2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电力设施多模态精细化机器人巡检关键技术及应用

张辉 杜瑞 钟杭 曹意宏 王耀南

张辉, 杜瑞, 钟杭, 曹意宏, 王耀南. 电力设施多模态精细化机器人巡检关键技术及应用. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c230809
引用本文: 张辉, 杜瑞, 钟杭, 曹意宏, 王耀南. 电力设施多模态精细化机器人巡检关键技术及应用. 自动化学报, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c230809
Zhang Hui, Du Rui, Zhong Hang, Cao Yi-Hong, Wang Yao-Nan. The key technology and application of multi-modal fine robot inspection for power facilities. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c230809
Citation: Zhang Hui, Du Rui, Zhong Hang, Cao Yi-Hong, Wang Yao-Nan. The key technology and application of multi-modal fine robot inspection for power facilities. Acta Automatica Sinica, xxxx, xx(x): x−xx doi: 10.16383/j.aas.c230809

电力设施多模态精细化机器人巡检关键技术及应用

doi: 10.16383/j.aas.c230809 cstr: 32138.14.j.aas.c230809
基金项目: 科技创新2030“新一代人工智能”重大项目(2021ZD0114503), 国家自然科学基金重大研究计划(92148204), 国家自然科学基金(62027810), 湖南省科技创新领军人才(2022RC3063), 湖南省十大技术攻关项目(2024GK1010), 湖南省重点研发计划(2023GK2068, 2022GK2011), 国网湖南省电力有限公司科技项目(5216A522001Y, 5216A5240003), 国家电网有限公司科技项目(5700-202423229A-1-1-ZN)资助
详细信息
    作者简介:

    张辉:湖南大学机器人学院教授. 主要研究方向为机器视觉, 图像处理和机器人控制. E-mail: zhanghuihby@126.com

    杜瑞:湖南大学机器人学院博士研究生. 2020年获湘潭大学硕士学位. 主要研究方向为机器视觉, 图像处理. E-mail: durui@hnu.edu.cn

    钟杭:湖南大学机器人学院副教授. 分别于2013年、2016年和2020年获得湖南大学电气与信息工程学院自动化科学学士、硕士和博士学位. 主要研究方向为航空机器人, 多机器人系统, 视觉伺服, 视觉导航和非线性控制. E-mail: zhonghang@hnu.edu.cn

    曹意宏:湖南大学机器人学院博士研究生. 2021年获湖南师范大学硕士学位. 主要研究方向为计算机视觉. E-mail: caoyihong@hnu.edu.cn

    王耀南:中国工程院院士, 湖南大学电气与信息工程学院教授. 1995 年获湖南大学博士学位. 主要研究方向为机器人学, 智能控制和图像处理. E-mail: yaonan@hnu.edu.cn

  • 中图分类号: Y

The Key Technology and Application of Multi-modal Fine Robot Inspection for Power Facilities

Funds: supported by Science and Technology Innovation 2030 “New Generation Artificial Intelligence" Major(2021ZD0114503, National Key Research and Development Program of China (2021ZD0114503), the Major Research Plan of National Natural Science Foundation of China (92148204), National Natural Science Foundation of China (62027810), the Hunan Leading Talent of Technological Innovation (2022RC3063), the Top Ten Technical Research Projects of Hunan Province(2024GK1010), the Key Research and Development Program of Hunan Province (2023GK2068 and 2022GK2011), the Science and technology project of State Grid Hunan Electric Power Co., LTD. (5216A522001Y, 5216A5240003), and the Science and technology project of State Grid Corporation of China (SGCC) Co., LTD under Grant (5700-202423229A-1-1-ZN)
More Information
    Author Bio:

    ZHANG Hui Professor at the School of Robotics, Hunan University. His research interest covers machine vision, image processing, and robot control

    DU Rui Ph.D. candidate at the School of Robotics, Hunan University. He received his master degree from Xiangtan University in 2020. His research interest covers machine vision and image processing

    ZHONG Hang Associate professor at the School of Robotics, Hunan University. He received his bachelor degree, master degree and Ph.D. degree in automation science from the College of Electrical and Information Engineering, Hunan University in 2013, 2016, and 2020, respectively. Now he is an Associate Professor with the College of Robotics, Hunan University. His research interest covers aerial robotics, multi-robot systems, visual servoing, visual navigation, and nonlinear control

    CAO Yi-Hong Ph.D. candidate at the School of Robotics, Hunan University. He received his master degree from Hunan Normal University in 2021. His Main research interest is computer vision

    WANG Yao-Nan Academician at Chinese Academy of Engineering, professor at the College of Electrical and Information Engineering, Hunan University. He received his Ph.D. degree from Hunan University in 1995. His research interest covers robotics, intelligent control, and image processing

  • 摘要: 电力设施巡检对于国家加快电网基础设施智能化改造和智能微电网建设, 提高电力系统互补互济和智能调节能力的需求具有重要作用. 近年来, 智能巡检机器人开始在电力巡检中广泛应用. 在提高电力设施巡检效率和准确性、提升安全性、降低成本和促进电力智能化发展等方面发挥关键作用. 本文从电力巡检机器人的智能感知和导航技术出发, 重点阐述目标检测、语义分割、自主导航等共性关键技术的国内外发展现状. 然后以可见光红外双光融合、可见光图像和点云数据融合、声纹和可见光融合为例, 阐述电力场景多模态数据融合方式. 并进一步介绍电力部件精准分割和异物检测、线路点云杆塔倾斜检测、输电线路覆冰多模态检测和电力架空线路缺陷分析及台账异常检测等电力设施多模态机器人相关案例. 最后探讨电力设施多模态精细化机器人巡检关键技术的发展趋势和所面临的挑战.
  • 图  1  近年全国总用电量趋势(单位: 亿千瓦时)

    Fig.  1  Trend of national total electricity consumption in recent years (unit: 100 million kWh)

