRA). Xi'an, China: IEEE, 2021. 953−959
|
[153]
|
Khamis A, Hussein A, Elmogy A. Multi-robot task allocation: A review of the state-of-the-art. Cooperative Robots and Sensor Networks 2015. Cham: Springer, 2015. 31−51
|
[154]
|
Choi H L, Brunet L, How J P. Consensus-based decentralized auctions for robust task allocation. IEEE Transactions on Robotics, 2009, 25(4): 912−926 doi: 10.1109/TRO.2009.2022423
|
[155]
|
Bai X S, Fielbaum A, Kronmüller M, Knoedler L, Alonso-Mora J. Group-based distributed auction algorithms for multi-robot task assignment. IEEE Transactions on Automation Science and Engineering, 2023, 20(2): 1292−1303 doi: 10.1109/TASE.2022.3175040
|
[156]
|
Shorinwa O, Haksar R N, Washington P, Schwager M. Distributed multirobot task assignment via consensus ADMM. IEEE Transactions on Robotics, 2023, 39(3): 1781−1800 doi: 10.1109/TRO.2022.3228132
|
[157]
|
Park S, Zhong Y D, Leonard N E. Multi-robot task allocation games in dynamically changing environments. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). Xi'an, China: IEEE, 2021. 8678−8684
|
[158]
|
Soria E, Schiano F, Floreano D. Predictive control of aerial swarms in cluttered environments. Nature Machine Intelligence, 2021, 3(6): 545−554 doi: 10.1038/s42256-021-00341-y
|
[159]
|
Saravanos A D, Aoyama Y, Zhu H C, Theodorou E A. Distributed differential dynamic programming architectures for large-scale multiagent control. IEEE Transactions on Robotics, 2023, 39(6): 4387−4407 doi: 10.1109/TRO.2023.3319894
|
[160]
|
Yao W J, de Marina H G, Sun Z Y, Cao M. Guiding vector fields for the distributed motion coordination of mobile robots. IEEE Transactions on Robotics, 2023, 39(2): 1119−1135 doi: 10.1109/TRO.2022.3224257
|
[161]
|
Chen Y D, Guo M, Li Z K. Deadlock resolution and recursive feasibility in MPC-based multirobot trajectory generation. IEEE Transactions on Automatic Control, 2024, 69(9): 6058−6073 doi: 10.1109/TAC.2024.3393126
|
[162]
|
Spica R, Cristofalo E, Wang Z J, Montijano E, Schwager M. A real-time game theoretic planner for autonomous two-player drone racing. IEEE Transactions on Robotics, 2020, 36(5): 1389−1403 doi: 10.1109/TRO.2020.2994881
|
[163]
|
Williams Z, Chen J S, Mehr N. Distributed potential iLQR: Scalable game-theoretic trajectory planning for multi-agent interactions. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). London, UK: IEEE, 2023. 1−7
|
[164]
|
Chen M, Shih J C, Tomlin C J. Multi-vehicle collision avoidance via Hamilton-Jacobi reachability and mixed integer programming. In: Proceedings of the IEEE 55th Conference on Decision and Control (CDC). Las Vegas, USA: IEEE, 2016. 1695−1700
|
[165]
|
Li M, Qin J H, Li J C, Liu Q C, Shi Y, Kang Y. Game-based approximate optimal motion planning for safe human-swarm interaction. IEEE Transactions on Cybernetics, 2024, 54(10): 5649−5660 doi: 10.1109/TCYB.2023.3340659
|
[166]
|
Zhu K, Zhang T. Deep reinforcement learning based mobile robot navigation: A review. Tsinghua Science and Technology, 2021, 26(5): 674−691 doi: 10.26599/TST.2021.9010012
|
[167]
|
He Z C, Dong L, Song C W, Sun C Y. Multiagent soft actor-critic based hybrid motion planner for mobile robots. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(12): 10980−10992 doi: 10.1109/TNNLS.2022.3172168
|
[168]
|
Fan T X, Long P X, Liu W X, Pan J. Distributed multi-robot collision avoidance via deep reinforcement learning for navigation in complex scenarios. The International Journal of Robotics Research, 2020, 39(7): 856−892 doi: 10.1177/0278364920916531
|
[169]
|
Brito B, Everett M, How J P, Alonso-Mora J. Where to go next: Learning a subgoal recommendation policy for navigation in dynamic environments. IEEE Robotics and Automation Letters, 2021, 6(3): 4616−4623 doi: 10.1109/LRA.2021.3068662
|
[170]
|
Xie Z T, Dames P. DRL-VO: Learning to navigate through crowded dynamic scenes using velocity obstacles. IEEE Transactions on Robotics, 2023, 39(4): 2700−2719 doi: 10.1109/TRO.2023.3257549
|
[171]
|
