[1]
|
郑重, 李鹏, 钱默抒. 具有角速度和输入约束的航天器姿态协同控制. 自动化学报, 2021, 47(6): 1444−1452Zheng Zhong, Li Peng, Qian Mo-Shu. Spacecraft attitude coordination control with angular velocity and input constraints. Acta Automatica Sinca, 2021, 47(6): 1444−1452
|
[2]
|
袁利. 面向不确定环境的航天器智能自主控制技术. 宇航学报, 2021, 42(7): 839−849 doi: 10.3873/j.issn.1000-1328.2021.07.004Yuan Li. Spacecraft intelligent autonomous control technology toward uncertain environment. Journal of Astronautics, 2021, 42(7): 839−849 doi: 10.3873/j.issn.1000-1328.2021.07.004
|
[3]
|
王大轶, 屠园园, 刘成瑞, 何英姿, 李文博. 航天器控制系统可重构性的内涵与研究综述. 自动化学报, 2017, 43(10): 1687−1702Wang Da-Yi, Tu Yuan-Yuan, Liu Cheng-Rui, He Ying-Zi, Li Wen-Bo. Connotation and research of reconfigurability for spacecraft control systems: A review. Acta Automatica Sinca, 2017, 43(10): 1687−1702
|
[4]
|
Yang C, Xia Y. Interval uncertainty-oriented optimal control method for spacecraft attitude control. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(5): 5460−5471
|
[5]
|
Golestani M, Esmaeilzadeh M, Mobayen S. Constrained attitude control for flexible spacecraft: Attitude pointing accuracy and pointing stability improvement. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(3): 1566−1572
|
[6]
|
邵晋梁, 石磊, 李彤, 张希琳. 合作竞争网络下的多智能体系统链路故障检测. 中国科学:信息科学, 2022, 52(8): 1500−1512 doi: 10.1360/SSI-2021-0120Shao Jin-Liang, Shi Lei, Li Tong, Zhang Xi-Lin. Link failure detection for multi-agent systems on cooperation-competition networks. Scientia Sinca Informationis, 2022, 52(8): 1500−1512 doi: 10.1360/SSI-2021-0120
|
[7]
|
Zhou D, Qin L, He X, Yan R, Deng R. Distributed sensor fault diagnosis for a formation system with unknown constant time delays. Science China Information Sciences, 2018, 61: Article No. 112205 doi: 10.1007/s11432-017-9309-3
|
[8]
|
宋秀兰, 李洋阳, 何德峰. 外部干扰和随机DoS攻击下的网联车安全H∞ 队列控制. 自动化学报, 2024, 50(2): 348−355Song Xiu-Lan, Li Yang-Yang, He De-Feng. Secure H∞ platooning control for connected vehicles subject to external disturbance and random DoS attacks. Acta Automatica Sinica, 2024, 50(2): 348−355
|
[9]
|
高振宇, 孙振超, 郭戈. 考虑执行器非线性的固定时间全局预设性能车辆队列控制. 自动化学报, 2024, 50(2): 320−333Gao Zhen-Yu, Sun Zhen-Chao, Guo Ge. Fixed-time global prescribed performance control for vehicular platoons with actuator nonlinearities. Acta Automatica Sinica, 2024, 50(2): 320−333
|
[10]
|
Ma Y, Jiang B, Tao G, Cheng Y. Uncertainty decomposition based fault-tolerant adaptive control of flexible spacecraft. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2): 1053−1068 doi: 10.1109/TAES.2014.130032
|
[11]
|
Mao Z, Jiang B, Shi P. Fault-tolerant control for a class of nonlinear sampled-data systems via a Euler approximate observer. Automatica, 2010, 46(11): 1852−1859 doi: 10.1016/j.automatica.2010.06.052
|
[12]
|
马亚杰, 姜斌, 任好. 基于最小特征值的挠性航天器执行器故障自适应补偿技术. 中国科学: 信息科学, 2021, 51(05): 834−850 doi: 10.1360/SSI-2020-0184Ma Ya-Jie, Jiang Bin, Ren Hao. Minimum eigenvalue based adaptive compensation of actuator faults for fexible Spacecraft. Scientia Sinca Informationis, 2021, 51(05): 834−850 doi: 10.1360/SSI-2020-0184
|
[13]
|
马艳如, 石晓荣, 刘华华, 梁小辉, 王青. 运载火箭姿态系统自适应神经网络容错控制. 宇航学报, 2021, 42(10): 1237−1245 doi: 10.3873/j.issn.1000-1328.2021.10.005Ma Yan-Ru, Shi Xiao-Rong, Liu Hua-Hua, Liang Xiao-Hui, Wang Qing. Adaptive neural network fault tolerant control of launch vehicle attitude system. Journal of Astronautics, 2021, 42(10): 1237−1245 doi: 10.3873/j.issn.1000-1328.2021.10.005
|
[14]
|
Liu Q, Liu M, Yu J. Adaptive fault-tolerant control for attitude tracking of flexible spacecraft with limited data transmission. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(7): 4400−4408 doi: 10.1109/TSMC.2019.2932225
|
[15]
|
于彦波, 胡庆雷, 董宏洋, 马广富. 执行器故障与饱和受限的航天器滑模容错控制. 航空学报, 2016, 48(4): 20−25Yu Yan-Bo, Hu Qing-Lei, Dong Hong-Yang, Ma Guang-Fu. Sliding mode fault tolerant control for spacecraft under actuator fault and saturation. Journal of Harbin Institute of Technology, 2016, 48(4): 20−25
|
[16]
|
Qian M, Shi Y, Gao Z, Zhang X. Integrated fault tolerant tracking control for rigid spacecraft using fractional order sliding mode technique. Journal of the Franklin Institute, 2020, 357(15): 10557−10583 doi: 10.1016/j.jfranklin.2020.08.031
|
[17]
|