    图  2  电力设施多模态机器人巡检案例

    Fig.  2  Multi-modal robot inspection cases of power facilities

    图  3  智能巡检机器人感知关键技术

    Fig.  3  Key technologies of intelligent inspection robot perception

    图  4  典型2D目标检测网络

    Fig.  4  Typical 2D object detection networks

    图  5  3D点云检测和分割方法

    Fig.  5  3D point cloud detection and segmentation methods

    图  6  电力设施红外和可见光融合图像

    Fig.  6  Infrared and visible light fusion images of power facilities

    图  7  点云和可见光融合流程

    Fig.  7  Point cloud and visible light fusion process

    图  8  中国南方电网巡检机器人

    Fig.  8  China Southern Power Grid inspection robot

    图  9  声学和光学图像融合流程

    Fig.  9  Acoustic and optical image fusion process

    图  10  电力设施精准目标检测框架

    Fig.  10  Accurate object detection framework for power facilities

    图  11  基于可见光和点云的杆塔倾斜检测流程图

    Fig.  11  Flow chart of tower tilt detection based on RGB image and point cloud

    图  12  带电除冰机器人

    Fig.  12  Electric de-icing robot

    图  13  电力架空线路缺陷检测及三维台账拓扑数字孪生体

    Fig.  13  Defect detection of power overhead lines and three-dimensional ledger topology digital twins

    表  1  电力设施机器人巡检智能感知关键技术

    Table  1  Key technologies for intelligent perception in robotic inspection of power facilities

    场景 技术 电力检测任务 代表方法
    2D目标检测常用于可见光模态, 输出电力设备缺陷的位置和类型信息Faster R-CNN[25]、YOLO系列[28]、SSD[29]、RetinaNet[30]
    语义分割常用于红外模态, 输出电力设备缺陷的热故障区域U-Net[36]、SegNet[37]、DeepLab系列[4041]
    3D目标检测常用于激光点云, 检测电力导线三维位置PointNet系列[4849,54]、SESS[50]
    语义分割常用于激光点云, 输出杆塔点区域PointNet系列[4849,54]、DGCNN[57]
    下载: 导出CSV

    表  2  2D语义分割技术分类

    Table  2  Classification of 2D semantic segmentation techniques

    分类类型 方法类型 原理或用途
    传统方法原理基于阈值的方法[33]根据灰度值大小不同, 设定阈值完成分割
    基于边缘检测的方法[34]对图像边缘线条进行检测
    基于图割的方法[35]利用图形结构最小割分割图像
    深度学习方法用途多尺度信息融合[4041]增加感受野, 提高分割结果精度
    无监督语义分割[4445]减少大量人工标注成本
    实时语义分割[46]节省计算资源, 加快推理时间
    下载: 导出CSV

    表  3  可见光红外双光融合方法分类

    Table  3  Classification of visible light dual light fusion methods

    优点 缺点
    基于多尺度变换的方法 多层次子图像保留了更多图像细节信息 基于预先设定的基函数进行图像融合,
    易忽略源图像部分重要特征
    基于稀疏表示的方法 超完备字典蕴涵丰富的基原子, 有利于图像更好的表达和提取 难以应对复杂图像融合
    基于神经网络的方法 避免了传统算法手动设计复杂的分解级别和融合规则, 并有效保留源图像信息 对计算资源需求较大, 暂未大量应用
    下载: 导出CSV

    表  4  电力设施多模态精细化巡检相关应用

    Table  4  Application of Multimodal Fine Inspection in Power Facilities

    典型案例 融合模态 方法原理
    电力部件精准分割 可见光+红外 结合可见光的高分辨率和红外图像的温度特性, 实现高精度部件分割
    输电线路异物检测 可见光+点云 结合可见光的高分辨率和点云的形态特征, 充分识别线路异物
    线路杆塔倾斜检测 可见光+点云 结合可见光的颜色信息和点云的位置信息, 准确分割杆塔, 实现倾斜度检测
    线路覆冰多模态检测 可见光+点云 结合可见光的颜色信息和点云的位置定位电力线, 通过坐标计算覆冰厚度
    台账异常检测 可见光+点云 通过可见光实现台账目标识别, 利用点云构建数字孪生网络实现台账校准
    下载: 导出CSV
  • [1] 吴庆, 赵涛, 佃松宜, 郭锐, 李胜川, 方红帏, 韩吉霞. 基于FPSO的电力巡检机器人的广义二型模糊逻辑控制. 自动化学报, 2022, 48(6): 1482−1492

    Wu Qing, Zhao Tao, Dian Songyi, Guo Rui, Li Sheng-Chuan, Fang Hong-Wei, Han Ji-Xia. General type-2 fuzzy logic control for a power-line inspection robot based on FPSO. Acta Automatica Sinica, 2022, 48(6): 1482−1492
    [2] Dian S Y, Chen L, Hoang S, Pu M, Liu J Y. Dynamic balance control based on an adaptive gain-scheduled backstepping scheme for power-line inspection robots. IEEE/CAA Journal of Automatica Sinica, 2019, 6(1): 198−208 doi: 10.1109/JAS.2017.7510721
    [3] 王耀南, 江一鸣, 姜娇, 张辉, 谭浩然, 彭伟星, 吴昊天, 曾凯. 机器人感知与控制关键技术及其智能制造应用. 自动 化学报, 2023, 49(3): 494−513

    Wang Yao-Nan, Jiang Yi-Ming, Jiang Jiao, Zhang Hui, Tan Hao-Ran, Peng Wei-Xing, Wu Hao-Tian, Zeng Kai. Key technologies of robot perception and control and its intelligent manufacturing applications. Acta Automatica Sinica, 2023, 49(3): 494−513
    [4] 张振国, 毛建旭, 谭浩然, 王耀南, 张雪波, 江一鸣. 重大装备制造多机器人任务分配与运动规划技术研究综述. 自动化学报, 2024, 50(1): 21−41

