2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于红外与可见光视觉的高炉铁口铁水温度场在线检测

潘冬 许川 龚芃旭 蒋朝辉 桂卫华

潘冬, 许川, 龚芃旭, 蒋朝辉, 桂卫华. 基于红外与可见光视觉的高炉铁口铁水温度场在线检测. 自动化学报, 2025, 51(2): 1−13 doi: 10.16383/j.aas.c240378
引用本文: 潘冬, 许川, 龚芃旭, 蒋朝辉, 桂卫华. 基于红外与可见光视觉的高炉铁口铁水温度场在线检测. 自动化学报, 2025, 51(2): 1−13 doi: 10.16383/j.aas.c240378
Pan Dong, Xu Chuan, Gong Peng-Xu, Jiang Zhao-Hui, Gui Wei-Hua. Online measurement of molten iron temperature field at blast furnace taphole based on infrared and visible vision. Acta Automatica Sinica, 2025, 51(2): 1−13 doi: 10.16383/j.aas.c240378
Citation: Pan Dong, Xu Chuan, Gong Peng-Xu, Jiang Zhao-Hui, Gui Wei-Hua. Online measurement of molten iron temperature field at blast furnace taphole based on infrared and visible vision. Acta Automatica Sinica, 2025, 51(2): 1−13 doi: 10.16383/j.aas.c240378

基于红外与可见光视觉的高炉铁口铁水温度场在线检测

doi: 10.16383/j.aas.c240378 cstr: 32138.14.j.aas.c240378
基金项目: 国家自然科学基金(62303491), 湘江实验室重大项目(22XJ01005), 湖南省科技创新计划(2024RC1007), 工业控制技术全国重点实验室开放课题(ICT2024B05)资助
详细信息
    作者简介:

    潘冬:中南大学自动化学院副教授. 主要研究方向为红外热成像, 视觉检测, 深度学习, 图像处理和误差建模与补偿. E-mail: pandong@csu.edu.cn

    许川:中南大学自动化学院博士研究生. 主要研究方向为图像处理, 数据分析, 深度学习和复杂工业过程建模. 本文通信作者. E-mail: csuxuchuan@csu.edu.cn

    龚芃旭:中南大学自动化学院硕士研究生. 主要研究方向为图像处理, 数据分析, 机器学习以及复杂工业过程建模和优化控制. E-mail: agongpxz@163.com

    蒋朝辉:中南大学自动化学院教授. 主要研究方向为检测技术与自动化装置, 图像处理, 工业VR以及复杂工业过程的建模和优化控制. E-mail: jzh0903@csu.edu.cn

    桂卫华:中南大学自动化学院教授. 主要研究方向为复杂工业过程检测、建模与控制. E-mail: gwh@csu.edu.cn

Online Measurement of Molten Iron Temperature Field at Blast Furnace Taphole Based on Infrared and Visible Vision

Funds: Supported by National Natural Science Foundation of China (62303491), Major Program of Xiangjiang Laboratory (22XJ01005), Science and Technology Innovation Program of Hunan Province (2024RC1007), and National Key Laboratory of Industrial Control Technology Open Project (ICT2024B05)
More Information
    Author Bio:

    PAN Dong Associate professor at the School of Automation, Central South University. His research interest covers infrared thermography, vision-based measurement, deep learning, image processing, error modeling and compensation

    XU Chuan Ph.D. candidate at the School of Automation, Central South University. His research interest covers image processing, data analysis, deep learning and modeling of complex industrial process. Corresponding author of this paper

    GONG Peng-Xu Master student at the School of Automation, Central South University. His research interest covers image processing, data analysis, machine learning, modeling and optimal control of complex industrial process

    JIANG Zhao-Hui Professor at the School of Automation, Central South University. His research interest covers detection technology and automatic equipment, image processing, industrial VR, modeling and optimal control of complex industrial process

    GUI Wei-Hua Professor at the School of Automation, Central South University. His main research interest is measurement, modeling and control of complex industrial process

