2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于变参递归网络和递归最小二乘的连续体机器人控制

张润宁 余鹏 谭宁

张润宁, 余鹏, 谭宁. 基于变参递归网络和递归最小二乘的连续体机器人控制. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240469
引用本文: 张润宁, 余鹏, 谭宁. 基于变参递归网络和递归最小二乘的连续体机器人控制. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240469
Zhang Run-Ning, Yu Peng, Tan Ning. Continuum robot control based on varying parameter recursive network and recursive least square. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240469
Citation: Zhang Run-Ning, Yu Peng, Tan Ning. Continuum robot control based on varying parameter recursive network and recursive least square. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240469

基于变参递归网络和递归最小二乘的连续体机器人控制

doi: 10.16383/j.aas.c240469 cstr: 32138.14.j.aas.c240469
基金项目: 国家自然科学基金(62173352), 广东省杰出青年基金(2024B1515020104)资助
详细信息
    作者简介:

    张润宁:中山大学计算机学院硕士研究生. 2023年获得中山大学智能工程学院学士学位. 主要研究方向为深度学习、计算机视觉和机器人控制. E-mail: zhangrn9@mail2.sysu.edu.cn

    余鹏:中山大学计算机学院博士研究生. 2021年和2019年分别获得中山大学计算机学院硕士和学士学位. 主要研究方向为冗余机器人和数据驱动控制. E-mail: yupeng6@mail2.sysu.edu.cn

    谭宁:中山大学计算机学院副教授. 2013年获法国CNRS Femto-st研究所博士学位. 主要研究方向为各类机器人系统的建模、设计、仿真、优化、规划与控制, 内容涵盖基础研究和应用开发. 本文通信作者. E-mail: tann5@mail.sysu.edu.cn

Continuum Robot Control Based on Varying Parameter Recursive Network and Recursive Least Square

Funds: Supported by National Natural Science Foundation of China (62173352), Guangdong Basic and Applied Basic Research Foundation (2024B1515020104)
More Information
    Author Bio:

    ZHANG Run-Ning M. D. candidate at the School of Computer Science and Engineering, Sun Yat-sen University. He received his bachelor degree from Sun Yat-sen University in 2023. His research interest covers deep learning, computer vision and robot control

    YU Peng Ph. D. candidate at the School of Computer Science and Engineering, Sun Yat-sen University. He received his master and bachelor degrees from Sun Yat-sen University in 2021 and 2019, respectively. His research interest covers redundant robots and data-driven control

    TAN Ning Associate Professor at the School of Computer Science and Engineering, Sun Yat-sen University. He received his Ph.D. degree from the CNRS Femto-st Institute in France in 2013. His research interest covers the modeling, design, simulation, optimization, planning, and control of various robotic systems, covering both fundamental research and application development. Corresponding author of this paper

  • 摘要: 连续体机器人通常由柔性材料制成, 能够承受大幅度形变, 在各领域具有广阔的应用前景. 然而, 其软体结构和非传统的驱动机制也带来了诸多非线性因素, 使得其状态和运动难以被精确建模. 因此, 为连续体机器人设计了一种无模型控制方案. 该方案一方面通过变参递归神经网络求解连续体机器人的逆运动学, 以实现高精度运动控制, 另一方面使用递归最小二乘法基于实时数据估计和更新机器人雅可比矩阵伪逆, 以避免机器人的解析建模. 最后, 通过仿真模拟和实物实验验证了所提出控制方案的可行性、精确性和鲁棒性, 并通过一系列对比实验突出了所提出方法的优势. 该方法率先研究基于递归最小二乘法的连续体机器人雅可比矩阵伪逆估计, 对未来的连续体机器人研究具有一定的启示作用.
  • 图  1  连续体机器人轨迹跟踪控制方案

    Fig.  1  The trajectory tracking control scheme of continuum robots

    图  2  连续体机器人分段常曲率模型

    Fig.  2  Piecewise constant curvature model of continuum robots

    图  3  仿真跟踪结果((a) 采用三段连续体机器人, 利用所提出的基于改进动态变参数增强零化神经网络的控制方案仿真得到的轨迹; (b) 跟踪误差变化$ {\boldsymbol{e}}=[e_x,\; e_y,\; e_z]^{\rm{T}} $; (c) 状态参数q的变化过程)