    Zhang Zhen-Guo, Mao Jian-Xu, Tan Hao-Ran, Wang Yao-Nan, Zhang Xue-Bo, Jiang Yi-Ming. A review of task allocation and motion planning for multi-robot in major equipment manufacturing. Acta Automatica Sinica, 2024, 50(1): 21−41
    [5] Li J, Xu Y, Nie K, Cao B, Zuo S, Zhu J. PEDNet: A lightweight detection network of power equipment in infrared image based on YOLOv4-Tiny. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1−12
    [6] Chen G, Shao F and Chai X and Chen H, Jiang, Q, Me ng, X and Ho Y. CGMDRNet: Cross-guided modality difference reduction network for RGB-T salient object detection. IEEE Trans. Circuits Syst. Video Technol, 2022, 32(9): 6308−6323 doi: 10.1109/TCSVT.2022.3166914
    [7] Komoda K, Yamagishi T, Murai T, Sugimoto K. Development of substation patrol robot, overhead distribution line works manipulator and underground cable conduit monitor robot. Robot, 1988, 64: 65−73
    [8] Masafumi N. Development of a patrolling and inspection robot at 500 kV transformer substation. (Results of field test). R&D News Kansai, 1999, 386: 13−15
    [9] Allan J F, Beaudry J. Robotic systems applied to power substations—A state-of-the-art survey. In: Proceedings of the 3rd International Conference on Applied Robotics for the Power Industry (CARPI). Foz do Iguacu, Brazil: IEEE, 2014. 1–6
    [10] Beaudry J, Poirier S. Véhicule téléopéré pour inspection visuelle et thermographique dans les postes de transformation, Technical Report IREQ-2012-0121, IREQ (Hydro-Québec Research Institute), Canada, 2012.
    [11] Lu S, Qian Q, Zhang B, Wang M, Li X, Wang H. Development of a mobile robot for substation equipment inspection. Automation of electric power systems, 2006, 30(13): 94−98
    [12] Guo R, Li B, Sun Y, Han L. Omni-directional vision for robot navigation in substation environments. In Proceedings of IEEE International Conference on Robotics and Biomimetics, Guiling, China, 2009. 1272–1275
    [13] Guo R, Xiao P, Han L, Chen X. GPS and DR integration for robot navigation in substation environments. In Proceedings of IEEE International Conference on Information and Automation, Harbin, China 2010, 1272–1275
    [14] Zhou Z, Zhang C, Xu C, Xiong F, Zhang Y, Umer T. Energy-efficient industrial internet of UAVs for power line inspection in smart grid. IEEE Transactions on Industrial Informatics, 2018, 14(6): 2705−2714 doi: 10.1109/TII.2018.2794320
    [15] Vapnik V. The nature of statistical learning theory. Statistics for Engineering and Information Science, 2020
    [16] Tin K. Random decision forests. In: Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, QC, Canada, 1995. 278–282
    [17] 何洪英, 姚建刚, 蒋正龙, 汪新秀, 李伟伟. 基于支持向量机的高压绝缘子污秽等级红外热像检测. 电力系统自动化, 2005(24): 70−74+82

