2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于零和微分博弈的航天器编队通信链路故障容错控制

任好 马亚杰 姜斌 刘成瑞

任好, 马亚杰, 姜斌, 刘成瑞. 基于零和微分博弈的航天器编队通信链路故障容错控制. 自动化学报, 2025, 51(1): 1−12 doi: 10.16383/j.aas.c240115
引用本文: 任好, 马亚杰, 姜斌, 刘成瑞. 基于零和微分博弈的航天器编队通信链路故障容错控制. 自动化学报, 2025, 51(1): 1−12 doi: 10.16383/j.aas.c240115
Ren Hao, Ma Ya-Jie, Jiang Bin, Liu Cheng-Rui. Fault-tolerant Control for spacecraft formation with communication faults based on zero-sum differential game. Acta Automatica Sinica, 2025, 51(1): 1−12 doi: 10.16383/j.aas.c240115
Citation: Ren Hao, Ma Ya-Jie, Jiang Bin, Liu Cheng-Rui. Fault-tolerant Control for spacecraft formation with communication faults based on zero-sum differential game. Acta Automatica Sinica, 2025, 51(1): 1−12 doi: 10.16383/j.aas.c240115

基于零和微分博弈的航天器编队通信链路故障容错控制

doi: 10.16383/j.aas.c240115 cstr: 32138.14.j.aas.c240115
基金项目: 国家自然科学基金 (62273177, 62020106003, 62233009), 江苏省自然科学基金(BK20211566, BK20222012), 高校学科创新引智基地 (B20007), 空间智能控制技术全国重点实验室开放基金 (HTKJ2023KL502006), 中央高校基本科研业务费 (NI2024001), 江苏省研究生科研与实践创新 (KYCX23_0383), 国家留学基金(202306830097)资助
详细信息
    作者简介:

    任好:南京航空航天大学自动化学院博士研究生. 主要研究方向为自适应容错控制及应用. E-mail: haoren@nuaa.edu.cn

    马亚杰:南京航空航天大学自动化学院教授. 主要研究方向为自适应故障诊断与容错控制及应用. E-mail: yajiema@nuaa.edu.cn

    姜斌:南京航空航天大学自动化学院教授. 主要研究方向为智能故障诊断与容错控制及应用. 本文通信作者. E-mail: binjiang@nuaa.edu.cn

    刘成瑞:北京控制工程研究所高级工程师. 主要研究方向为航天器的故障诊断与容错控制. E-mail: liuchengrui_502@163.com

Fault-tolerant Control for Spacecraft Formation With Communication Faults Based on Zero-sum Differential Game

Funds: Supported by National Natural Science Foundation of China (62273177, 62020106003, 62233009), Natural Science Foundation of Jiangsu Province (BK20211566, BK20222012), Programm of Introducing Talents of Discipline to Universities of China (B20007), National Key Laboratory of Space Intelligent Control (HTKJ2023KL502006), Fundamental Research Funds for the Central Universities (NI2024001), Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX23_0383), and National Scholarship Council of China (202306830097)
More Information
    Author Bio:

    REN Hao Ph.D. candidate at the College of Automation Engineering, Nanjing University of Aeronautics and Astronautics. Her research interest covers adaptive fault-tolerant control and its applications

    MA Ya-Jie Professor at the College of Automation Engineering, Nanjing University of Aeronautics and Astronautics. His research interest covers adaptive fault diagnosis and fault-tolerant control and their applications

    JIANG Bin Professor at the College of Automation Engineering, Nanjing University of Aeronautics and Astronautics. His research interest covers intelligent fault diagnosis and fault-tolerant control and their applications. Corresponding author of this paper

    LIU Cheng-Rui Senior engineer at Beijing Institute of Control Engineering. His research interest covers fault diagnosis and tolerant control for spacecrafts

