2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于PI结构的多智能体系统容错一致性控制

郜晨 何潇 周东华

郜晨, 何潇, 周东华. 基于PI结构的多智能体系统容错一致性控制. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240474
引用本文: 郜晨, 何潇, 周东华. 基于PI结构的多智能体系统容错一致性控制. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240474
Gao Chen, He Xiao, Zhou Dong-Hua. Fault-tolerant consensus control of multi-agent systems based on PI controller. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240474
Citation: Gao Chen, He Xiao, Zhou Dong-Hua. Fault-tolerant consensus control of multi-agent systems based on PI controller. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240474

基于PI结构的多智能体系统容错一致性控制

doi: 10.16383/j.aas.c240474 cstr: 32138.14.j.aas.c240474
基金项目: 国家自然科学基金(62403245,62473223,62233012), 江苏省自然科学基金(BK20241458,BK20232038), 北京市自然科学基金重点研究专题项目(L241016)资助
详细信息
    作者简介:

    郜晨:南京理工大学自动化学院教授. 2021年获得清华大学博士学位. 主要研究方向为分布式系统的隐私保护与容错控制. E-mail: chengao@njust.edu.cn

    何潇:清华大学自动化系长聘教授. 2010年获得清华大学博士学位. 主要研究方向为动态系统的故障诊断与容错控制. 本文通讯作者. E-mail: hexiao@tsinghua.edu.cn

    周东华:山东科技大学和清华大学教授. 1990年获得上海交通大学博士学位. 主要研究方向为动态系统的故障诊断与容错控制,故障预测与最优维护技术. E-mail: hexiao@tsinghua.edu.cn

Fault-tolerant Consensus Control of Multi-agent Systems Based on PI Controller

Funds: Supported by National Natural Science Foundation of China (62403245,62473223,62233012), Natural Science Foundation of Jiangsu Province of China (BK20241458,BK20232038), and Beijing Natural Science Foundation (L241016)
More Information
    Author Bio:

    GAO Chen Professor in the School of Automation, Nanjing University of Science and Technology. She received her Ph. D. degree from Tsinghua University in 2021. Her research interest covers privacy preservation and fault-tolerant control for distributed systems

    HE Xiao Tenured professor in the Department of Automation, Tsinghua University. He received his Ph. D. degree from Tsinghua University in 2010. His research interest covers fault diagnosis and fault tolerant control for dynamic systems. Corresponding author of this paper

    ZHOU Dong-Hua Professor at Shandong University of Science and Technology and Tsinghua University. He received his Ph. D. degree from Shanghai Jiao Tong University in 1990. His research interest covers fault diagnosis and tolerant control, fault prediction, and optimal maintenance for dynamic systems

  • 摘要: 本文针对无领航者多智能体系统以及领航-跟随多智能体系统执行器故障问题,设计了基于比例-积分结构的容错控制律. 考虑到传统的比例型控制律无法消除加性干扰影响下的稳态误差,本文引入积分环节,在一致性控制律中融入状态的积分项,用于改善多智能体系统一致性过程的稳态性能. 针对领航者输入不为零的情况,设计非线性的一致性控制律,并借助黎卡提方程以及Lyapunov函数,进行多智能体系统在故障情况下的一致性分析和控制律设计. 最后,通过一系列对比仿真,说明了所设计控制律在改善系统稳态性能方面的优势.
  • 图  3  P型控制律下的一致性误差