    He Hong-Ying, Yao Jian-Gan, Jiang Zheng-Long, Wang Xin-Xiu, Li Wei-Wei. Pollution level infrared thermal imaging detection of high voltage insulators based on support vector machine. Automation of Electric Power Systems, 2005(24): 70−74+82
    [18] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, Kaiser L, Polosukhin I. Attention is all you need. Advances in neural information processing systems, 201730
    [19] Carion N, Massa F, Synnaeve G, Usunier N, Kirillov A, Zagoruyko S. End-to-end object detection with transformers. In: Proceedings of the European Conference on Computer Vision, Springer, 2020: 213–229.
    [20] Zhu X, Su W, Lu L, Li B, Wang X, Dai J. Deformable detr: Deformable transformers for end-to-end object detection. In: Proceedings of the 9th International Conference on Learning Representations, Vienna, Austria: OpenReview, 2021
    [21] Zong Z, Song G, Liu Y, DETRs with collaborative hybrid assignments training, In: Proceedings of the IEEE/CVF International Conference on Computer Vision(ICCV), Paris, France: IEEE, 2023. 6725–6735
    [22] Zhang S, Wang X, Wang J, Pang J, Lyu C, Zhang W, Luo P, Chen K.Dense distinct query for end-to-end object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada: IEEE, 2023. 7329–7338
    [23] Girshick, R, Donahue, J, Darrell, T. Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition(CVPR), Columbus, OH, USA: IEEE, 2014
    [24] R. Girshick, Fast R-CNN, 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile: IEEE, 2015, pp. 1440–1448.
    [25] Ren S, He K, Girshick R and Sun J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137−1149 doi: 10.1109/TPAMI.2016.2577031
    [26] Tang X, Du D K, He Z, Liu J. PyramidBox: A Context-assisted Single Shot Face Detector. In: Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany: Springer, 2018
    [27] Cai Z and Vasconcelos N, Cascade R-CNN: delving into high quality object detection, In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA: IEEE, 2018. 6154–6162
    [28] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, You only look once: unified, real-time object detection, In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016. 779–788
    [29] Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C, Berg A. SSD: single shot multiBox detector. In: Proceedings of the European Conference on Computer Vision(ECCV), Amsterdam, The Netherlands: Spinger, 2016.
    [30] Lin T Y, Goyal P, Girshick R, He K and Dollár P. Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy: IEEE, 2017. 2999–3007
    [31] Yi J, Mao J, Zhang H, Zeng K, Tao Z, Zhong H, Wang S, Wang Y. PSTL-Net: A patchwise self-texture-learning network for transmission line inspection. IEEE Transactions on Instrumentation and Measurement, vol. 2024, 73 : 1–15, Article No. 5005714
    [32] Liu X, Miao X, Jiang H, Chen J, Wu M, Chen Z. Component detection for power line inspection using a graph-based relation guiding network. IEEE Transactions on Industrial Informatics, 2023, 19(0): 9280−9290
    [33] Barrow H G, Tenenbaum J M. Recovering intrinsic scene characteristics from images. Computer Vision Systems, 1978
    [34] Canny J. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986
    [35] Ke L, Tai Y W and Tang C K. Occlusion-aware instance segmentation via biLayer network architectures. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023
    [36] Ronneberger O, Fischer P T. U-Net: Convolutional networks for biomedical image segmentation. In: Proceedings of the International Conference on Medical image computing and computer-assisted intervention(MICCAI), Munich, Germany: Springer. 2015. 234–241
    [37] Badrinarayanan V, Kendall A. SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481−2495 doi: 10.1109/TPAMI.2016.2644615
    [38] Zhao Z, Liu B, Zhai Y, Zhao W, Su P. Dual graph reasoning network for oil leakage segmentation in substation equipment. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 1−15
    [39] Zhao Z, Feng S, Zhai Y, Zhao W, Li G. Infrared thermal image instance segmentation method for power substation equipment based on visual feature reasoning. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1−13
    [40] Chen K, Yang L, Wang J, Xu W, and Yuille A L. Semantic image segmentation with deep convolutional nets and fully connected CRFs. In: Proceedings of the International Conference on Neural Information Processing Systems (NeurIPS), Montreal, Canada: ACM, 2014.
    [41] Chen L C, Zhu Y, Papandreou G, Schroff F, Adam H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision(ECCV), Munich, Germany: Springer, 2018.
    [42] MacQueen J B. Some methods for classification and analysis of multivariate observations, Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, 1967, 1 : 281–297
    [43] Shi J, Malik J. Normalized cuts and image segmentation. IEEE Transactions on pattern analysis and machine intelligence, 2000, 22(8): 888−905 doi: 10.1109/34.868688
    [44] Goodfellow I J, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengi Y. Generative adversarial nets, In: Proceedings of the 27th International Conference on Neural Information Processing Systems (NeurIPS), Montreal, Canada: ACM, 2014. 2672–2680
    [45] Li P, Jiang T, Zhu S.Semi-supervised learning with graph kernels. In: Proceedings of the 20th international conference on machine learning (ICML), Washington, DC, USA: IEEE, 2003. 448–455
    [46] Mehta S, Rastegari M, Shapiro L, Hajishirzi H. ESPNet: Efficient spatial pyramid of dilated convolutions for semantic segmentation. In: Proceedings of the European Conference on Computer Vision(ECCV), Munich, Germany: Springer, 2018. 552–568
    [47] Maturana D, Scherer S. VoxNet: A 3D convolutional neural network for real-time object recognition. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany: IEEE, 2015. 922–928
    [48] Qi C R, Huang W, Lin Y. PointNet: Deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Honolulu, HI, USA: IEEE, 2017. 77–85
    [49] Qi, C R, Yi L, Su H, Guibas, Guibas L J. PointNet++: Deep hierarchical feature learning on point sets in a metric space. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY, USA: ACM, 2017. 5105–5114
    [50] N. Zhao, Chua T S, Lee G H. SESS: Self-ensembling semi-supervised 3D object detection, In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Seattle, WA, USA: IEEE, 2020. 11076–11084
    [51] Shi S, Wang Z, Wang X, Li H. Part-A Net: 3D part-aware and aggregation neural network for object detection from point cloud. Pattern Recognition, 2022, 122: 108242
    [52] Zhou Y, He K, Huang J, Liu X. VoxelNet: end-to-end learning for point cloud based 3D object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 2018. 4490–4499
    [53] Ouyang Z, Dong X, Cui J, Niu J, Guizani M. PV-EncoNet: Fast object detection based on colored point cloud. IEEE Transa ctions on Intelligent Transportation Systems, 2022, 23(8): 12439−12450 doi: 10.1109/TITS.2021.3114062
    [54] Shi S, Wang X, Li H, Li Y, PV-RCNN: Point-Voxel feature set abstraction for 3D object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA: IEEE, 2020. 10529–10538
    [55] Dong Z, Li J, Li Y. 3DV-Net: Learning Multi-level multi-scale 3D features from point cloud for object detection. Sensors, 2021, 21(11): 3875 doi: 10.3390/s21113875
    [56] Shi S, Wang X, Li H, Li Y, Li J. PV-RCNNv2: efficient point-voxel 3D object detection. arXiv: 2202.11885, 2022.
    [57] Wang Y, Sun Y, Liu Z. Dynamic Graph CNN for Learning on Point Clouds. ACM Transactions on Graphics, 2019, 38(5): 1−12
    [58] Hu Q, Li B, Liu S, Zhu H. RandLA-Net: efficient semantic segmentation of large-scale point clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA: IEEE, 2020. 11105–11114
    [59] Shi W, Rajkumar R. Point-GNN: graph neural network for 3D object detection in a point cloud. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA: IEEE, 2020. 1708–1716
    [60] Yan Y, Mao Y, Shen X. PointASNL: Robust point clouds processing using nonlocal neural networks with adaptive sampling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Seattle, WA, USA: IEEE, 2020. 4525–4534
    [61] Li W, Luo Z, Xiao Z, Chen Y, Wang C, Li J. A GCN-based method for extracting power lines and pylons from airborne LiDAR data. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1−14
    [62] Jeong S, Kim D, Kim S, HaM J W, Lee J K, Oh K Y. Real-time environmental cognition and sag estimation of transmission lines using UAV equipped with 3-D LiDAR system. IEEE Transactions on Power Delivery, 2021, 36(5): 2658−2667 doi: 10.1109/TPWRD.2020.3024965
    [63] Munir N, Awrangjeb M, Stantic B. An iterative graph-based method for constructing gaps in high-voltage bundle conductors using airborne LiDAR point cloud data. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 1−16
    [64] Shen Y, Wang J, Ferreira V. automatic pylon extraction using color-aided classification from UAV LiDAR point cloud data. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1−11
    [65] Ibrahim M, Akhtar N, Anwar S, Mian A. SAT3D: Slot attention transformer for 3D point cloud semantic segmentation. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(5): 5456−5466 doi: 10.1109/TITS.2023.3243643
    [66] 张贵峰, 张志强, 沈锋. 变电站巡检机器人现状与发展综述. 云南电力技术, 2022, 50(06): 2−8