  • 摘要: 针对可能由不确定干扰和网络攻击引起的通信链路故障的航天器编队控制系统, 提出一种基于零和微分博弈的最优容错控制方法. 该方法通过构建描述编队协同控制的性能函数, 将通信链路故障容错控制问题等效转换为零和微分博弈模型. 采用Hamilton-Jacobi-Isaacs (HJI)方程和极小极大原则设计博弈中的优化解, 并利用自适应动态规划算法对其进行在线逼近, 以获得编队的最优容错控制策略, 保证航天器通信链路故障下的在轨稳定性和最优性能. 仿真结果表明本文设计的分布式最优容错控制律的有效性.
  • 图  1  传统容错控制方法与基于零和微分博弈容错控制方法对比图

    Fig.  1  Comparison between traditional fault-tolerant control methods and fault-tolerant control methods based on zero-sum differential games

    图  2  LVLH坐标系

    Fig.  2  LVLH coordinate system

    图  3  通信链路故障示意图

    Fig.  3  Schematic diagram of communication faults

    图  4  航天器编队通信拓扑图

    Fig.  4  Spacecraft formation communication topology

    图  5  带有通信链路故障的航天器邻域编队误差$ \delta_{f}(t)$

    Fig.  5  Spacecraft formation neighborhood tracking error with communication transmission faults $ \delta_{f}(t)$

    图  8  航天器1邻域编队误差(未施加容错控制律)$\delta_{1}(t)$

    Fig.  8  Spacecraft 1 formation neighborhood tracking error $\delta_1(t)$ when fault-tolerant law is not applied

    图  6  航天器邻域编队误差$\delta(t)$

    Fig.  6  Spacecraft formation neighborhood tracking error $\delta(t)$

    图  7  控制力矩$u(t)$

    Fig.  7  Control torques $u(t)$

  • [1] 郑重, 李鹏, 钱默抒. 具有角速度和输入约束的航天器姿态协同控制. 自动化学报, 2021, 47(6): 1444−1452

    Zheng Zhong, Li Peng, Qian Mo-Shu. Spacecraft attitude coordination control with angular velocity and input constraints. Acta Automatica Sinca, 2021, 47(6): 1444−1452
    [2] 袁利. 面向不确定环境的航天器智能自主控制技术. 宇航学报, 2021, 42(7): 839−849 doi: 10.3873/j.issn.1000-1328.2021.07.004

    Yuan Li. Spacecraft intelligent autonomous control technology toward uncertain environment. Journal of Astronautics, 2021, 42(7): 839−849 doi: 10.3873/j.issn.1000-1328.2021.07.004
    [3] 王大轶, 屠园园, 刘成瑞, 何英姿, 李文博. 航天器控制系统可重构性的内涵与研究综述. 自动化学报, 2017, 43(10): 1687−1702

    Wang Da-Yi, Tu Yuan-Yuan, Liu Cheng-Rui, He Ying-Zi, Li Wen-Bo. Connotation and research of reconfigurability for spacecraft control systems: A review. Acta Automatica Sinca, 2017, 43(10): 1687−1702
    [4] Yang C, Xia Y. Interval uncertainty-oriented optimal control method for spacecraft attitude control. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(5): 5460−5471
    [5] Golestani M, Esmaeilzadeh M, Mobayen Saleh. Constrained attitude control for flexible spacecraft: attitude pointing accuracy and pointing stability improvement. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(3): 1566−1572
    [6] 邵晋梁, 石磊, 李彤, 张希琳. 合作竞争网络下的多智能体系统链路故障检测. 中国科学:信息科学, 2022, 52(8): 1500−1512 doi: 10.1360/SSI-2021-0120

    Shao Jing-Liang, Shi Lei, Li Tong, Zhang Xi-Lin. Link failure detection for multi-agent systems on cooperation-competition networks. Scientia Sinca Informationis, 2022, 52(8): 1500−1512 doi: 10.1360/SSI-2021-0120
    [7] Zhou D, Qin L, He X, Yan R, Deng R. Distributed sensor fault diagnosis for a formation system with unknown constant time delays. Science China Information Sciences, 2018, 61: Article No. 112205 doi: 10.1007/s11432-017-9309-3
    [8] 宋秀兰, 李洋阳, 何德峰. 外部干扰和随机DoS攻击下的网联车安全H队列控制. 自动化学报, 2024, 50(2): 348−355

