2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向机动目标的设定时间多约束协同制导律

李鹤宇 王建斌 张锐 宋峰

李鹤宇, 王建斌, 张锐, 宋峰. 面向机动目标的设定时间多约束协同制导律. 自动化学报, 2025, 51(1): 1−13 doi: 10.16383/j.aas.c240099
引用本文: 李鹤宇, 王建斌, 张锐, 宋峰. 面向机动目标的设定时间多约束协同制导律. 自动化学报, 2025, 51(1): 1−13 doi: 10.16383/j.aas.c240099
Li He-Yu, Wang Jian-Bin, Zhang Rui, Song Feng. Predefined-time multi-constraints cooperative guidance law for maneuvering target. Acta Automatica Sinica, 2025, 51(1): 1−13 doi: 10.16383/j.aas.c240099
Citation: Li He-Yu, Wang Jian-Bin, Zhang Rui, Song Feng. Predefined-time multi-constraints cooperative guidance law for maneuvering target. Acta Automatica Sinica, 2025, 51(1): 1−13 doi: 10.16383/j.aas.c240099

面向机动目标的设定时间多约束协同制导律

doi: 10.16383/j.aas.c240099 cstr: 32138.14.j.aas.c240099
基金项目: 173基础加强计划项目(2020-JQCJ-ZD-064-00)资助
详细信息
    作者简介:

    李鹤宇:北京电子工程总体研究所博士研究生. 主要研究方向为协同制导, 滑模控制. E-mail: liheyu93@163.com

    王建斌:北京电子工程总体研究所研究员. 主要研究方向为飞行器设计, 多学科优化. 本文通信作者. E-mail: wenxiaoni@sina.com

    张锐:北京电子工程总体研究所研究员. 主要研究方向为博弈理论,飞行器仿真. E-mail: llnwx@sina.com

    宋峰:北京电子工程总体研究所研究员. 主要研究方向为高精度导航,飞行器制导控制. E-mail: umaa930527@gmail.com

Predefined-time Multi-constraints Cooperative Guidance Law for Maneuvering Target

Funds: Supported by the 173 Basic Strengthening Program (2020-JQCJ-ZD-064-00)
More Information
    Author Bio:

    LI He-Yu Ph.D. candidate at the Beijing Institute of Electronic System Engineering. His research interest covers cooperative guidance and sliding mode control

    WANG Jian-Bin Professor at the Beijing Institute of Electronic System Engineering. His research interest covers aircraft design and multiple disciplinary optimization. Corresponding author of this paper

    ZHANG Rui Professor at the Beijing Institute of Electronic System Engineering. Her research interest covers game theory and aircraft simulation

    SONG Feng Professor at the Beijing Institute of Electronic System Engineering. His research interest covers high precision navigation and aircraft guidance and control

  • 摘要: 针对三维空间中多航天器协同捕获机动目标问题, 提出一种具有终端角度约束和时间一致性约束的设定时间协同制导律, 将视线角误差和齐射攻击的收敛时间作为一个可提前设定的参数, 实现对收敛时间进行设置. 构建三维场景航天器−目标运动学模型, 在沿视线(Line-of-sight, LOS)方向将同时攻击问题转化为一致性问题, 提出一种分布式协同制导律, 设定时间内使得多个航天器剩余飞行时间相等; 在垂直视线方向利用滑模控制方法对制导律进行设计, 使得每个航天器的视线角在设定时间内达到期望值. 上述制导律中, 设计了一种设定时间扩展状态观测器对未知的目标加速度进行估计. 数值仿真结果验证了方法的有效性.
  • 图  1  三维协同制导示意图