    Fig.  3  Simulation tracking results ((a) Trajectory of the three-segment continuum robot using the proposed control scheme based on Adapted-DVPEZNN; (b) Tracking error $ {\boldsymbol{e}}=[e_x,\; e_y,\; e_z]^{\rm{T}} $; (c) The change of state parameter q)

    图  4  ZNN模型在无噪声下的跟踪误差

    Fig.  4  Tracking errors of ZNN models without noise

    图  5  ZNN模型受噪声影响时的跟踪误差

    Fig.  5  Tracking errors of ZNN models with noise

    图  6  仿真长时间任务的跟踪误差

    Fig.  6  Simulation of tracking errors in long-term task

    图  7  实机跟踪结果

    Fig.  7  Experimental robot tracking results

    图  8  长时间任务实机结果

    Fig.  8  Long-term task results

    图  9  实机长时间任务的跟踪误差

    Fig.  9  Tracking error of long-term task

    图  10  负载对连续体机器人造成形变

    Fig.  10  Load causes deformation to continuum robots

    图  11  障碍物场景

    Fig.  11  Obstacle scenario

    表  1  不同ZNN模型设计公式及激活函数对比

    Table  1  Comparison of design formulas and activation functions of different ZNN models

    模型 设计公式 激活函数
    Original-ZNN[21] $ -\lambda \Phi\left({\boldsymbol{e}}\right) $ $ \phi\left(e\right)=e $
    VP-CDNN[24] $ -\lambda \exp(t) \Phi\left({\boldsymbol{e}}\right) $ $ \phi\left(e\right)=e $
    FTC-ZNN[25] $ -\lambda \left(P({\boldsymbol{e}})+\displaystyle \int_0^t Q({\boldsymbol{e}}(\tau)){\rm{d}}\tau\right) $ $ \left\{ \begin{aligned} &p(e)=((k_1g^\frac{1}{2}(t,\; e)\left|e\right|^\frac{1}{2})+(k_2g(t,\; e)\left|e\right|)){\rm{sign}}(e)\\&q(e)=((k_3g(t,\; e)+(k_4g^2(t,\; e)\left|e\right|){\rm{sign}}(e) \end{aligned} \right. $
    CVP-RNN[33] $ -\lambda (t)P({\boldsymbol{e}}(t))-\displaystyle \int_0^t \mu(\tau)Q({\boldsymbol{e}}(\tau)){\rm{d}}\tau $ $ \left\{ \begin{aligned} &p(e)=\frac{1}{\sigma}\exp\left(\left|e\right|^\sigma\right)\psi^{1-\sigma}(e)\\ &q(e)=\frac{1}{\sigma}\exp\left(2\left|e\right|^\sigma\right)\left(\psi^{1-\sigma}(e)+\frac{1-\sigma}{\sigma}\psi^{1-2\sigma}(e)\right) \end{aligned} \right. $
    DVPEZNN[34] $ -\lambda\exp\left(\left(\beta^t+\beta\right)\Vert{\boldsymbol{e}}\Vert_2\right)P({\boldsymbol{e}}) $ $ p(e)= \begin{cases} \zeta_1\psi^{r_1}(e)+\zeta_2e\exp\left(\left|e\right|+1\right),\; \left|e\right|\leq1\\\zeta_1\psi^{r_2}(e)+\zeta_2e\exp\left(\left|e\right|+1\right),\; {\text{其他}} \end{cases} $
    Adapted-DVPEZNN $ \begin{aligned} & -\lambda\big(\exp\left(\xi_1\beta^t\Vert{\boldsymbol{e}}\Vert_2\right)P({\boldsymbol{e}})+\\ &\displaystyle \int_0^t \exp\left(\xi_2 \tau +\xi_3\right)Q({\boldsymbol{e}}) {\rm{d}}\tau \big) \end{aligned} $ $ \left\{\begin{aligned} &p(e)= \begin{cases} \zeta_1\psi^{r_1}(e)+\zeta_2e\exp\left(\zeta_3\left|e\right|+1\right),\; \left|e\right|\leq1\\\zeta_1\psi^{r_2}(e)+\zeta_2e\exp\left(\zeta_3\left|e\right|+1\right),\; {\text{其他}} \end{cases}\\ &q(e)= \begin{cases} \zeta_4\psi^{r_1}(e),\; \left|e\right|\leq1\\\zeta_4\psi^{r_2}(e),\; {\text{其他}} \end{cases} \end{aligned} \right. $
    下载: 导出CSV

