[1]
|
Xu C, Xu H, Guan Z H, Ge Y. Observer-based dynamic event-triggered semiglobal bipartite consensus of linear multi-agent systems with input saturation. IEEE Transactions on Cybernetics, 2023, 53(5): 3139−3152 doi: 10.1109/TCYB.2022.3164048
|
[2]
|
Li Y, Tong S. Bumpless transfer distributed adaptive backstepping control of nonlinear multi-agent systems with circular filtering under DoS attacks. Automatica, 2023, 157: Article No. 111250 doi: 10.1016/j.automatica.2023.111250
|
[3]
|
Li Y, Li Y X, Tong S. Event-based finite-time control for nonlinear multi-agent systems with asymptotic tracking. IEEE Transactions on Automatic Control, 2023, 68(6): 3790−3797 doi: 10.1109/TAC.2022.3197562
|
[4]
|
Shi Y, Hu J, Wu Y, Ghosh B K. Intermittent output tracking control of heterogeneous multi-agent systems over wide-area clustered communication networks. Nonlinear Analysis: Hybrid Systems, 2023, 50: Article No. 101387 doi: 10.1016/j.nahs.2023.101387
|
[5]
|
Liang H, Chang Z, Ahn C K. Hybrid event-triggered intermittent control for nonlinear multi-agent systems. IEEE Transactions on Network Science and Engineering, 2023, 10(4): 1975−1984 doi: 10.1109/TNSE.2023.3237256
|
[6]
|
Tang F, Wang H, Zhang L, Xu N, Ahmad AM. Adaptive optimized consensus control for a class of nonlinear multi-agent systems with asymmetric input saturation constraints and hybrid faults. Communications in Nonlinear Science and Numerical Simulation, 2023, 126: Article No. 107446 doi: 10.1016/j.cnsns.2023.107446
|
[7]
|
Ma Q, Meng Q, Xu S. Distributed optimization for uncertain high-order nonlinear multiagent systems via dynamic gain approach. IEEE Transactions on Systems Man Cybernetics-Systems, 2023, 53(7): 4351−4357 doi: 10.1109/TSMC.2023.3247456
|
[8]
|
Liang H, Chen L, Pan Y, Lam H K. Fuzzy-based robust precision consensus tracking for uncertain networked systems with cooperative–antagonistic interactions. IEEE Transactions on Fuzzy Systems, 2022, 31(4): 1362−1376
|
[9]
|
Wei Q, Wang X, Zhong X, Wu N. Consensus control of leader-following multi-agent systems in directed topology with heterogeneous disturbances. IEEE/CAA Journal of Automatica Sinica, 2021, 8(2): 423−431 doi: 10.1109/JAS.2021.1003838
|
[10]
|
Xiao S, Dong J. Distributed fault-tolerant containment control for nonlinear multi-agent systems under directed network topology via hierarchical approach. IEEE/CAA Journal of Automatica Sinica, 2021, 8(4): 806−816 doi: 10.1109/JAS.2021.1003928
|
[11]
|
Jiang Y, Yan Y, Hong C, Yang S, Yu R, Dai J. Multidirectional recovery strategy against failure. Chaos Solitons & Fractals, 2022, 160: Article No. 112272
|
[12]
|
Rahimian M A, Preciado V M. Detection and isolation of failures in directed networks of LTI systems. IEEE Transactions on Control of Network Systems, 2014, 2(2): 183−192
|
[13]
|
Materassi D, Salapaka M V. On the problem of reconstructing an unknown topology via locality properties of the wiener filter. IEEE Transactions on Automatic Control, 2012, 57(7): 1765−1777 doi: 10.1109/TAC.2012.2183170
|
[14]
|
Dhal R, Torres J A, Roy S. Detecting link failures in complex network processes using remote monitoring. Physica A: Statistical Mechanics and its Applications, 2015, 437: 36−54 doi: 10.1016/j.physa.2015.04.024
|
[15]
|
Shahrampour S, Preciado V M. Topology identification of directed dynamical networks via power spectral analysis. IEEE Transactions on Automatic Control, 2014, 60(8): 2260−2265
|
[16]
|
Küsters F, Patil D, Tesi P, Trenn S. Indiscernible topological variations in DAE networks with applications to power grids. IFAC-PapersOnLine, 2017, 50(1): 7333−7338 doi: 10.1016/j.ifacol.2017.08.1478
|
[17]
|
Rahimian M A, Aghdam A G. Structural controllability of multi-agent networks: Robustness against simultaneous failures. Automatica, 2013, 49(11): 3149−3157 doi: 10.1016/j.automatica.2013.06.023
|
[18]
|
Pandey P K, Adhikari B, Chakraborty S. A diffusion protocol for detection of link failure and utilization of resources in multi-agent systems. IEEE Transactions on Network Science and Engineering, 2019, 7(3): 1493−1507
|
[19]
|
Battistelli G, Tesi P. Detecting topology variations in networks of linear dynamical systems. IEEE Transactions on Control of Network Systems, 2017, 5(3): 1287−1299
|
[20]
|
Patil D, Tesi P, Trenn S. Indiscernible topological variations in DAE networks. Automatica, 2019, 101: 280−289 doi: 10.1016/j.automatica.2018.12.012
|
[21]
|
Zhang Y, Xia Y, Zhang J, Shang J. Generic detectability and isolability of topology failures in networked linear systems. IEEE Transactions on Control of Network Systems, 2021, 8(1): 500−512 doi: 10.1109/TCNS.2020.3029151
|
[22]
|
Hao Y, Wang Q, Duan Z, Chen G. Discernibility of topological variations for networked LTI systems. IEEE Transactions on Automatic Control, 2021, 68(1): 377−384
|
[23]
|
Hao Y, Wang Q, Duan Z, Chen G. Discernibility of topological variations for networked LTI systems based on observed output trajectories. Automatica, 2024, 163: Article No. 111547 doi: 10.1016/j.automatica.2024.111547
|
[24]
|
Xiang L, Wang P, Chen F, Chen G. Controllability of directed networked MIMO systems with heterogeneous dynamics. IEEE Transactions on Control of Network Systems, 2019, 7(2): 807−817
|
[25]
|
Kong Z, Cao L, Wang L, Guo G. Controllability of heterogeneous networked systems with nonidentical inner-coupling matrices. IEEE Transactions on Control of Network Systems, 2021, 9(2): 867−878
|
[26]
|
Chen C T. Linear system theory and design. Saunders college publishing, 1984
|