  • 摘要: 高炉铁口铁水温度场 (Molten iron temperature field, MITF) 是表征铁水质量、判断炉温状况的重要信息. 然而高炉出铁场动态粉尘的干扰使得铁水温度场的在线准确获取充满挑战. 为此, 首次提出基于红外与可见光视觉的高炉铁口铁水温度场检测方法, 利用可见光图像为红外视觉测温提供先验粉尘干扰情况. 首先, 设计红外与可见光视觉协同的测温系统, 同步获取高炉铁口铁水流的红外图像和可见光图像, 铁水流红外图像表征铁水原始温度场信息, 可见光图像为量化粉尘透射率提供数据基础. 其次, 构建基于色彩一致性的可见光图像中粉尘透射率估计模型和基于雾线先验的红外图像中粉尘透射率估计模型, 得到红外波段下粉尘透射率. 最后, 结合红外辐射测温原理, 构建基于粉尘透射率的红外测温近似补偿模型, 实现铁水温度场的针对性补偿, 获取误差较小的铁水温度. 工业实验表明, 相比于仅利用红外视觉测量铁水温度场, 所提方法能够显著降低粉尘造成的测温误差, 为高炉调控提供连续可靠的铁水温度数据.
  • 图  1  高炉出铁过程示意图

    Fig.  1  Schematic diagram of blast furnace tapping process

    图  2  红外−可见视觉协同测温系统

    Fig.  2  Infrared-visible vision coordination temperature measurement system

    图  3  铁口处铁水流图

    Fig.  3  Molten iron flow images at the taphole

    图  4  铁水流温度场检测方法的整体框架

    Fig.  4  Overall framework of molten iron flow temperature field measurement method

    图  5  受粉尘干扰的铁水流图像

    Fig.  5  Molten iron flow image under dust interference

    图  6  基于雾线先验的粉尘透射率场估计

    Fig.  6  Estimation of dust transmittance field based on haze-line prior

    图  7  色彩通道变换

    Fig.  7  Color channel transformation

    图  8  雾线先验确定$ A $和$ J\left( x,\;y \right) $

    Fig.  8  Determination of $ A $ and $ J\left( x,\;y \right) $ using haze-line prior

    图  9  光源渲染

    Fig.  9  Light source rendering

    图  10  透射率场估计

    Fig.  10  Transmittance field estimation

    图  11  高炉铁口铁水流图像的透射率场估计结果和去除粉尘干扰后的图像

    Fig.  11  Transmittance field estimation results of molten iron flow images at blast furnace taphole and the images after decreasing dust interference

    图  12  铁水流温度场

    Fig.  12  Temperature field of molten iron flow

    图  13  不同出铁周期得到的铁水温度

    Fig.  13  Molten iron temperature obtained at different tapping periods

    图  14  不同出铁周期测温绝对误差

    Fig.  14  Absolute error of temperature measurement at different tapping periods

    图  15  高炉铁水流温度场监控软件界面

    Fig.  15  Monitoring software interface of MITF at blast furnace

    表  1  不同方法去除粉尘对铁水流干扰后的图像性能指标

    Table  1  Performance indexes of molten iron flow images after removing dust interference using different methods

    方法 FADE ENVR NIQE VIF STD
    DCID 0.6121 1.0568 5.7528 0.8151 42.6041
    NHRG 0.4867 5.9504 5.7233 1.1632 59.4452
    NLID 0.4343 2.6741 5.5326 1.1110 50.6340
    SLID 0.4839 3.3695 5.0503 1.0318 52.0414
    本文方法 0.3348 2.4984 5.9588 1.0712 25.9634
    下载: 导出CSV

    表  2  不同测温方法的性能指标对比 (℃)

    Table  2  Comparison of performance indexes of different temperature measurement methods (℃)

    测温方法 $ {M E}_{\text{max }} $ $ {M E}_{\text{min }} $ $ {M E}_{\text{avg}} $ $ {M E}_{\text{std}} $
    红外测温 37.4963 4.9702 14.5571 8.4503
    本文方法 12.5136 1.4967 6.5563 3.7164
    下载: 导出CSV
  • [1] Xu C, Jiang Z H, Pan D, Yu H Y, Huang J C, Zhou K, et al. Multiscale neighborhood adaptive clustering image segmentation for molten iron flow slag-iron recognition. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2024, 54(8): 4642−4654 doi: 10.1109/TSMC.2024.3388475
    [2] Liu Y, Zhou P, Sun X, Chai T Y. Optimal tracking control of blast furnace molten iron quality based on Krotov's method and nonlinear subspace identification. IEEE Transactions on Industrial Electronics, 2023, 71(8): 9610−9619
    [3] 温亮, 周平. 基于多参数灵敏度分析与遗传优化的铁水质量无模型自适应控制. 自动化学报, 2021, 47(11): 2600−2613