    Song Xiu-Lan, Li Yang-Yang, He De-Feng. Secure H platooning control for connected vehicles subject to external disturbance and random DoS attacks. Acta Automatica Sinica, 2024, 50(2): 348−355
    [9] 高振宇, 孙振超, 郭戈. 考虑执行器非线性的固定时间全局预设性能车辆队列控制. 自动化学报, 2024, 50(2): 320−333

    Gao Zhen-Yu, Sun Zhen-Chao, Guo Ge. Fixed-time global prescribed performance control for vehicular platoons with actuator nonlinearities. Acta Automatica Sinica, 2024, 50(2): 320−333
    [10] Ma Y, Jiang B, Tao G, Cheng Y. Uncertainty decomposition based fault-tolerant adaptive control of flexible spacecraft. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2): 1053−1068 doi: 10.1109/TAES.2014.130032
    [11] Mao Z, Jiang B, Shi P. Fault-tolerant control for a class of nonlinear sampled-data systems via a Euler approximate observer. Automatica, 2010, 46(11): 1852−1859 doi: 10.1016/j.automatica.2010.06.052
    [12] 马亚杰, 姜斌, 任好. 基于最小特征值的挠性航天器执行器故障自适应补偿技术. 中国科学:信息科学, 2021, 51(05): 834−850 doi: 10.1360/SSI-2020-0184

    Ma Ya-Jie, Jiang Bin, Ren Hao. Minimum eigenvalue based adaptive compensation of actuator faults for fexible Spacecraft. Scientia Sinca Informationis, 2021, 51(05): 834−850 doi: 10.1360/SSI-2020-0184
    [13] 马艳如, 石晓荣, 刘华华, 梁小辉, 王青. 运载火箭姿态系统自适应神经网络容错控制. 宇航学报, 2021, 42(10): 1237−1245 doi: 10.3873/j.issn.1000-1328.2021.10.005

    Ma Yan-Ru, Shi Xiao-Rong, Liu Hua-Hua, Liang Xiao-Hui, Wang Qing. Adaptive neural network fault tolerant control of launch vehicle attitude system. Journal of Astronautics, 2021, 42(10): 1237−1245 doi: 10.3873/j.issn.1000-1328.2021.10.005
    [14] Liu Q, Liu M, Yu J. Adaptive fault-tolerant control for attitude tracking of flexible spacecraft with limited data transmission. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(7): 4400−4408 doi: 10.1109/TSMC.2019.2932225
    [15] 于彦波, 胡庆雷, 董宏洋, 马广富. 执行器故障与饱和受限的航天器滑模容错控制. 航空学报, 2016, 48(4): 20−25