    Zhang Gui-Feng, Zhang Zhi-Qiang, Shen Feng. Overview of the current situation and development of substation inspection robot. Yunnan Electric Power Technology, 2022, 50(06): 2−8
    [67] 袁利, 姜甜甜, 魏春岭, 杨孟飞. 空间控制技术发展与展望. 自动化学报, 2023, 49(3): 476−493

    Yuan Li, Jiang Tian-Tian, Wei Chun-Ling, Yang Meng-Fei. Advances and perspectives of space control technology. Acta Automatica Sinica, 2023, 49(3): 476−493
    [68] 黄观文, 王媛媛, 龙正鑫, 秦志伟, 张勤. GNSS 卫星轨道机动探测技术进展. 导航定位学报, 2024, 12(3):

    HUANG Guan-Wen, WANG Yuan-Yuan, LONG Zheng-Xin, Qin Zhi-Wei, Zhang Qin. Technique advancements in GNSS satellite orbit maneuver detection. Journal of Navigation and Positioning, 2024, 12(3):
    [69] Zhang X, Demiris Y. Visible and infrared image fusion using deep learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(8): 10535−10554 doi: 10.1109/TPAMI.2023.3261282
    [70] Li T, Yu H. Visual-inertial fusion-based human pose estimation: a review. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1−16
    [71] Sun Z, Ke Q, Rahmani H, Bennamoun M, Wang G, Liu J. Human action recognition from various data modalities: a review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(3): 3200−3225
    [72] Yuan D, Zhang H, Shu X, Liu Q, Chang X, He Z, Shi G. Thermal infrared target tracking: a comprehensive review. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 1−19
    [73] Tian C, Zhou Z, Huang Y, Li G, He Z. Cross-Modality proposal-guided feature mining for unregistered RGB-thermal pedestrian detection. IEEE Transactions on Multimedia, 2024, 26: 6449−6461 doi: 10.1109/TMM.2024.3350926
    [74] Li X, Chen S, Tian C, Zhou H, Zhang Z. M2FNet: mask-guided multi-level fusion for RGB-T pedestrian detection. IEEE Transactions on Multimedia, 20241−13
    [75] Xu Y, Fan K, Hu Q, Zhang X. Positioning of suspended permanent magnet maglev trains using satellite-ground multisensor fusion. IEEE Sensors Journal, 2024, 24(10): 16816−16825 doi: 10.1109/JSEN.2024.3384699
    [76] Cossio-Montefinale L, Ruiz-del-Solar J, Verschae R. Cherry CO dataset: a dataset for cherry detection, segmentation and maturity recognition. IEEE Robotics and Automation Letters, 2024, 9(6): 5552−5558 doi: 10.1109/LRA.2024.3393214
    [77] Rayhana R, Ma Z, Liu Z, Xiao G, Ruan Y, Sangha J S. A review on plant disease detection using hyperspectral imaging. IEEE Transactions on AgriFood Electronics, 2023, 1(2): 108−134 doi: 10.1109/TAFE.2023.3329849
    [78] Song M, Um G M, Lee H K, Seo J, Kim W. Dynamic residual filtering with laplacian pyramid for instance segmentation. IEEE Transactions on Multimedia, 2023, 25: 6892−6903 doi: 10.1109/TMM.2022.3215306
    [79] WU S, Wang Y. Seismic image dip estimation by multiscale principal component analysis. IEEE Transactions on Geosci ence and Remote Sensing, 2023, 61: 1−10
    [80] Grossmann A, Morlet J. Decomposition of hardy functions into square integrable wavelets of constant shape. Siam Journal on Mathematical Analysis, 1984, 15(4): 723−736 doi: 10.1137/0515056
    [81] Li X, Cheng X, Xu Y, Jiao Y, Huang W, Cui Y, Shen J, Shao W. Multi-frequency ultrasound imaging fusion method based on wavelet transform for guided screw insertion. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2024, 71(3): 395−407 doi: 10.1109/TUFFC.2023.3348100
    [82] Yang B, Li S T. Multifocus image fusion and restoration with sparse representation. IEEE Transactions on Instrumentation and Measurement, 2010, 59(4): 884−892 doi: 10.1109/TIM.2009.2026612
    [83] Liu Y, Liu S P, Wang Z F. A general framework for image fusion based on multi-scale transform and sparse representation. Information Fusion, 2015, 24: 147−164 doi: 10.1016/j.inffus.2014.09.004
    [84] Yin H T. Sparse representation with learned multiscale dictionary for image fusion. Neurocomputing, 2015, 148: 600−610 doi: 10.1016/j.neucom.2014.07.003
    [85] Yang B, Li S. Pixel-level image fusion with simultaneous orthogonal matching pursuit. Information Fusion, 2012, 13(1): 10−19 doi: 10.1016/j.inffus.2010.04.001
    [86] Engan K. Aase S O, Husoy J H. Method of optimal directions for frame design. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. 1999. 2443–2446
    [87] Aharon M, Elad M, Bruckstein A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 2006, 54(11): 4311−4322 doi: 10.1109/TSP.2006.881199
    [88] Zong Z, Fu T, Yin X. High-Dimensional generalized orthogonal matching pursuit with singular value decomposition. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 1−5
    [89] Liu S, Ma J, Cui C. FPGA implementation of threshold projection orthogonal matching pursuit algorithm for compressed sensing reconstruction. IEEE Transactions on Circuits and Systems I: Regular Papers, 2024, 71(3): 1184−1197 doi: 10.1109/TCSI.2023.3345537
    [90] Bai L, Yao S, Kun G, Huang Y, Tang R, Yan H, Meng M Q H, Ren H. Joint sparse representations and coupled dictionary learning in multisource heterogeneous image pseudo-color fusion. IEEE Sensors Journal, 2023, 23(24): 30620−30632 doi: 10.1109/JSEN.2023.3325364
    [91] Li H. Wu X. J, Kittler J. Infrared and visible image fusion using a deep learning framework. In: Proceedings of the 24th International Conference on Pattern Recognition. Beijing, China: IEEE, 2018. 2705–2710
    [92] Ren X. Meng F. Hu T. Wang C. Infrared-visible image fusion based on convolutional neural networks (CNN). In: Proceedings of the International Conference on Intelligent Science and Big Data Engineering. Nanjing, China: Springer, 2018. 301–307
    [93] Ma J, Yu W, Liang P, Li C. FusionGAN: a generative adversarial network for infrared and visible image fusion. Information Fusion, 2019, 48: 11−26 doi: 10.1016/j.inffus.2018.09.004
    [94] Sun F, Zhang K, Yuan X, Zhao C. Feature enhancement and fusion for RGB-T salient object detection. In: Proceedings of the IEEE International Conference on Image Processing (ICIP), Kuala Lumpur, Malaysia: IEEE, 2023. 1300–1304
    [95] Zhu X, Liu J, Xiong X, Luo Z. Maximize peak-to-sidelobe ratio for real-time RGB-T tracking. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 1−4
    [96] Liu J, Luo Z, Xiong X. Online learning samples and adaptive recovery for robust RGB-T tracking. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(2): 724−737 doi: 10.1109/TCSVT.2023.3288853
    [97] Lv Y, Liu Z, Li G. Context-Aware interaction network for RGB-T semantic segmentation. IEEE Transactions on Multimedia, 2024, 26: 6348−6360 doi: 10.1109/TMM.2023.3349072
    [98] Liang W, Shan C, Yang Y, Han J. Multi-branch differential didirectional fusion network for RGB-T semantic segmentation. IEEE Transactions on Intelligent Vehicles, doi: 10.1109/TIV.2024.3374793
    [99] Chen G, Shao F, Chai X, Chen H, Jiang Q, MENG X, Ho Y S. Modality-Induced transfer-fusion network for RGB-D and RGB-T salient object detection. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(4): 1787−1801 doi: 10.1109/TCSVT.2022.3215979
    [100] 陈建, 廖燕俊, 王适, 郑明魁, 苏立超. 自适应分割的视频点云多模式帧间编码方法. 自动化学报, 2023, 49(8): 1707−1722

