2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

异构多智能体网络拓扑可辨识性

王立夫 高聪 郭戈 孔芝

王立夫, 高聪, 郭戈, 孔芝. 异构多智能体网络拓扑可辨识性. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240416
引用本文: 王立夫, 高聪, 郭戈, 孔芝. 异构多智能体网络拓扑可辨识性. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240416
Wang Li-Fu, Gao Cong, Guo Ge, Kong Zhi. Discernibility of heterogeneous multi-agent networks topology. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240416
Citation: Wang Li-Fu, Gao Cong, Guo Ge, Kong Zhi. Discernibility of heterogeneous multi-agent networks topology. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c240416

异构多智能体网络拓扑可辨识性

doi: 10.16383/j.aas.c240416 cstr: 32138.14.j.aas.c240416
基金项目: 国家自然科学基金(61573077, U1808205), 国家留学基金(202308130119), 河北省自然科学基金(F2022501005)资助
详细信息
    作者简介:

    王立夫:东北大学秦皇岛分校副教授. 主要研究方向为复杂网络, 同步控制, 能控性, 交通网络. E-mail: wlfkz@neuq.edu.cn

    高聪:东北大学秦皇岛分校硕士研究生. 主要研究方向为复杂网络可辨识性. E-mail: 2372269@stu.neu.edu.cn

    郭戈:东北大学教授. 主要研究方向为智能交通系统, 交通大数据分析, 人工智能应用, 信息物理系统. 本文通信作者. E-mail: geguo@yeah.net

    孔芝:东北大学秦皇岛分校副教授. 主要研究方向为知识发现, 决策分析, 智能优化算法, 复杂网络. E-mail: kongz@neuq.edu.cn

Discernibility of Heterogeneous Multi-agent Networks Topology

Funds: Supported by National Natural Science Foundation of China (61573077, U1808205), China Scholarship Council (202308130119), and Natural Science Foundation of Hebei Province (F2022501005)
More Information
    Author Bio:

    WANG Li-Fu Associate professor of Northeastern University at Qinhuangdao. His research interests include complex networks, synchron-ous control, controllability, and traffic networks

    GAO Cong Master student of Northeastern University at Qinhuangdao. Her research interest is discernibility of complex networks

    GUO Ge Professor of Northeastern University. His research interests include intelligent transportation systems, traffic big data analysis, artificial intelligence applications, and information physical systems. Corresponding author of this paper

    KONG Zhi Associate professor of Northeastern University at Qinhuang-dao. Her research interests include knowledge discovery, decision analy-sis, intelligent optimization algorithms, and complex networks

  • 摘要: 研究了高维线性时不变动力学系统构成的具有加权有向的多智能体网络拓扑变化可辨识性. 这些网络智能体动力学和内耦合矩阵均具有异构性. 分析了异构内耦合矩阵对网络拓扑可辨识性的影响, 并发现网络拓扑结构的可辨识性与智能体之间的内耦合矩阵相关. 当内耦合矩阵由同构变为异构时, 网络拓扑的可辨识性可能发生变化, 既可能由可辨识变为不可辨识, 也可能由不可辨识变为可辨识. 针对一般网络结构, 提出了一些充分和必要的条件以验证拓扑变化的可辨识性. 此外, 针对有向链状网络、有向星型网络以及有向环状网络等几种典型网络结构, 分别给出了相应的可辨识性条件. 通过实际案例验证了所提条件的合理性和有效性.
  • 图  1  增加了一条连边的有向网络