    Fig.  3  Trajectories of the consensus error with P control

    图  1  拓扑结构图

    Fig.  1  Topological structure

    图  2  拓扑结构图

    Fig.  2  Topological structure

    图  4  P型控制律下的输入量

    Fig.  4  Trajectories of the input variable with P control

    图  5  P型控制律下的一致性误差: 加性故障

    Fig.  5  Trajectories of the consensus error with P control and additive faults

    图  6  P型控制律下的一致性误差: 加性故障

    Fig.  6  Trajectories of the input variable with P control and additive faults

    图  7  PI型控制律下的一致性误差

    Fig.  7  Trajectories of the consensus error with PI control

    图  8  PI型控制律下的输入量

    Fig.  8  Trajectories of the input variable with PI control

    图  9  PI型控制律下的一致性误差: 加性故障

    Fig.  9  Trajectories of the consensus error with PI control and additive faults

    图  10  PI型控制律下的输入量: 加性故障

    Fig.  10  Trajectories of the input variable with PI control and additive faults

  • [1] He X, Wang Z, Gao C, Zhou D. Consensus control for multiagent systems under asymmetric actuator saturations with applications to mobile train lifting jack systems. IEEE Transactions on Industrial Informatics, 2023, 19(10): 10224−10232 doi: 10.1109/TII.2022.3229138
    [2] Zhang S, Ma L, Liu H, Encryption-decryption-based event-triggered consensus control for nonlinear MASs under DoS attacks. International Journal of Robust and Nonlinear Control, DOI: 10.1002/rnc.6964
    [3] Gao C, Wang Z, He X, Liu Y, Yue D. Differentially private consensus control for discrete-time multi-agent systems: Encoding-decoding schemes. IEEE Transactions on Automatic Control, 2024, 69(8): 5554−5561 doi: 10.1109/TAC.2024.3367803
    [4] Shi T, Zhu F. Security time-varying formation control for multi-agent systems under denial-of-service attacks via unknown input observer. IEEE Transactions on Network Science and Engineering, 2023, 10(4): 2372−2385
    [5] Su H, Zhang B, Zhou J, Xue J, Zheng Y, Ma H. Collision-risk-based event-triggered optimal formation control for mobile multiagent systems under incomplete information conditions. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(8): 4888−4898 doi: 10.1109/TSMC.2023.3257024
    [6] Ma Z, Shi L, Chen K, Shao J, Cheng Y. Multi-agent bipartite flocking control over cooperation-competition networks with asynchronous communications. IEEE Transactions on Signal and Information Processing over Networks, 2024, 10: 460−472 doi: 10.1109/TSIPN.2024.3384817
    [7] Chen J, Yang Y, Qin S. A distributed optimization algorithm for fixed-time flocking of second-order multiagent systems. IEEE Transactions on Network Science and Engineering, 2024, 11(1): 152−162 doi: 10.1109/TNSE.2023.3292860
    [8] Ying H. Theory and application of a novel fuzzy PID controller using a simplified takagi–sugeno rule scheme. Information Sciences, 2000, 123(3): 281−293
    [9] Carvajal J, Chen G, Ogmen H. Fuzzy PID controller: Design, performance evaluation, and stability analysis. Information Sciences, 2000, 123(3): 249−270
    [10] Lim J S, Lee Y I. Design of discrete-time multivariable PID controllers via LMI approach. In: Proceedings of 2008 International Conference on Control, Automation and Systems, Seoul, Korea (South): IEEE, 2008. 1867−1871
    [11] Wu Z, Iqbal A, Ben A F. LMI-based multivariable PID controller design and its application to the control of the surface shape of magnetic fluid deformable mirrors. IEEE Transactions on Control Systems Technology, 2011, 19(4): 717−729 doi: 10.1109/TCST.2010.2055566
    [12] Zhao D, Wang Z, Ding D, Wei G. PID control with fading measurements: The output-feedback case. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(6): 2170−2180 doi: 10.1109/TSMC.2018.2809489
    [13] Gionfra N, Sandou G, Siguerdidjane H, Faille D, Loevenbruck P. A discrete-time PID-like consensus control: Application to the wind farm distributed control problem. In: Proceedings of 14th International Conference on Informatics in Control, Automation and Robotics, Madrid, SPAIN: Springer, 2020. 106−134
    [14] 杨浩, 姜斌, 周东华. 互联系统容错控制的研究回顾与展望. 自动化学报, 2017, 43(1): 9−19

    Yang H, Jiang B, Zhou D. Review and perspectives on fault tolerant control for interconnected systems. Acta Automatica Sinica, 2017, 43(1): 9−19
    [15] Yang H, Han Q, Ge X, Ding L, Xu Y, Jiang B, et al. Fault-tolerant cooperative control of multiagent systems: A survey of trends and methodologies. IEEE Transactions on Industrial Informatics, 2020, 16(1): 4−17
    [16] Liu Y, Dong X, Shi P, Ren Z, Liu J. Distributed fault-tolerant formation tracking control for multiagent systems with multiple leaders and constrained actuators. IEEE Transactions on Cybernetics, 2023, 53(6): 3738−3747 doi: 10.1109/TCYB.2022.3141734
    [17] Liu Y, Wang Z. Data-based output synchronization of discrete-time heterogeneous multiagent systems with sensor faults. IEEE Transactions on Cybernetics, 2024, 54(1): 265−272 doi: 10.1109/TCYB.2022.3200672
    [18] Wu Y, Wang Z, Ding S, Zhang H. Leader-follower consensus of multi-agent systems in directed networks with actuator faults. Neurocomputing, 2018, 275: 117−1185
    [19] Wang X, Yang G. Fault-tolerant consensus tracking control for linear multiagent systems under switching directed network. IEEE Transactions on Cybernetics, 2020, 50(5): 1921−1930 doi: 10.1109/TCYB.2019.2901542
    [20] Chen J, Chen B, Zeng Z. Adaptive dynamic event-triggered fault-tolerant consensus for nonlinear multiagent systems with directed/undirected networks. IEEE Transactions on Cybernetics, 2023, 53(6): 3901−3912
    [21] Sun J, Tan Z, Liu S, Zhang H, Chuo W Y. Fully distributed event-driven coordination with actuator faults. IEEE Transactions on Cybernetics, 2023, 53(10): 6456−6464 doi: 10.1109/TCYB.2022.3198499
    [22] Li Z, Ren W, Liu X, Xie L. Distributed consensus of linear multi-agent systems with adaptive dynamic protocols. Automatica, 2013, 49(7): 1986−1995 doi: 10.1016/j.automatica.2013.03.015
  • 加载中
计量
  • 文章访问数:  71
  • HTML全文浏览量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-03
  • 录用日期:  2024-10-08
  • 网络出版日期:  2024-11-27

目录

    /

    返回文章
    返回