    Chen Jian, Liao Yan-Jun, Wang Kuo, Zheng Ming-Kui, Su Li-Chao. An adaptive segmentation based multi-mode inter-frame coding method for video point cloud. Acta Automatica Sinica, 2023, 49(8): 1707−1722
    [101] Chen L, Luo X. Tensor distribution regression based on the 3D conventional neural networks. IEEE/CAA Journal of Automatica Sinica, 2023, 10(07): 1628−1630 doi: 10.1109/JAS.2023.123591
    [102] Ye S, Chen D, Han S, Liao J. Robust point cloud segmentation with noisy annotations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(6): 7696−7710 doi: 10.1109/TPAMI.2022.3225323
    [103] 张凯, 杨朋澄, 彭开香, 陈志文. 基于深度置信网络的多模态过程故障评估方法及应用. 自动化学报, 2024, 50(1): 89−102

    Zhang Kai, Yang Peng-Cheng, Peng Kai-Xiang, Chen Zhi-Wen. A deep belief network-based fault evaluation method for multimode processes and its applications. Acta Automatica Sinica, 2024, 50(1): 89−102
    [104] 刘云鹏, 来庭煜, 刘嘉硕, 魏晓光, 裴少通. 特高压直流换流阀饱和电抗器振动声纹特性与松动程度声纹检测方法. 电工技术学报, 2023, 38(05): 1375−1389

    Liu Yun-Peng, Lai Ting-Yu, Liu Jia-Yi, Wei Xiao-Guang, Pei Shao-Tong. Vibration voiceprint characteristics and looseness degree voiceprint detection method of UHV DC converter valve saturated reactor. Journal of Electrical Technology, 2023, 38(05): 1375−1389
    [105] Khotimah K, Santoso A, Ma'arif M, Azhiimah N, Suprianto B, Sumbawati M, Rijanto T. Validation of Voice Recognition in Various Google Voice Languages using Voice Recognition Module V3 Based on Microcontroller. In: Proceedings of the Third International Conference on Vocational Education and Electrical Engineering (ICVEE), Surabaya, Indonesia, 2020.
    [106] Brunelli R, Falaving D. Person identification using multiple cues. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(10): 985−966
    [107] Noda K, Yamaguchi Y, Nakadai K, Okuno H G, Ogata T. Audio-visual speech recognition using deep learning. Applied Intelligence, 2015, 42: 722−737 doi: 10.1007/s10489-014-0629-7
    [108] 张玉珍, 魏带娣, 王建宇, 戴跃伟. 基于多模态融合的足球视频语义分析. 计算机科学, 2010, 37(07): 273−276

    Zhang Yu-Zhen, Wei Dai-Di, Wang Jian-Yu, Dai Yue-Wei. Semantic analysis of soccer video based on multimodal fusion. Computer science and technology, 2010, 37(07): 273−276
    [109] Xu Z, Wang R, Wang J, Yu D. Parkinson’s Disease detection based on spectrogram-deep convolutional generative adversarial network sample augmentation. IEEE Access, 2020, 8: 206888−206900 doi: 10.1109/ACCESS.2020.3037775
    [110] 施胜丹, 黄金军, 朱霄珣, 王瑜, 钱白云. 基于声纹SDP-CNN的变压器局部放电模式识别. 电力信息与通信技术, 2022, 20(10): 105−112