    Wen Liang, Zhou Ping. Model free adaptive control of molten iron quality based on multi-parameter sensitivity analysis and GA optimization. Acta Automatica Sinica, 2021, 47(11): 2600−2613
    [4] Zhou P, Zhang S, Chai T Y. Adaptive constraint penalty-based multiobjective operation optimization of an industrial dynamic system with complex multiconstraint. IEEE Transactions on Cybernetics, 2024, 54(8): 4724−4737 doi: 10.1109/TCYB.2023.3341982
    [5] 潘冬, 蒋朝辉, 许川, 桂卫华. 高炉铁水温度检测方法的研究进展. 仪器仪表学报, 2023, 44(11): 280−296

    Pan Dong, Jiang Zhao-Hui, Xu Chuan, Gui Wei-Hua. Research progress of measurement methods of molten iron temperature in blast furnace. Chinese Journal of Scientific Instrument, 2023, 44(11): 280−296
    [6] 蒋朝辉, 许川, 蒋珂, 桂卫华. 基于最优工况迁移的高炉铁水硅含量预测方法. 自动化学报, 2022, 48(1): 194−206

    Jiang Zhao-Hui, Xu Chuan, Jiang Ke, Gui Wei-Hua. Prediction method of hot metal silicon content in blast furnace based on optimal smelting condition migration. Acta Automatica Sinica, 2022, 48(1): 194−206
    [7] Ma J C, Meng L H, Liu Z D, Z X. Rapid identification of liquid steel temperature in tundish based on blackbody cavity sensor. ISIJ International, 2024, 64(11): 1691−1698 doi: 10.2355/isijinternational.ISIJINT-2023-499
    [8] Shao H D, Li W, Cai B, Wan J F, Xiao Y M, Yan S. Dual-threshold attention-guided GAN and limited infrared thermal images for rotating machinery fault diagnosis under speed fluctuation. IEEE Transactions on Industrial Informatics, 2009, 19(9): 9933−9942
    [9] Vollmer M, Möllmann K P. Infrared Thermal Imaging: Fundamentals, Research and Applications. Hoboken: John Wiley & Sons, 2017.
    [10] Osornio-Rios R, Antonino-Daviu J, Romero-Troncoso R. Recent industrial applications of infrared thermography: A review. IEEE Transactions on Industrial Informatics, 2019, 15(2): 615−625 doi: 10.1109/TII.2018.2884738
    [11] Usamentiaga R, Molleda J, Garcia D F. Temperature measurement of molten pig iron with slag characterization and detection using infrared computer vision. IEEE Transactions on Instrumentation and Measurement, 2011, 61(5): 1149−1159
    [12] Pan D, Jiang Z H, Xu C, Gui W H. Polymorphic temperature measurement method of molten iron after skimmer in ironmaking process. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1−11
    [13] Pan D, Jiang Z H, Chen Z P, Gui W H, Xie Y F, Yang C H. Temperature measurement and compensation method of blast furnace molten iron based on infrared computer vision. IEEE Transactions on Instrumentation and Measurement, 2018, 68(10): 3576−3588
    [14] Pan D, Jiang Z H, Li Y T, Yu H Y, Gui W H. A novel compensation method for infrared temperature measurement using infrared vision and visible light vision under water mist interference. IEEE Transactions on Instrumentation and Measurement, 2023, 68(10): 3576−3588
    [15] Zhang Y, Xie Z, Hu Z, Zhao S, Bai H. Online surface temperature measurement of billets in secondary cooling zone end-piece based on data fusion. IEEE Transactions on Instrumentation and Measurement, 2014, 72: 1−9
    [16] Tripathy H P, Bej D, Pattanaik P, Mishra D K, Kamilla S K, Tripathy R K. Measurement of zone temperature profile of a resistive heating furnace through RVM model. IEEE Sensors Journal, 2018, 18(11): 4429−4435 doi: 10.1109/JSEN.2018.2826722
    [17] Pan D, Jiang Z, Li Y, Yu H, Gui W H. Intelligent compensation method of infrared temperature measurement for multiple interference factors. IEEE Sensors Journal, 2022, 22(19): 18550−18559 doi: 10.1109/JSEN.2022.3199264
    [18] Pan D, Jiang Z H, Chen Z P, Jiang K, Gui W H. Compensation method for molten iron temperature measurement based on heterogeneous features of infrared thermal images. IEEE Transactions on Industrial Informatics, 2020, 16(11): 7056−7066 doi: 10.1109/TII.2020.2972332
    [19] He K, Sun J, Tang X. Single image haze removal using dark channel prior. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 33(12): 2341−2353
    [20] Liu J, Liu R W, Sun J, Zeng T. Rank-one prior: Real-time scene recovery. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(7): 8845−8860 doi: 10.1109/TPAMI.2022.3226276
    [21] González-Sabbagh S, Robles-Kelly A. A survey on underwater computer vision. ACM Computing Surveys, 2023, 55(13): 1−39
    [22] Hu H M, Guo Q, Zheng J, Wang H, Li B. Single image defogging based on illumination decomposition for visual maritime surveillance. IEEE Transactions on Image Processing, 2019, 28(6): 2882−2897 doi: 10.1109/TIP.2019.2891901
    [23] Emberton S, Chittka L, Cavallaro A. Underwater image and video dehazing with pure haze region segmentation. Computer Vision and Image Understanding, 2018, 168: 145−156 doi: 10.1016/j.cviu.2017.08.003
    [24] Ding X, Wang Y, Zhang J, Fu X. Underwater image dehaze using scene depth estimation with adaptive color correction. In: Proceedings of the OCEANS 2017. Aberdeen, UK: IEEE, 2017. 1−5
    [25] Cheng Y, Jia Z, Lai H, Yang J, Kasabov N K. Blue channel and fusion for sandstorm image enhancement. IEEE Access, 2020, 8: 66931−66940 doi: 10.1109/ACCESS.2020.2985869
    [26] Berman D, Avidan S. Non-local image dehazing. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE, 2016. 1674−1682
    [27] Jiang Z H, Chang Z R, Xu C, Pan D, Yu H Y, Gui W H. Detection method of molten iron flow velocity at blast furnace taphole combining visual perception and jet mechanism. IEEE Transactions on Instrumentation and Measurement, 1972, 73: 1−11
    [28] Berman D, Treibitz T, Avidan S. Single image dehazing using haze-lines. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(3): 720−734 doi: 10.1109/TPAMI.2018.2882478
    [29] Narasimhan S G, Nayar S K. Shedding light on the weather. In: Proceedings of the 2003 IEEE Conference on Computer Vision and Pattern Recognition. Madison, USA: IEEE, 2003. I−I
    [30] 杨立, 杨桢. 红外热成像测温原理与技术. 北京: 科学出版社, 2012. 15−28