    表  2  ZNN模型在无噪声下的定量分析

    Table  2  Quantitative analysis of ZNN models without noise

    模型 均方误差
    (mm)
    控制能耗
    (s)
    Original-ZNN[21] 2.970 7.290
    VP-CDNN[24] 0.580 7.298
    FTC-ZNN[25] 0.310 7.178
    CVP-RNN[33] 0.259 7.677
    DVPEZNN[34] 0.177 7.141
    Adapted-DVPEZNN 0.057 7.382
    下载: 导出CSV

    表  3  ZNN模型受噪声影响时的定量分析

    Table  3  Quantitative analysis of ZNN models with noise

    模型 常噪声
    (mm)
    线性噪声
    (mm)
    余弦噪声
    (mm)
    Original-ZNN[21] 3.448 3.137 3.313
    VP-CDNN[24] 0.786 0.567 0.719
    FTC-ZNN[25] 0.326 0.291 0.326
    CVP-RNN[33] 0.265 0.243 0.274
    DVPEZNN[34] 0.200 0.181 0.192
    Adapted-DVPEZNN 0.064 0.056 0.062
    下载: 导出CSV

    表  4  参数更新方法的定量分析

    Table  4  Quantitative analysis of parameter update methods

    方法 均方误差(mm) 控制能耗(s)
    增量法 0.033 33.658
    双模型法 0.058 1 356.239
    递归最小二乘法 0.057 7.689
    下载: 导出CSV

    表  5  收敛系数$ \lambda $定量分析

    Table  5  Quantitative analysis of convergence factor $ \lambda $

    收敛系数$ \lambda $ 均方误差(mm) 控制能耗(s)
    1 0.150 7.872
    3 0.122 7.786
    5 0.110 7.830
    10 0.093 7.607
    30 0.068 7.426
    50 0.057 7.382
    下载: 导出CSV

    表  6  遗忘因子$ \gamma $定量分析

    Table  6  Quantitative analysis of forgetting factor $ \gamma $

    遗忘因子$ \gamma $ 均方误差(mm) 控制能耗(s)
    0.1 5.762 $ \times 10^{-2} $ 7.454
    0.3 5.757 $ \times 10^{-2} $ 7.508
    0.5 5.759 $ \times 10^{-2} $ 7.408
    0.7 5.751 $ \times 10^{-2} $ 7.368
    0.9 5.711 $ \times 10^{-2} $ 7.382
    1.0 5.939 $ \times 10^{-2} $ 7.779
    下载: 导出CSV

    表  7  不同场景下的跟踪误差定量分析

    Table  7  Quantitative analysis of tracking errors in different scenarios

    场景设置 均方误差 (mm)
    无负载无障碍物 0.854
    1个负载无障碍物 0.986
    2个负载无障碍物 1.208
    无负载有障碍物 0.869
    下载: 导出CSV
  • [1] Yip M C, Camarillo D B. Model-less hybrid position/force control: A minimalist approach for continuum manipulators in unknown, constrained environments. IEEE Robotics and Automation Letters, 2016, 1(2): 844−851 doi: 10.1109/LRA.2016.2526062
    [2] Rus D, Tolley M T. Design, fabrication and control of soft robots. Nature, 2015, 521(7553): 467−475 doi: 10.1038/nature14543
    [3] Fang G, Tian Y, Yang Z X, Geraedts J M, Wang C C. Effcient Jacobian-based inverse kinematics with sim-to-real transfer of soft robots by learning. IEEE/ASME Transactions on Mechatronics, 2022, 27(6): 5296−5306 doi: 10.1109/TMECH.2022.3178303
    [4] Polygerinos P, Wang Z, Galloway K C, Wood R J, Walsh C J. Soft robotic glove for combined assistance and at-home rehabilitation. Robotics and Autonomous Systems, 2015, 73: 135−143 doi: 10.1016/j.robot.2014.08.014
    [5] Ranzani T, Gerboni G, Cianchetti M, Menciassi A. A bioinspired soft manipulator for minimally invasive surgery. Bioinspiration & biomimetics, 2015, 10(3): Article No.035008
    [6] El-Atab N, Mishra R B, Al-Modaf F, Joharji L, Alsharif A A, Alamoudi H, Diaz M, Qaiser N, Hussain M M. Soft actuators for soft robotic applications: A review. Advanced Intelligent Systems, 2020, 2(10): Article No.2000128 doi: 10.1002/aisy.202000128
    [7] Lee C, Kim M, Kim Y J, Hong N, Ryu S, Kim H J, Kim S. Soft robot review. International Journal of Control, Automation and Systems, 2017, 15: 3−15 doi: 10.1007/s12555-016-0462-3
    [8] Kasaei M, Babarahmati K K, Li Z, Khadem M. Data-effcient non-parametric modelling and control of an extensible soft manipulator. In: Proceedings of 2023 IEEE International Conference on Robotics and Automation (ICRA). London, UK: IEEE, 2023. 2641−2647.
    [9] 徐璠, 王贺升. 软体机械臂水下自适应鲁棒视觉伺服. 自动化学报, 2023, 49(4): 744−753