    Fig.  1  3D cooperative guidance geometry

    图  2  航天器通信拓扑关系

    Fig.  2  Communication topological relationship of spacecrafts

    图  3  3DPCGL算法的飞行轨迹

    Fig.  3  Flight trajectories of the 3DPCGL

    图  9  3DPCGL算法的视线偏角方向加速度

    Fig.  9  Acceleration on the yaw direction of the 3DPCGL

    图  4  3DPCGL算法的剩余飞行时间

    Fig.  4  Time-to-go of the 3DPCGL

    图  5  3DPCGL算法的视线倾角

    Fig.  5  LOS angles on the pitch direction of the 3DPCGL

    图  6  3DPCGL算法的视线偏角

    Fig.  6  LOS angles on the yaw direction of the 3DPCGL

    图  7  3DPCGL算法的沿视线方向加速度

    Fig.  7  Acceleration on the LOS direction of the 3DPCGL

    图  8  3DPCGL算法的视线倾角方向加速度

    Fig.  8  Acceleration on the pitch direction of the 3DPCGL

    图  10  ${T_s} = 3\,\;\mathrm{s} $沿视线方向目标加速度真值和观测值

    Fig.  10  Actual values and observations of target acceleration on the LOS direction when ${T_s} = 3\,\;\mathrm{s} $

    图  12  $ {T_s} = 3\,\;\mathrm{s}$视线偏角方向目标加速度真值和观测值

    Fig.  12  Actual values and observations of target acceleration on the yaw direction when $ {T_s} = 3\,\;\mathrm{s}$

    图  13  ${T_s} = 2\,\;\mathrm{s} $沿视线方向目标加速度真值和观测值

    Fig.  13  Actual values and observations of target acceleration on the LOS direction when ${T_s} = 2\,\;\mathrm{s} $

    图  15  ${T_s} = 2\,\;\mathrm{s} $视线偏角方向目标加速度真值和观测值

    Fig.  15  Actual values and observations of target acceleration on the yaw direction when ${T_s} = 2\,\;\mathrm{s} $

    图  11  $ {T_s} = 3\,\;\mathrm{s}$视线倾角方向目标加速度真值和观测值

    Fig.  11  Actual values and observations of target acceleration on the pitch direction when $ {T_s} = 3\,\;\mathrm{s}$

    图  14  ${T_s} = 2\,\;\mathrm{s} $视线倾角方向目标加速度真值和观测值

    Fig.  14  Actual values and observations of target acceleration on the pitch direction when ${T_s} = 2\,\;\mathrm{s} $

    图  16  ${T_{fr}} = 8\,\;\mathrm{s} $的航天器剩余飞行时间

    Fig.  16  Time-to-go when ${T_{fr}} = 8\,\;\mathrm{s} $

    图  17  $ {T_{f\lambda }} = 13\,\;\mathrm{s}$的视线倾角

    Fig.  17  LOS angles on the pitch direction when $ {T_{f\lambda }} = 13\,\;\mathrm{s}$

    图  18  $ {T_{f\lambda }} = 13\,\;\mathrm{s}$的视线偏角

    Fig.  18  LOS angles on the yaw direction when $ {T_{f\lambda }} = 13\,\;\mathrm{s}$

    表  1  航天器初始状态

    Table  1  Initial state of the spacecrafts

    参数名称 参数初始值
    序号1 序号2 序号3 序号4
    相对距离(km) 11 12 11 9
    相对速率(m/s) −320 −400 −380 −350
    视线倾角(°) −60 −45 −30 −20
    视线偏角(°) 10 30 40 60
    视线倾角速率((°)/s) 0.63 0.246 −0.355 −0.779
    视线偏角速率((°)/s) 1.404 0.67 −0.521 −0.882
    期望视线倾角(°) −30 −15 −60 −50
    期望视线偏角(°) 30 50 20 40
    下载: 导出CSV
  • [1] 耿远卓, 袁利, 黄煌, 汤亮. 基于终端诱导强化学习的航天器轨道追逃博弈. 自动化学报, 2023, 49(5): 974−984

    Geng Yuan-Zhuo, Yuan Li, Huang Huang, Tang Liang. Terminal-guidance based reinforcement-learning for orbital pursuit-evasion game of the spacecraft. Acta Automatica Sinica, 2023, 49(5): 974−984
    [2] 路遥. 一种非仿射高超声速飞行器输出反馈控制方法. 自动化学报, 2022, 48(6): 1530−1542