    Yu Yan-Bo, Hu Qing-Lei, Dong Hong-Yang, Ma Guang-Fu. Sliding mode fault tolerant control for spacecraft under actuator fault and saturation. Journal of Harbin Institute of Technology, 2016, 48(4): 20−25
    [16] Qian M, Shi Y, Gao Z, Zhang X. Integrated fault tolerant tracking control for rigid spacecraft using fractional order sliding mode technique. Journal of the Franklin Institute, 2020, 357(15): 10557−10583 doi: 10.1016/j.jfranklin.2020.08.031
    [17] You Z, Yan H, Sun J, Zhang H, Li Z. Reliable control for flexible spacecraft systems with aperiodic sampling and stochastic actuator failures. IEEE Transactions on Cybernetics, 2022, 52(5): 3434−3445
    [18] Giulietti F, Pollini L, Innocenti M. Autonomous formation flight. IEEE Control Systems Magazine, 2000, 20(6): 34−44 doi: 10.1109/37.887447
    [19] Wang J, Elia N. Distributed averaging under constraints on information exchange: Emergence of lévy flights. IEEE Transactions on Automatic Control, 2012, 57(10): 2435−2449 doi: 10.1109/TAC.2012.2186093
    [20] Li X, Wen C, Chen C, Xu Q. Adaptive resilient secondary control for microgrids with communication faults. IEEE Transactions on Cybernetics, 2022, 52(8): 8493−8503
    [21] Chen C, Xie K, Lewis F, Xie S, Fierro R. Adaptive synchronization of multi-agent systems with resilience to communication link faults. Automatica, 2020, 111: Article No. 108636 doi: 10.1016/j.automatica.2019.108636
    [22] Wang W, Wen C, Huang J, Zhou J. Adaptive consensus of uncertain nonlinear systems with event triggered communication and intermittent actuator faults. Automatica, 2020, 111: Article No. 108667 doi: 10.1016/j.automatica.2019.108667
    [23] Ma X, Elia N. Mean square performance and robust yet fragile nature of torus networked average consensus. IEEE Transactions on Control of Network Systems, 2015, 2(3): 216−225 doi: 10.1109/TCNS.2015.2399175
    [24] Zelazo D, Bürger M. On the robustness of uncertain consensus networks. IEEE Transactions on Control of Network Systems, 2017, 4(2): 170−178
    [25] Zhang W, Tang Y, Huang T, Kurths J. Sampled-data consensus of linear multi-agent systems with packet losses. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(11): 2516−2527 doi: 10.1109/TNNLS.2016.2598243
    [26] Wang Z, Xu J, Zhang H. Consensus seeking for discrete-time multi-agent systems with communication delay. IEEE/CAA Journal of Automatica Sinica, 2015, 2(2): 151−157 doi: 10.1109/JAS.2015.7081654
    [27] Zhao L, Yang G. Cooperative adaptive fault-tolerant control for multi-agent systems with deception attacks. Journal of the Franklin Institute, 2020, 357(6): 3419−3433
    [28] Marcotte R, Wang X, Mehta D, Olson E. Optimizing multi-robot communication under bandwidth constraints. Autonomous Robots, 2020, 44(1): 43−55 doi: 10.1007/s10514-019-09849-0
    [29] Yang H, Li Z. Finite-time consensus for multi-agent systems with directed dynamically changing topologies. International Journal of Robust and Nonlinear Control, 2023, 33(14): 8657−8669 doi: 10.1002/rnc.6842
    [30] Ye D, Shi M, Sun Z. Satellite proximate interception vector guidance based on differential games. Chinese Journal of Aeronautics, 2018, 31(6): 1352−1361 doi: 10.1016/j.cja.2018.03.012
    [31] 耿远卓, 袁利, 黄煌, 汤亮. 基于终端诱导强化学习的航天器轨道追逃博弈. 自动化学报, 2023, 49(5): 974−984

    Geng Yuan-Zhuo, Yuan Li, Huang Huang, Tang Liang. Terminal-guidance based reinforcement-learning for orbital pursuit-evasion game of the spacecraft. Acta Automatica Sinica, 2023, 49(5): 974−984
    [32] 韩楠, 罗建军, 柴源. 多颗微小卫星接管失效航天器姿态运动的微分博弈学习控制. 中国科学: 信息科学, 2020, 50(4): 588−602 doi: 10.1360/N112019-00049

    Han Nan, Luo Jian-Jun, Chai Yuan. Differential game learning approach for multiple microsatellites takeover of the attitude movement of failed spacecraft. SCIENTIA SINCA Informationis, 2020, 50(4): 588−602 doi: 10.1360/N112019-00049
    [33] Wu C, Li X, Pan W, Liu J, Wu L. Zero-sum game based optimal secure control under actuator attacks. IEEE Transactions on Automatic Control, 2021, 66(8): 3773−3780
    [34] Xu Y, Jiang B, Yang H. Two-level game-based distributed optimal fault-tolerant control for nonlinear interconnected systems. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(11): 4892−4906 doi: 10.1109/TNNLS.2019.2958948
    [35] Wang Z, Liu L, Wu Y, Zhang H. Optimal fault-tolerant control for discrete-time nonlinear strict-feedback systems based on adaptive critic design. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(6): 2179−2191 doi: 10.1109/TNNLS.2018.2810138
    [36] Hu Q, Dong H, Zhang Y, Ma G. Tracking control of spacecraft formation flying with collision avoidance. Aerospace Science and Technology, 2015, 42: 353−364 doi: 10.1016/j.ast.2014.12.031
  • 加载中
图(8)
计量
  • 文章访问数:  95
  • HTML全文浏览量:  43
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-05
  • 录用日期:  2024-08-07
  • 网络出版日期:  2024-11-22

目录

    /

    返回文章
    返回