    Xu F, Wang H. Adaptive robust visual servoing control of a soft manipulator in underwater environment. Acta Automatica Sinica, 2023, 49(4): 744−753
    [10] Qiu K, Zhang J, Sun D, Xiong R, Lu H, Wang Y. An effcient multi-solution solver for the inverse kinematics of 3-section constant-curvature robots. arXiv preprint arXiv: 2305.01458, 2023.
    [11] Thamo B, Dhaliwal K, Khadem M. Rapid solution of cosserat rod equations via a nonlinear partial observer. In: Proceedings of 2021 IEEE International Conference on Robotics and Automation (ICRA). Xi’an, China: IEEE, 2021. 9433−9438.
    [12] Xavier M S, Fleming A J, Yong Y K. Finite element modeling of soft fluidic actuators: Overview and recent developments. Advanced Intelligent Systems, 2021, 3(2): Article No.2000187 doi: 10.1002/aisy.202000187
    [13] Yu B, Fernández J d G, Tan T. Probabilistic kinematic model of a robotic catheter for 3D position control. Soft robotics, 2019, 6(2): 184−194 doi: 10.1089/soro.2018.0074
    [14] Jung J, Park M, Kim D, Park Y L. Optically sensorized elastomer air chamber for proprioceptive sensing of soft pneumatic actuators. IEEE Robotics and Automation Letters, 2020, 5(2): 2333−2340 doi: 10.1109/LRA.2020.2970984
    [15] Ha X T, Wu D, Lai C F, Ourak M, Borghesan G, Menciassi A, Vander Poorten E. Contact localization of continuum and flexible robot using data-driven approach. IEEE Robotics and Automation Letters, 2022, 7(3): 6910−6917 doi: 10.1109/LRA.2022.3176723
    [16] Bern J M, Schnider Y, Banzet P, Kumar N, Coros S. Soft robot control with a learned differentiable model. In: Proceedings of 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft). New Haven, USA: IEEE, 2020. 417−423.
    [17] Giorelli M, Renda F, Calisti M, Arienti A, Ferri G, Laschi C. Neural network and Jacobian method for solving the inverse statics of a cable-driven soft arm with nonconstant curvature. IEEE Transactions on Robotics, 2015, 31(4): 823−834 doi: 10.1109/TRO.2015.2428511
    [18] Thuruthel T G, Falotico E, Manti M, Laschi C. Stable open loop control of soft robotic manipulators. IEEE Robotics and Automation Letters, 2018, 3(2): 1292−1298 doi: 10.1109/LRA.2018.2797241
    [19] Thuruthel T G, Shih B, Laschi C, Tolley M T. Soft robot perception using embedded soft sensors and recurrent neural networks. Science Robotics, 2019, 4(26): Article No.eaav1488 doi: 10.1126/scirobotics.aav1488
    [20] Jiang H, Wang Z, Jin Y, Chen X, Li P, Gan Y, Lin S, Chen X. Hierarchical control of soft manipulators towards unstructured interactions. The International Journal of Robotics Research, 2021, 40(1): 411−434 doi: 10.1177/0278364920979367
    [21] Zhang Y, Guo D. Zhang functions and various models. Berlin: Springer-Verlag, 2015.
    [22] Zhang Y, Jiang D, Wang J. A recurrent neural network for solving Sylvester equation with time-varying coeffcients. IEEE Transactions on Neural Networks, 2002, 13(5): 1053−1063 doi: 10.1109/TNN.2002.1031938
    [23] Chen D, Zhang Y, Li S, Ling Y. Robust Zhang Neural Network for Tracking Control of Parallel Robot Manipulators With Unknown Parameters. In: Proceedings of 2019 Chinese Control And Decision Conference (CCDC). Nanchang, China: IEEE, 2019. 3527−3532.