Han R H, Chen S D, Wang S J, Zhang Z Q, Gao R, Hao Q, et al. Reinforcement learned distributed multi-robot navigation with reciprocal velocity obstacle shaped rewards. IEEE Robotics and Automation Letters, 2022, 7(3): 5896−5903 doi: 10.1109/LRA.2022.3161699
|
[172]
|
Chen L, Wang Y N, Miao Z Q, Feng M T, Zhou Z, Wang H S, et al. Reciprocal velocity obstacle spatial-temporal network for distributed multirobot navigation. IEEE Transactions on Industrial Electronics, 2024, 71(11): 14470−14480 doi: 10.1109/TIE.2024.3379630
|
[173]
|
Qin J M, Qin J H, Qiu J X, Liu Q C, Li M, Ma Q C. SRL-ORCA: A socially aware multi-agent mapless navigation algorithm in complex dynamic scenes. IEEE Robotics and Automation Letters, 2024, 9(1): 143−150 doi: 10.1109/LRA.2023.3331621
|
[174]
|
Li Y, Davis C, Lukszo Z, Weijnen M. Electric vehicle charging in China's power system: Energy, economic and environmental trade-offs and policy implications. Applied Energy, 2016, 173: 535−554 doi: 10.1016/j.apenergy.2016.04.040
|
[175]
|
Chandra I, Singh N K, Samuel P. A comprehensive review on coordinated charging of electric vehicles in distribution networks. Journal of Energy Storage, 2024, 89: Article No. 111659 doi: 10.1016/j.est.2024.111659
|
[176]
|
Franco J F, Rider M J, Romero R. A mixed-integer linear programming model for the electric vehicle charging coordination problem in unbalanced electrical distribution systems. IEEE Transactions on Smart Grid, 2015, 6(5): 2200−2210 doi: 10.1109/TSG.2015.2394489
|
[177]
|
Das R, Wang Y, Busawon K, Putrus G, Neaimeh M. Real-time multi-objective optimisation for electric vehicle charging management. Journal of Cleaner Production, 2021, 292: Article No. 126066 doi: 10.1016/j.jclepro.2021.126066
|
[178]
|
Wan Y N, Qin J H, Yu X H, Yang T, Kang Y. Price-based residential demand response management in smart grids: A reinforcement learning-based approach. IEEE/CAA Journal of Automatica Sinica, 2022, 9(1): 123−134 doi: 10.1109/JAS.2021.1004287
|
[179]
|
Zhang P, Qian K J, Zhou C K, Stewart B G, Hepburn D M. A methodology for optimization of power systems demand due to electric vehicle charging load. IEEE Transactions on Power Systems, 2012, 27(3): 1628−1636 doi: 10.1109/TPWRS.2012.2186595
|
[180]
|
Ioakimidis C S, Thomas D, Rycerski P, Genikomsakis K N. Peak shaving and valley filling of power consumption profile in non-residential buildings using an electric vehicle parking lot. Energy, 2018, 148: 148−158 doi: 10.1016/j.energy.2018.01.128
|
[181]
|
van Kriekinge G, de Cauwer C, Sapountzoglou N, Coosemans T, Messagie M. Peak shaving and cost minimization using model predictive control for uni- and bi-directional charging of electric vehicles. Energy Reports, 2021, 7: 8760−8771 doi: 10.1016/j.egyr.2021.11.207
|
[182]
|
Gong J B, Fu W M, Kang Y, Qin J H, Xiao F. Multi-agent deep reinforcement learning based multi-objective charging control for electric vehicle charging station. In: Proceedings of the 7th Chinese Conference on Swarm Intelligence and Cooperative Control. Nanjing, China: Springer, 2023. 266−277
|
[183]
|
Tu R, Gai Y J, Farooq B, Posen D, Hatzopoulou M. Electric vehicle charging optimization to minimize marginal greenhouse gas emissions from power generation. Applied Energy, 2020, 277: Article No. 115517 doi: 10.1016/j.apenergy.2020.115517
|
[184]
|
Adetunji K E, Hofsajer I W, Abu-Mahfouz A M, Cheng L. An optimization planning framework for allocating multiple distributed energy resources and electric vehicle charging stations in distribution networks. Applied Energy, 2022, 322: Article No. 119513 doi: 10.1016/j.apenergy.2022.119513
|
[185]
|
Ran L L, Qin J H, Wan Y N, Fu W M, Yu W W, Xiao F. Fast charging navigation strategy of EVs in power-transportation networks: A coupled network weighted pricing perspective. IEEE Transactions on Smart Grid, 2024, 15(4): 3864−3875 doi: 10.1109/TSG.2024.3354300
|
[186]
|
Wan Y N, Qin J H, Li F Y, Yu X H, Kang Y. Game theoretic-based distributed charging strategy for PEVs in a smart charging station. IEEE Transactions on Smart Grid, 2021, 12(1): 538−547 doi: 10.1109/TSG.2020.3020466
|
[187]
|