    Yang Li, Yang Zhen. Principle and Technology of Infrared Thermal Imaging Temperature Measurement. Beijing: Science Press, 2012. 15−28
    [31] Usamentiaga R, Venegas P, Guerediaga J, Vega L, Molleda J, Bulnes F G. Infrared thermography for temperature measurement and non-destructive testing. Sensors, 2014, 14(7): 12305−12348 doi: 10.3390/s140712305
    [32] Zhang Z M, Tsai B K, Machin G. Radiometric Temperature Measurements: I. Fundamentals. Massachusetts: Academic press, 2009.
    [33] Pan D, Jiang Z, Gui W, Jiang K, Maldague X. Compensation method for the influence of dust in optical path on infrared temperature measurement. IEEE Transactions on Instrumentation and Measurement, 2020, 70: 1−11
    [34] Ling P, Chen H, Tan X, Jin Y, Chen E. Single image dehazing using saturation line prior. IEEE Transactions on Image Processing, 2023, 32: 3238−3253 doi: 10.1109/TIP.2023.3279980
    [35] Li Y, Tan R T, Brown M S. Nighttime haze removal with glow and multiple light colors. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE, 2015. 226−234
    [36] Choi L K, You J, Bovik A C. Referenceless prediction of perceptual fog density and perceptual image defogging. IEEE Transactions on Image Processing, 2015, 24(11): 3888−3901 doi: 10.1109/TIP.2015.2456502
    [37] Hautiere N, Tarel J P, Aubert D. Blind contrast enhancement assessment by gradient ratioing at visible edges. Image Analysis and Stereology, 2008, 27(2): 87−95
    [38] Mittal A, Soundararajan R, Bovik A C. Making a “completely blind” image quality analyzer. IEEE Signal Processing Letters, 2013, 20(3): 209−212 doi: 10.1109/LSP.2012.2227726
    [39] Ding K, Ma K, Wang S Q, Simoncelli E P. Image quality assessment: Unifying structure and texture similarity. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 44(5): 2567−2581
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  108
  • HTML全文浏览量:  55
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-23
  • 录用日期:  2024-11-14
  • 网络出版日期:  2024-12-06

目录

    /

    返回文章
    返回