    [24] Zhang Z, Yan Z. A varying parameter recurrent neural network for solving nonrepetitive motion problems of redundant robot manipulators. IEEE Transactions on Control Systems Technology, 2018, 27(6): 2680−2687
    [25] Tan Z, Li W, Xiao L, Hu Y. New varying-parameter ZNN models with finite-time convergence and noise suppression for time-varying matrix Moore-Penrose inversion. IEEE transactions on neural networks and learning systems, 2019, 31(8): 2980−2992
    [26] Tan N, Yu P, Zhang X, Wang T. Model-free motion control of continuum robots based on a zeroing neurodynamic approach. Neural Networks, 2021, 133: 21−31 doi: 10.1016/j.neunet.2020.10.005
    [27] Chen D, Zhang Y, Li S. Tracking Control of Robot Manipulators with Unknown Models: A Jacobian-Matrix-Adaption Method. IEEE Transactions on Industrial Informatics, 2018, 14(7): 3044−3053 doi: 10.1109/TII.2017.2766455
    [28] Tan N, Yu P, Ni F, Sun Z. Trajectory tracking of soft continuum robots with unknown models based on varying parameter recurrent neural networks. In: Proceedings of 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Melbourne, Australia: IEEE, 2021. 1035−1041.
    [29] Hu X, Sun F, Zou Y, Peng H. Online estimation of an electric vehicle Lithium-Ion battery using recursive least squares with forgetting. In: Proceedings of Proceedings of the 2011 American Control Conference. San Francisco, USA: IEEE, 2011. 935− 940.
    [30] Ho H W, Zhou Y. Incremental Nonlinear Dynamic Inversion based Optical Flow Control for Flying Robots: An Effcient Data-driven Approach. arXiv preprint arXiv: 2307.02702, 2023.
    [31] Webster III R J, Jones B A. Design and kinematic modeling of constant curvature continuum robots: A review. The International Journal of Robotics Research, 2010, 29(13): 1661−1683 doi: 10.1177/0278364910368147
    [32] Della Santina C, Bicchi A, Rus D. On an improved state parametrization for soft robots with piecewise constant curvature and its use in model based control. IEEE Robotics and Automation Letters, 2020, 5(2): 1001−1008 doi: 10.1109/LRA.2020.2967269
    [33] Tan N, Yu P, Ni F. New varying-parameter recursive neural networks for model-free kinematic control of redundant manipulators with limited measurements. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1−14
    [34] Xiao L, Li X, Cao P, He Y, Tang W, Li J, Wang Y. A dynamic-varying parameter enhanced ZNN model for solving time-varying complex-valued tensor inversion with its application to image encryption. IEEE Transactions on Neural Networks and Learning Systems, 2023.
    [35] Zhang Y, Xiao L, Xiao Z, Mao M. Zeroing dynamics, gradient dynamics, and Newton iterations. Florida: CRC Press, 2016.
    [36] Liao B, Zhang Y. Different complex ZFs leading to different complex ZNN models for time-varying complex generalized inverse matrices. IEEE Transactions on Neural Networks and Learning Systems, 2013, 25(9): 1621−1631
    [37] Sherman J, Morrison W J. Adjustment of an inverse matrix corresponding to a change in one element of a given matrix. The Annals of Mathematical Statistics, 1950, 21(1): 124−127 doi: 10.1214/aoms/1177729893
  • 加载中
计量
  • 文章访问数:  56
  • HTML全文浏览量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-02
  • 录用日期:  2024-11-06
  • 网络出版日期:  2024-11-26

目录

    /

    返回文章
    返回