Zhang L, Li Y Y. A game-theoretic approach to optimal scheduling of parking-lot electric vehicle charging. IEEE Transactions on Vehicular Technology, 2016, 65(6): 4068−4078 doi: 10.1109/TVT.2015.2487515
|
[188]
|
Kabir M E, Assi C, Tushar M H K, Yan J. Optimal scheduling of EV charging at a solar power-based charging station. IEEE Systems Journal, 2020, 14(3): 4221−4231 doi: 10.1109/JSYST.2020.2968270
|
[189]
|
Zavvos E, Gerding E H, Brede M. A comprehensive game-theoretic model for electric vehicle charging station competition. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8): 12239−12250 doi: 10.1109/TITS.2021.3111765
|
[190]
|
Chen J, Huang X Q, Cao Y J, Li L Y, Yan K, Wu L, et al. Electric vehicle charging schedule considering shared charging pile based on generalized Nash game. International Journal of Electrical Power and Energy Systems, 2022, 136: Article No. 107579
|
[191]
|
Yan D X, Yin H, Li T, Ma C B. A two-stage scheme for both power allocation and EV charging coordination in a grid-tied PV-battery charging station. IEEE Transactions on Industrial Informatics, 2021, 17(10): 6994−7004 doi: 10.1109/TII.2021.3054417
|
[192]
|
Liu Z X, Wu Q W, Huang S J, Wang L F, Shahidehpour M, Xue Y S. Optimal day-ahead charging scheduling of electric vehicles through an aggregative game model. IEEE Transactions on Smart Grid, 2018, 9(5): 5173−5184 doi: 10.1109/TSG.2017.2682340
|
[193]
|
Lin R Z, Chu H Q, Gao J W, Chen H. Charging management and pricing strategy of electric vehicle charging station based on mean field game theory. Asian Journal of Control, 2024, 26(2): 803−813 doi: 10.1002/asjc.3173
|
[194]
|
Wang Y F, Wang X L, Shao C C, Gong N W. Distributed energy trading for an integrated energy system and electric vehicle charging stations: A Nash bargaining game approach. Renewable Energy, 2020, 155: 513−530 doi: 10.1016/j.renene.2020.03.006
|
[195]
|
Pahlavanhoseini A, Sepasian M S. Optimal planning of PEV fast charging stations using Nash bargaining theory. Journal of Energy Storage, 2019, 25: Article No. 100831 doi: 10.1016/j.est.2019.100831
|
[196]
|
Ran L L, Wan Y N, Qin J H, Fu W M, Zhang D F, Kang Y. A game-based battery swapping station recommendation approach for electric vehicles. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(9): 9849−9860 doi: 10.1109/TITS.2023.3269570
|
[197]
|
Zeng H T, Sheng Y J, Sun H B, Zhou Y Z, Xue Y X, Guo Q L. A conic relaxation approach for solving Stackelberg pricing game of electric vehicle charging station considering traffic equilibrium. IEEE Transactions on Smart Grid, 2024, 15(3): 3080−3097 doi: 10.1109/TSG.2023.3329651
|
[198]
|
Wan Y N, Qin J H, Ma Q C, Fu W M, Wang S. Multi-agent DRL-based data-driven approach for PEVs charging/discharging scheduling in smart grid. Journal of the Franklin Institute, 2022, 359(4): 1747−1767 doi: 10.1016/j.jfranklin.2022.01.016
|
[199]
|
Zhang Z L, Wan Y N, Qin J H, Fu W M, Kang Y. A deep RL-based algorithm for coordinated charging of electric vehicles. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 18774−18784 doi: 10.1109/TITS.2022.3170000
|
[200]
|
Park K, Moon I. Multi-agent deep reinforcement learning approach for EV charging scheduling in a smart grid. Applied Energy, 2022, 328: Article No. 120111 doi: 10.1016/j.apenergy.2022.120111
|
[201]
|
Zhang Y, Yang Q Y, An D, Li D H, Wu Z Z. Multistep multiagent reinforcement learning for optimal energy schedule strategy of charging stations in smart grid. IEEE Transactions on Cybernetics, 2023, 53(7): 4292−4305 doi: 10.1109/TCYB.2022.3165074
|
[202]
|
Liang Y C, Ding Z H, Zhao T Y, Lee W J. Real-time operation management for battery swapping-charging system via multi-agent deep reinforcement learning. IEEE Transactions on Smart Grid, 2023, 14(1): 559−571 doi: 10.1109/TSG.2022.3186931
|
[203]
|
Wang L, Liu S X, Wang P F, Xu L M, Hou L Y, Fei A G. QMIX-based multi-agent reinforcement learning for electric vehicle-facilitated peak shaving. In: Proceedings of the IEEE Global Communications Conference. Kuala Lumpur, Malaysia: IEEE, 2023. 1693−1698
|