[1]
|
Khalil H K. Nonlinear Systems Third Edition. Upper Saddle River: Prentice Hall, 2002. 126−133
|
[2]
|
Monfared M N, Yazdanpanah M J. Optimal dynamic Lyapunov function and the largest estimation of domain of attraction. IFAC-PapersOnLine, 2017, 50: 2645−2650 doi: 10.1016/j.ifacol.2017.08.469
|
[3]
|
Tibken B. Estimation of the domain of attraction for polynomial systems via LMIs. In: Proceedings of the 39th IEEE Conference on Decision and Control (Cat.No.00CH37187). Sydney, Australia: IEEE, 2000. 3860−3864
|
[4]
|
Ali M M A, Jamali A, Asgharnia A, Ansari R, Mallipeddi R. Multi-objective Lyapunov-based controller design for nonlinear systems via genetic programming. Neural Computing and Applications, 2022, 34: 1345−1357 doi: 10.1007/s00521-021-06453-1
|
[5]
|
Dabbaghi B, Hamidi F, Jerbi H, Aoun M. Estimating and enlarging the domain of attraction for a nonlinear system with input saturation. In: Proceedings of the IEEE International Workshop on Mechatronic Systems Supervision (IW_MSS). Hammamet, Tunisia: IEEE, 2023. 1−5
|
[6]
|
Binu K U, Mija S J, Cheriyan E P. Nonlinear analysis and estimation of the domain of attraction for a droop controlled microgrid system. Electric Power Systems Research, 2022, 204: Article No. 107712 doi: 10.1016/j.jpgr.2021.107712
|
[7]
|
Saleme A, Tibken B, Warthenpfuhl S, Selbach C. Estimation of the domain of attraction for non-polynomial systems: A novel method. IFAC Proceedings, 2011, 44: 10976−10981 doi: 10.3182/20110828-6-IT-1002.01450
|
[8]
|
Wang S J, Lu J J, She Z K. Estimating the minimal domains of attraction of uncertain discrete-time switched systems under state-dependent switching. Nonlinear Analysis: Hybrid Systems, 2024, 54 : Article No. 101527
|
[9]
|
Majumdar A, Vasudevan R, Tobenkin M M, Tedrake R. Convex optimization of nonlinear feedback controllers via occupation measures. The International Journal of Robotics Research, 2014, 33(9): 1209−1230 doi: 10.1177/0278364914528059
|
[10]
|
Najafi E, Lopes G A D, Babuska R. Balancing a legged robot using state-dependent Riccati equation control. IFAC Proceedings, 2014, 47: 2177−2182 doi: 10.3182/20140824-6-ZA-1003.01724
|
[11]
|
Bedoui S, Bacha A B B, Elloumi S, Braiek N B. Enlarging nonlinear discrete system's domain of attraction via linear control law. In: Proceedings of the 5th International Conference on Advanced Systems and Emergent Technologies (IC_ASET). Hammamet, Tunisia: IEEE, 2022. 489−493
|
[12]
|
Yadipour M, Hashemzadeh F, Baradarannia M. Controller design to enlarge the domain of attraction for a class of nonlinear systems. In: Proceedings of the International Conference on Research and Education in Mechatronics (REM). Wolfenbuettel, Germany: IEEE, 2017. 1−5
|
[13]
|
Meng F W, Wang D N, Yang P H, Xie G Z, Guo F. Application of sum-of-squares method in estimation of region of attraction for nonlinear polynomial systems. IEEE Access, 2020, 8: 14234−14243 doi: 10.1109/ACCESS.2020.2966566
|
[14]
|
Davó M A, Prieur C, Fiacchini M, Nešić D. Enlarging the basin of attraction by a uniting output feedback controller. Automatica, 2018, 90: 73−80 doi: 10.1016/j.automatica.2017.12.044
|
[15]
|
Li Y Q, Hou Z S. Data-driven asymptotic stabilization for discrete-time nonlinear systems. Systems & Control Letters, 2014, 64: 79−85
|
[16]
|
Rossa M D, Jungers R M. Multiple Lyapunov functions and memory: A symbolic dynamics approach to systems and control. arXiv: 2307.13543, 2024.
|
[17]
|
Chen S Z, Ning C Y. Improved multiple Lyapunov functions of input-to-output stability and input-to-state stability for switched systems. Journal of Advanced Transportation, 2022, 606: 47−62
|
[18]
|
Yang D, Zong G D, Liu Y J, Ahn C K. Adaptive neural network output tracking control of uncertain switched nonlinear systems: An improved multiple Lyapunov function method. Information Sciences, 2022, 606: 380−396 doi: 10.1016/j.ins.2022.05.071
|
[19]
|
Jaulin L, Kieffer M, Didrit O, Walter E. Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics. Berlin: Springer-Verlag, 2001.
|
[20]
|
陈辉, 邓东明, 韩崇昭. 基于区间箱粒子多伯努利滤波器的传感器控制策略. 自动化学报, 2021, 47(6): 1428−1443Chen Hui, Deng Dong-Ming, Han Chong-Zhao. Sensor control based on interval box-particle multi-Bernoulli filter. Acta Automatica Sinica, 2021, 47(6): 1428−1443
|
[21]
|
Li Y Q, Lu C L, Li Y N, Hou Z S, Feng Y, Feng Y J. Stabilization with closed-loop DOA enlargement: An interval analysis approach. arXiv: 1912.11775, 2021.
|
[22]
|
Haddad W M, Chellaboina V. Nonlinear Dynamical Systems and Control: A Lyapunov-based Approach. Princeton: Princeton University Press, 2008.
|
[23]
|
Kieffer M, Braems I, Walter E, Jaulin L. Guaranteed Set Computation With Subpavings. Boston: Springer, 2001. 167−178
|
[24]
|
Jaulin L, Walter E. Set inversion via interval analysis for nonlinear bounded-error estimation. Automatica, 1993, 29: 1053−1064 doi: 10.1016/0005-1098(93)90106-4
|
[25]
|
Topcu U, Packard A, Seiler P, Balas G. Help on SOS [Ask the experts]. IEEE Control Systems Magazine, 2010, 30(4): 18−23 doi: 10.1109/MCS.2010.937045
|
[26]
|
Powers V, Wörmann T. An algorithm for sums of squares of real polynomials. Journal of Pure and Applied Algebra, 1998, 127: 99−104 doi: 10.1016/S0022-4049(97)83827-3
|