    Shi Sheng-Dan, Huang Jin-Jun, Zhu Xiao-Xun, Qian Bai-Yun. Transformer partial discharge pattern recognition based on voiceprint SDP-CNN. Electric Power Information and Communication Technology, 2022, 20(10): 105−112
    [111] 陆云才, 廖才波, 李群, 王同磊, 邵剑, 张一. 基于声纹特征和集成学习的变压器缺陷诊断方法. 电力工程技术, 2023, 42(05): 46−55

    Lu Yun-Cai, Liao Cai-Bo, Li Qun, Wang Tong-Lei, Shao Jian, Zhang Yi. Transformer defect diagnosis method based on voiceprint features and ensemble learning. Electric Power Engineering Technology, 2023, 42(05): 46−55
    [112] 王欢, 王昕, 张峰, 齐笑, 柴方森, 李文鹏. 基于改进生成对抗网络的变压器声纹故障诊断. 智慧电力, 2024, 52(04): 24−31

    Wang Huan, Wang Xin, Zhang Feng, Qi Xiao, Chai Fang-Sen, Li Wen-Peng. Transformer voiceprint fault diagnosis based on improved generative adversarial network. Smart Power, 2024, 52(04): 24−31
    [113] 林颖, 张峰达, 李壮壮, 郑文杰, 戈宁. 基于大模型的红外图像电力设备交互式分割. 网络新媒体技术, 2024, 13(02): 53−60+67

    Lin Ying, Zhang Feng-Da, Li Zhuang-Zhuang, Zheng Wen-Jie, Ge Ning. Interactive segmentation of power equipment in infrared images based on large models. Network New Media Technology, 2024, 13(02): 53−60+67
    [114] 杨权, 樊绍胜. 基于图像预处理和语义分割的电力巡检机器人视觉导航方法. 电力科学与技术学报, 2023, 38(06): 248−258

    Yang Quan, Fan Shao-Sheng. Visual navigation method of power inspection robot based on image preprocessing and semantic segmentation. Journal of Electric Power Science and Technology, 2023, 38(06): 248−258
    [115] 马青山, 朱建宝, 俞鑫春, 张斌. 基于改进DSD-LinkNet的电力安全带分割算法. 电气自动化, 2023, 45(03): 106−108

    Ma Qing-Shan, Zhu Jian-Bao, Yu Xin-Chun, Zhang Bin. Power safety belt segmentation algorithm based on improved DSD-LinkNet. Electrical Automation, 2023, 45(03): 106−108
    [116] 许刚, 李果. 轻量化航拍图像电力线语义分割. 中国图象图形学报, 2021, 026(011): 2605−2618 doi: 10.11834/jig.200690

    Xu Gang, Li Guo. Lightweight aerial image power line semantic segmentation. Chinese Journal of Image and Graphics, 2021, 026(011): 2605−2618 doi: 10.11834/jig.200690
    [117] 左安全, 秦伦明, 王悉. 基于改进DeepLabv3+模型的电力线语义分割方法. 无线电工程, 2023, 53(1): 9

    Zuo An-Quan, Qin Lun-Ming, Wang Xi. Semantic segmentation method of power line based on improved DeepLabv3 + model. radio engineering, 2023, 53(1): 9
    [118] Cui C, Gao T, Wei S, Du Y, Guo R, Dong S, Lu B, Zhou Y, Lyu X, Liu Q.PP-LCNet: A lightweight CPU convolutional neural Network.arXiv: 2109.15099, 2021.
    [119] Chollet F. Xception: Deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA: IEEE, 2017. 1800-1807
    [120] Park J, Woo S, Lee J Y, Kweon I S. BAM: bottleneck attention module. arXiv: 1807.06514, 2018.
    [121] Mao M, Chen Y, Chen W, Du W, Zhang M, Mao T. Power transmission line image segmentation method based on binocular vision and feature pyramid network. In: Proceedings of the International Conference on Sensing, Measurement and Data Analytics in the era of Artificial Intelligence (ICSMD), Nanjing, China: IEEE, 2021. 1–4
    [122] Wang L, Chen Z, Hua D, Zheng Z. Semantic segmentation of transmission lines and their accessories based on UAV-taken images. IEEE Access, 2019, 7(99): 1−1
    [123] Yang L, Kong S, Cui S, Huang H, Liu Y. An efficient end-to-end CNN network for high-voltage transmission line segmentation. In: Proceedings of the IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS), Chengdu, China: IEEE, 2022. 565–570
    [124] Tiancheng Z, Ying Y, Jinhai S, Xu Z, Li J. Infrared image segmentation method of current transformer based on deepLabv3+ network. In: Proceedings of the IEEE 5th International Electrical and Energy Conference (CIEEC), Nangjing, China: IEEE, 2022. 3111–3115
    [125] 唐小煜、黄进波、冯洁文、陈锡和. 基于U-net和YOLOv4的绝缘子图像分割与缺陷检测. 华南师范大学学报: 自然科学版, 2020, 52(6): 7

    Tang Xiao-Yu, Huang Jin-Bo, Feng Jie-Wen, Chen Xi-He. Insulator image segmentation and defect detection based on U-net and YOLOv4. Journal of South China Normal University : Natural Science Edition, 2020, 52(6): 7
    [126] Yu Y, Cao H, Wang Z, Li Y, Li K, Xie S. Texture-and-shape based active contour model for insulator segmentation. IEEE Access, 2019, 7: 78706−78714 doi: 10.1109/ACCESS.2019.2922257
    [127] Tang X, Mao J, Yi J, Tao Z, He Z. An insulator feature-enhanced segmentation method based on the residual-type attention mechanism. In: Proceedings of the IEEE 5th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Chongqing, China: IEEE, 2022. 1507–1511
    [128] Han Y, Han J, Ni Z, Wang W, Jiang H. Instance segmentation of transmission line images based on an improved D-SOLO network. In: Proceedings of the IEEE 3rd International Conference on Power Data Science (ICPDS).Harbin, China: IEEE, 2021. 40–46
    [129] Choi H, Yun J P, Kim B J, Jang H, Kim S W. Attention-based multimodal image feature fusion module for transmission line detection. IEEE Transactions on Industrial Informatics, 2021, 18(11): 7686−7695
    [130] Xu C, Li Q, Jiang X, Yu D, Zhou Y. Dual-space graph-based interaction network for RGB-thermal semantic segmentation in electric power scene. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(4): 1577−1592 doi: 10.1109/TCSVT.2022.3216313
    [131] Ma J, Qian K, Zhang X, Ma X. Weakly supervised instance segmentation of electrical equipment based on RGB-T automatic annotation. IEEE Transactions on Instrumentation and Measurement, 2020, 69(12): 9720−9731 doi: 10.1109/TIM.2020.3001796
    [132] 孙阳, 李佳. 基于通道剪枝的YOLOv7-tiny输电线路异物检测算法. 计算机工程与应用, 20231−12