You Z, Yan H, Sun J, Zhang H, Li Z. Reliable control for flexible spacecraft systems with aperiodic sampling and stochastic actuator failures. IEEE Transactions on Cybernetics, 2022, 52(5): 3434−3445
|
[18]
|
Giulietti F, Pollini L, Innocenti M. Autonomous formation flight. IEEE Control Systems Magazine, 2000, 20(6): 34−44 doi: 10.1109/37.887447
|
[19]
|
Wang J, Elia N. Distributed averaging under constraints on information exchange: Emergence of lévy flights. IEEE Transactions on Automatic Control, 2012, 57(10): 2435−2449 doi: 10.1109/TAC.2012.2186093
|
[20]
|
Li X, Wen C, Chen C, Xu Q. Adaptive resilient secondary control for microgrids with communication faults. IEEE Transactions on Cybernetics, 2022, 52(8): 8493−8503
|
[21]
|
Chen C, Xie K, Lewis F, Xie S, Fierro R. Adaptive synchronization of multi-agent systems with resilience to communication link faults. Automatica, 2020, 111: Article No. 108636 doi: 10.1016/j.automatica.2019.108636
|
[22]
|
Wang W, Wen C, Huang J, Zhou J. Adaptive consensus of uncertain nonlinear systems with event triggered communication and intermittent actuator faults. Automatica, 2020, 111: Article No. 108667 doi: 10.1016/j.automatica.2019.108667
|
[23]
|
Ma X, Elia N. Mean square performance and robust yet fragile nature of torus networked average consensus. IEEE Transactions on Control of Network Systems, 2015, 2(3): 216−225 doi: 10.1109/TCNS.2015.2399175
|
[24]
|
Zelazo D, Bürger M. On the robustness of uncertain consensus networks. IEEE Transactions on Control of Network Systems, 2017, 4(2): 170−178
|
[25]
|
Zhang W, Tang Y, Huang T, Kurths J. Sampled-data consensus of linear multi-agent systems with packet losses. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(11): 2516−2527 doi: 10.1109/TNNLS.2016.2598243
|
[26]
|
Wang Z, Xu J, Zhang H. Consensus seeking for discrete-time multi-agent systems with communication delay. IEEE/CAA Journal of Automatica Sinica, 2015, 2(2): 151−157 doi: 10.1109/JAS.2015.7081654
|
[27]
|
Zhao L, Yang G. Cooperative adaptive fault-tolerant control for multi-agent systems with deception attacks. Journal of the Franklin Institute, 2020, 357(6): 3419−3433
|
[28]
|
Marcotte R, Wang X, Mehta D, Olson E. Optimizing multi-robot communication under bandwidth constraints. Autonomous Robots, 2020, 44(1): 43−55 doi: 10.1007/s10514-019-09849-0
|
[29]
|
Yang H, Li Z. Finite-time consensus for multi-agent systems with directed dynamically changing topologies. International Journal of Robust and Nonlinear Control, 2023, 33(14): 8657−8669 doi: 10.1002/rnc.6842
|
[30]
|
Ye D, Shi M, Sun Z. Satellite proximate interception vector guidance based on differential games. Chinese Journal of Aeronautics, 2018, 31(6): 1352−1361 doi: 10.1016/j.cja.2018.03.012
|
[31]
|
耿远卓, 袁利, 黄煌, 汤亮. 基于终端诱导强化学习的航天器轨道追逃博弈. 自动化学报, 2023, 49(5): 974−984Geng Yuan-Zhuo, Yuan Li, Huang Huang, Tang Liang. Terminal-guidance based reinforcement-learning for orbital pursuit-evasion game of the spacecraft. Acta Automatica Sinica, 2023, 49(5): 974−984
|
[32]
|
韩楠, 罗建军, 柴源. 多颗微小卫星接管失效航天器姿态运动的微分博弈学习控制. 中国科学: 信息科学, 2020, 50(4): 588−602 doi: 10.1360/N112019-00049Han Nan, Luo Jian-Jun, Chai Yuan. Differential game learning approach for multiple microsatellites takeover of the attitude movement of failed spacecraft. SCIENTIA SINCA Informationis, 2020, 50(4): 588−602 doi: 10.1360/N112019-00049
|
[33]
|
Wu C, Li X, Pan W, Liu J, Wu L. Zero-sum game based optimal secure control under actuator attacks. IEEE Transactions on Automatic Control, 2021, 66(8): 3773−3780
|
[34]
|
Xu Y, Jiang B, Yang H. Two-level game-based distributed optimal fault-tolerant control for nonlinear interconnected systems. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(11): 4892−4906 doi: 10.1109/TNNLS.2019.2958948
|
[35]
|
Wang Z, Liu L, Wu Y, Zhang H. Optimal fault-tolerant control for discrete-time nonlinear strict-feedback systems based on adaptive critic design. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(6): 2179−2191 doi: 10.1109/TNNLS.2018.2810138
|
[36]
|
Hu Q, Dong H, Zhang Y, Ma G. Tracking control of spacecraft formation flying with collision avoidance. Aerospace Science and Technology, 2015, 42: 353−364 doi: 10.1016/j.ast.2014.12.031
|