    Lu Yao. A method of output feedback control for non-affine hypersonic vehicles. Acta Automatica Sinica, 2022, 48(6): 1530−1542
    [3] Clark D E. Stochastic multi-object guidance laws for interception and rendezvous problems. IEEE Transactions on Automatic Control, 2021, 67(3): 1482−1489
    [4] Jeon I S, Lee J I, Tahk M J. Impact-time-control guidance law for anti-ship missiles. IEEE Transactions on Control Systems Technology, 2006, 14(2): 260−266 doi: 10.1109/TCST.2005.863655
    [5] Chen Z, Chen W, Liu X, Cheng J. Three-dimensional fixed-time robust cooperative guidance law for simultaneous attack with impact angle constraint. Aerospace Science and Technology, 2021, 110: Article No. 106523 doi: 10.1016/j.ast.2021.106523
    [6] Cho N, Kim Y. Modified pure proportional navigation guidance law for impact time control. Journal of Guidance, Control, and Dynamics, 2016, 39(4): 852−872 doi: 10.2514/1.G001618
    [7] Chen X, Wang J. Nonsingular sliding-mode control for field-of-view constrained impact time guidance. Journal of Guidance, Control, and Dynamics, 2018, 41(5): 1214−1222 doi: 10.2514/1.G003146
    [8] Lyu T, Guo Y N, Li C J, Ma G F, Zhang H B. Multiple missiles cooperative guidance with simultaneous attack requirement under directed topologies. Aerospace Science and Technology, 2019, 89: 100−110
    [9] Nikusokhan M, Nobahari H. Closed-form optimal cooperative guidance law against random step maneuver. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(1): 319−336 doi: 10.1109/TAES.2015.140623
    [10] Chen Y D, Wang J N, Shan J Y, Xin M. Cooperative guidance for multiple powered missiles with constrained impact and bounded speed. Journal of Guidance, Control, and Dynamics, 2021, 44(4): 825−841
    [11] Dong W, Deng F, Wang C Y, Wang J N. Three-dimensional spatial–temporal cooperative guidance without active speed control. Journal of Guidance, Control, and Dynamics, 2023, 46(10): 1981−1996 doi: 10.2514/1.G007641
    [12] Wang C Y, Dong W, Wang J N, Shan J Y, Xin M. Guidance law design with fixed-time convergent error dynamics. Journal of Guidance, Control, and Dynamics, 2021, 44(7): 1389−1398 doi: 10.2514/1.G005833
    [13] Moulay E, Léchappé V, Bernuau E, Defoort M, Plestan F. Fixed-time sliding mode control with mismatched disturbances. Automatica, 2022, 136: Article No. 110009 doi: 10.1016/j.automatica.2021.110009
    [14] Moulay E, Léchappé V, Bernuau E, Defoort M, Plestan F. Robust fixed-time stability: Application to sliding-mode control. IEEE Transactions on Automatic Control, 2021, 67(2): 1061−1066
    [15] You H, Chang X L, Zhao J F, Wang S H, Zhang Y H. Three-dimensional impact-angle-constrained fixed-time cooperative guidance algorithm with adjustable impact time. Aerospace Science and Technology, 2023, 141: Article No. 108574 doi: 10.1016/j.ast.2023.108574
    [16] Dong W, Wang C Y, Liu J H, Wang J N, Xin M. Three-dimensional vector guidance law with impact time and angle constraints. Journal of the Franklin Institute, 2023, 360(2): 693−718 doi: 10.1016/j.jfranklin.2022.11.035
    [17] Dong W, Wang C Y, Wang J N, Zuo Z Y, Shan J Y. Fixed-time terminal angle-constrained cooperative guidance law against maneuvering target. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(2): 1352−1366 doi: 10.1109/TAES.2021.3113292
    [18] Zhang P, Zhang X Y. Multiple missiles fixed-time cooperative guidance without measuring radial velocity for maneuvering targets interception. ISA Transactions, 2022, 126: 388−397
    [19] Sánchez-Torres J D, Gómez-Gutiérrez D, López E, Loukianov A G. A class of predefined-time stable dynamical systems. IMA Journal of Mathematical Control and Information, 2018, 35(Supplement_1): i1−i29 doi: 10.1093/imamci/dnx004
    [20] Munoz-Vazquez A J, Sánchez-Torres J D, Jimenez-Rodriguez E, Loukianov A G. Predefined-time robust stabilization of robotic manipulators. IEEE/ASME Transactions on Mechatronics, 2019, 24(3): 1033−1040 doi: 10.1109/TMECH.2019.2906289
    [21] Sánchez-Torres J D, Defoort M, Munoz-Vázquez A J. Predefined-time stabilisation of a class of nonholonomic systems. International Journal of Control, 2020, 93(12): 2941−2948 doi: 10.1080/00207179.2019.1569262
    [22] Wang F, Miao Y, Li C, et al. Attitude control of rigid spacecraft with predefined-time stability. Journal of the Franklin Institute, 2020, 357(7): 4212−4221 doi: 10.1016/j.jfranklin.2020.01.001
    [23] Jing L, Wei C Z, Zhang L, Cui N G. Cooperative guidance law with predefined-time convergence for multimissile systems. Mathematical Problems in Engineering, 2021, 2021: 1−13
    [24] 池海红, 丁栖航, 张国良. 预定时间多导弹三维协同制导律. 宇航学报, 2023, 44(8): 1238−1250 doi: 10.3873/j.issn.1000-1328.2023.08.012