    Sun Yang, Li Jia. YOLOv7-tiny transmission line foreign object detection algorithm based on channel pruning. Computer Engineering and Applications, 20231−12
    [133] 沈晓峰, 谢伟, 孙路, 李轶, 贺润平. 基于相邻帧差法的输电线路异物目标检测研究. 自动化仪表, 2023, 44(10): 20−24

    Shen Xiao-Feng, Xie Wei, Sun Lu, Li Yi, He Run-Ping. Research on detection of foreign objects in transmission lines based on adjacent frame difference method. Automated Instruments, 2023, 44(10): 20−24
    [134] Lowe D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60: 91−110 doi: 10.1023/B:VISI.0000029664.99615.94
    [135] 余沿臻, 邱志斌, 周银彪, 朱轩, 王青. 基于卷积神经网络与ECOC-SVM的输电线路异物检测. 输配电技术, 2022, 50(3): 87−107

    Yu Yan-Zhen, Qiu Zhi-Bin, Zhou Yin-biao, Zhu Xuan, Wang Qing. Foreign body detection for transmission lines based on convolutional neural network and ECOC-SVM. Power Transmission and Distribution Technology, 2022, 50(3): 87−107
    [136] Hao J, Huang W, Chen J, Liu X, Zhang S. Detection of bird nests on power line patrol using single shot detector. 2019 Chinese Automation Congress (CAC), Hangzhou, China, 2019. 3409–3414.
    [137] 杨征. 基于ZigBee和GSM技术输电线路杆塔倾斜监测系统的研究[硕士学位论文], 华北电力大学, 中国, 2012.

    Yang Zheng. Research on Transmission Line Tower Tilt Monitoring System Based on ZigBee and GSM Technology[Master thesis], North China Electric Power University, China, 2012.
    [138] Li Q, Chen Z, Hu Q. A Model-Driven approach for 3D modeling of pylon from airborne LiDAR data. Remote Sensing, 2015, 7(9): 11501−11524 doi: 10.3390/rs70911501
    [139] 沈小军, 秦川, 杜勇, 于忻乐. 复杂地形电力线机载激光雷达点云自动提取方法. 同济大学学报(自然科学版), 2018, 46(07): 982−987

    Shen Xiao-Jun, Qin Chuan, Du Yong, Yu Xin-Le. Automatic extraction method of airborne LiDAR point clouds for complex terrain power lines. Journal of Tongji University (Natural Science Edition), 2018, 46(07): 982−987
    [140] 柳长安, 孙书明, 赵丽娟. 基于激光点云实现杆塔提取的轻量级网络. 激光技术, 2021, 45(03): 367−372

    Liu Chang-An, Sun Shu-Ming, Zhao Li-Juan. Lightweight network for tower extraction based on laser point cloud. Laser Technology, 2021, 45(03): 367−372
    [141] 芦竹茂, 龚浩, 金秋衡, 胡庆武, 李加元. 无人机激光雷达点云电力杆塔倾斜状态测量. 应用科学学报, 2022, 40(03): 389−399

    Lu Zhu-Mao, Gong Hao, Jin Qiu-Heng, Hu Qing-Yuan, Li Jia-Yuan. Measurement of tilt state of unmanned aerial vehicle LiDAR point cloud power tower. Journal of Applied Science, 2022, 40(03): 389−399
    [142] 徐梁刚, 时磊, 陈凤翔, 王时春, 龙新, 王迪. 基于激光点云的输电线路杆塔倾斜检测算法. 激光技术, 2022, 46(03): 390−396

    Xu Liang-Gang, Shi Lei, Chen Feng-Xiang, Wang Shi-Chun, Long Xin, Wang Di. Transmission line tower tilt detection algorithm based on laser point cloud. Laser Technology, 2022, 46(03): 390−396
    [143] 应斌, 唐斌, 潘俊杰. 基于YOLOv3的电力杆塔检测算法研究. 浙江电力, 2021, 40(05): 53−59

    Ying Bin, Tang Bin, Pan Jun-Jie. Research on power tower detection algorithm based on YOLOv3. Zhejiang Electric Power, 2021, 40(05): 53−59
    [144] 郝美. 输电线路覆冰在线监测的关键技术. 电子技术, 2020, 49(3): 90−91

    Hao Mei. Key of icing online monitoring for transmission line. Electronic Technology, 2020, 49(3): 90−91
    [145] Huang T, Liu Z, Chen X, Bai X. EPNet: enhancing point features with image semantics for 3D object detection. In: Proceedings of the European Conference on Computer Vision(ECCV). Glasgow, UK: Spinger, 2020. 35–52
    [146] 安秋娥. 设备台账与备件管理. 化工设备与防腐蚀, 1999(4): 27−28

    An Qiu-E. Equipment Ledger and Spare Parts Management. Chemical Equipment and Corrosion Protection, 1999(4): 27−28
  • 加载中
计量
  • 文章访问数:  61
  • HTML全文浏览量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-31
  • 录用日期:  2024-05-30
  • 网络出版日期:  2024-10-11

目录

    /

    返回文章
    返回