    Fig.  1  A directed network with an edge added

    图  2  删除了一条连边的有向网络

    Fig.  2  A directed network with an edge deleted

    图  3  一个有向链状网络

    Fig.  3  A directed chain network

    图  4  一个有向星形网络

    Fig.  4  A directed star network

    图  5  一个有向环状网络

    Fig.  5  A directed circle network

    图  6  一个具有两个智能体组成的有向环状网络系统

    Fig.  6  A directed circular network system consisting of two agents

    图  7  无人驾驶车辆系统

    Fig.  7  Autonomous vehicle system

    图  8  编队避障无人机系统

    Fig.  8  Formation obstacle avoidance UAV system

  • [1] Xu C, Xu H, Guan Z H, Ge Y. Observer-based dynamic event-triggered semiglobal bipartite consensus of linear multi-agent systems with input saturation. IEEE Transactions on Cybernetics, 2023, 53(5): 3139−3152 doi: 10.1109/TCYB.2022.3164048
    [2] Li Y, Tong S. Bumpless transfer distributed adaptive backstepping control of nonlinear multi-agent systems with circular filtering under DoS attacks. Automatica, 2023, 157: Article No. 111250 doi: 10.1016/j.automatica.2023.111250
    [3] Li Y, Li Y X, Tong S. Event-based finite-time control for nonlinear multi-agent systems with asymptotic tracking. IEEE Transactions on Automatic Control, 2023, 68(6): 3790−3797 doi: 10.1109/TAC.2022.3197562
    [4] Shi Y, Hu J, Wu Y, Ghosh B K. Intermittent output tracking control of heterogeneous multi-agent systems over wide-area clustered communication networks. Nonlinear Analysis: Hybrid Systems, 2023, 50: Article No. 101387 doi: 10.1016/j.nahs.2023.101387
    [5] Liang H, Chang Z, Ahn C K. Hybrid event-triggered intermittent control for nonlinear multi-agent systems. IEEE Transactions on Network Science and Engineering, 2023, 10(4): 1975−1984 doi: 10.1109/TNSE.2023.3237256
    [6] Tang F, Wang H, Zhang L, Xu N, Ahmad AM. Adaptive optimized consensus control for a class of nonlinear multi-agent systems with asymmetric input saturation constraints and hybrid faults. Communications in Nonlinear Science and Numerical Simulation, 2023, 126: Article No. 107446 doi: 10.1016/j.cnsns.2023.107446
    [7] Ma Q, Meng Q, Xu S. Distributed optimization for uncertain high-order nonlinear multiagent systems via dynamic gain approach. IEEE Transactions on Systems Man Cybernetics-Systems, 2023, 53(7): 4351−4357 doi: 10.1109/TSMC.2023.3247456
    [8] Liang H, Chen L, Pan Y, Lam H K. Fuzzy-based robust precision consensus tracking for uncertain networked systems with cooperative–antagonistic interactions. IEEE Transactions on Fuzzy Systems, 2022, 31(4): 1362−1376
    [9] Wei Q, Wang X, Zhong X, Wu N. Consensus control of leader-following multi-agent systems in directed topology with heterogeneous disturbances. IEEE/CAA Journal of Automatica Sinica, 2021, 8(2): 423−431 doi: 10.1109/JAS.2021.1003838
    [10] Xiao S, Dong J. Distributed fault-tolerant containment control for nonlinear multi-agent systems under directed network topology via hierarchical approach. IEEE/CAA Journal of Automatica Sinica, 2021, 8(4): 806−816 doi: 10.1109/JAS.2021.1003928
    [11] Jiang Y, Yan Y, Hong C, Yang S, Yu R, Dai J. Multidirectional recovery strategy against failure. Chaos Solitons & Fractals, 2022, 160: Article No. 112272
    [12] Rahimian M A, Preciado V M. Detection and isolation of failures in directed networks of LTI systems. IEEE Transactions on Control of Network Systems, 2014, 2(2): 183−192
    [13] Materassi D, Salapaka M V. On the problem of reconstructing an unknown topology via locality properties of the wiener filter. IEEE Transactions on Automatic Control, 2012, 57(7): 1765−1777 doi: 10.1109/TAC.2012.2183170
    [14] Dhal R, Torres J A, Roy S. Detecting link failures in complex network processes using remote monitoring. Physica A: Statistical Mechanics and its Applications, 2015, 437: 36−54 doi: 10.1016/j.physa.2015.04.024
    [15] Shahrampour S, Preciado V M. Topology identification of directed dynamical networks via power spectral analysis. IEEE Transactions on Automatic Control, 2014, 60(8): 2260−2265
    [16] Küsters F, Patil D, Tesi P, Trenn S. Indiscernible topological variations in DAE networks with applications to power grids. IFAC-PapersOnLine, 2017, 50(1): 7333−7338 doi: 10.1016/j.ifacol.2017.08.1478
    [17] Rahimian M A, Aghdam A G. Structural controllability of multi-agent networks: Robustness against simultaneous failures. Automatica, 2013, 49(11): 3149−3157 doi: 10.1016/j.automatica.2013.06.023
    [18] Pandey P K, Adhikari B, Chakraborty S. A diffusion protocol for detection of link failure and utilization of resources in multi-agent systems. IEEE Transactions on Network Science and Engineering, 2019, 7(3): 1493−1507
    [19] Battistelli G, Tesi P. Detecting topology variations in networks of linear dynamical systems. IEEE Transactions on Control of Network Systems, 2017, 5(3): 1287−1299
    [20] Patil D, Tesi P, Trenn S. Indiscernible topological variations in DAE networks. Automatica, 2019, 101: 280−289 doi: 10.1016/j.automatica.2018.12.012
    [21] Zhang Y, Xia Y, Zhang J, Shang J. Generic detectability and isolability of topology failures in networked linear systems. IEEE Transactions on Control of Network Systems, 2021, 8(1): 500−512 doi: 10.1109/TCNS.2020.3029151
    [22] Hao Y, Wang Q, Duan Z, Chen G. Discernibility of topological variations for networked LTI systems. IEEE Transactions on Automatic Control, 2021, 68(1): 377−384
    [23] Hao Y, Wang Q, Duan Z, Chen G. Discernibility of topological variations for networked LTI systems based on observed output trajectories. Automatica, 2024, 163: Article No. 111547 doi: 10.1016/j.automatica.2024.111547
    [24] Xiang L, Wang P, Chen F, Chen G. Controllability of directed networked MIMO systems with heterogeneous dynamics. IEEE Transactions on Control of Network Systems, 2019, 7(2): 807−817
    [25] Kong Z, Cao L, Wang L, Guo G. Controllability of heterogeneous networked systems with nonidentical inner-coupling matrices. IEEE Transactions on Control of Network Systems, 2021, 9(2): 867−878
    [26] Chen C T. Linear system theory and design. Saunders college publishing, 1984
  • 加载中
计量
  • 文章访问数:  11
  • HTML全文浏览量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-29
  • 录用日期:  2024-11-21
  • 网络出版日期:  2024-12-19

目录

    /

    返回文章
    返回