    Chi Hai-Hong, Ding Xi-Hang, Zhang Guo-Liang. Three-dimensional cooperative guidance law for multiple missiles with predefined-time convergence. Journal of Astronautics, 2023, 44(8): 1238−1250 doi: 10.3873/j.issn.1000-1328.2023.08.012
    [25] Pal A K, Kamal S, Nagar S K, Bandyopadhyay B, Fridman L. Design of controllers with arbitrary convergence time. Automatica, 2020, 112: Article No. 108710 doi: 10.1016/j.automatica.2019.108710
    [26] Olfati-Saber R, Murray R M. Consensus problems in networks of agents with switching topology and time-delays. IEEE Transactions on Automatic Control, 2004, 49(9): 1520−1533 doi: 10.1109/TAC.2004.834113
    [27] Zhang L, Jing L, Ye L H, Gao X. Predefined-time control for a horizontal takeoff and horizontal landing reusable launch vehicle. Aircraft Engineering and Aerospace Technology, 2021, 93(6): 957−970 doi: 10.1108/AEAT-11-2020-0253
    [28] Holloway J, Krstic M. Prescribed-time observers for linear systems in observer canonical form. IEEE Transactions on Automatic Control, 2019, 64(9): 3905−3912
    [29] Ju X Z, Wei C Z, Xu H C, Wang F. Fractional-order sliding mode control with a predefined-time observer for VTVL reusable launch vehicles under actuator faults and saturation constraints. ISA Transactions, 2022, 129: 55−72 doi: 10.1016/j.isatra.2022.02.003
    [30] Zuo Z Y, Song J W, Tian B L, Basin M. Robust fixed-time stabilization control of generic linear systems with mismatched disturbances. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 52(2): 759−768
    [31] Wang X, Tan C P, Zhou D. Observer-based PIGC for missiles with impact angle constraint. IEEE Transactions on Aerospace and Electronic Systems, 2018, 55(5): 2226−2240
    [32] Hu Q L, Han T, Xin M. Three-dimensional guidance for various target motions with terminal angle constraints using twisting control. IEEE Transactions on Industrial Electronics, 2019, 67(2): 1242−1253
    [33] Zhang L, Li D Y, Jing L, Ju X Z, Cui N G. Appointed-time cooperative guidance law with line-of-sight angle constraint and time-to-go control. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(3): 3142−3155 doi: 10.1109/TAES.2022.3221059
    [34] 李鹤宇, 王建斌, 张锐, 宋峰, 姚雨晗, 楼朝飞. 具有角度和时间约束的固定时间协同制导律. 宇航学报, 2024, 45(3): 462−468 doi: 10.3873/j.issn.1000-1328.2024.03.013

    Li He-Yu, Wang Jian-Bin, Zhang Rui, Song Feng, Yao Yu-Han, Lou Chao-Fei. Fixed-time cooperative guidance law with angle and remaining flight time constraints. Journal of Astronautics, 2024, 45(3): 462−468 doi: 10.3873/j.issn.1000-1328.2024.03.013
  • 加载中
图(18) / 表(1)
计量
  • 文章访问数:  61
  • HTML全文浏览量:  29
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-28
  • 录用日期:  2024-07-23
  • 网络出版日期:  2024-11-22

目录

    /

    返回文章
    返回