2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于孪生网络与多重通道融合的脱机笔迹鉴别

林超群 王大寒 肖顺鑫 池雪可 王驰明 张煦尧 朱顺痣

林超群, 王大寒, 肖顺鑫, 池雪可, 王驰明, 张煦尧, 朱顺痣. 基于孪生网络与多重通道融合的脱机笔迹鉴别. 自动化学报, 2024, 50(8): 1660−1670 doi: 10.16383/j.aas.c230777
引用本文: 林超群, 王大寒, 肖顺鑫, 池雪可, 王驰明, 张煦尧, 朱顺痣. 基于孪生网络与多重通道融合的脱机笔迹鉴别. 自动化学报, 2024, 50(8): 1660−1670 doi: 10.16383/j.aas.c230777
Lin Chao-Qun, Wang Da-Han, Xiao Shun-Xin, Chi Xue-Ke, Wang Chi-Ming, Zhang Xu-Yao, Zhu Shun-Zhi. Offline handwriting verification based on Siamese network and multi-channel fusion. Acta Automatica Sinica, 2024, 50(8): 1660−1670 doi: 10.16383/j.aas.c230777
Citation: Lin Chao-Qun, Wang Da-Han, Xiao Shun-Xin, Chi Xue-Ke, Wang Chi-Ming, Zhang Xu-Yao, Zhu Shun-Zhi. Offline handwriting verification based on Siamese network and multi-channel fusion. Acta Automatica Sinica, 2024, 50(8): 1660−1670 doi: 10.16383/j.aas.c230777

基于孪生网络与多重通道融合的脱机笔迹鉴别

doi: 10.16383/j.aas.c230777
基金项目: 国家自然科学基金(61773325, 62222609, 62076236), 福建省高校产学合作项目(2021H6035), 福建省技术创新重点攻关及产业化项目(2023XQ023), 福厦泉国家自主创新示范项目(2022FX4), 国家工信部高技术船舶专项子专题(CBG4N21-4-4), 福建省中青年教师教育科研项目(JAT231102)资助
详细信息
    作者简介:

    林超群:厦门理工学院计算机与信息工程学院硕士研究生. 主要研究方向为脱机笔迹鉴别. E-mail: lincq@stu.xmut.edu.cn

    王大寒:厦门理工学院计算机与信息工程学院教授, 研究员. 2012年获中国科学院大学博士学位.主要研究方向为模式识别, 计算机视觉, 深度学习. 本文通信作者. E-mail: wangdh@xmut.edu.cn

    肖顺鑫:厦门理工学院计算机与信息工程学院讲师. 2023年获福州大学博士学位. 主要研究方向为图神经网络, 表示学习, 生物信息计算, 可信人工智能. E-mail: xiaoshunxin.tj@gmail.com

    池雪可:2022年获得厦门理工学院硕士学位. 主要研究方向为计算机视觉, 手写数学公式识别. E-mail: 13213834013@163.com

    王驰明:厦门理工学院计算机与信息工程学院讲师. 2020年获厦门大学博士学位. 主要研究方向为船舶智能运维, 声振感知. E-mail: wangchiming009@163.com

    张煦尧:中国科学院自动化研究所研究员. 2013年获中国科学院大学博士学位. 主要研究方向为模式识别, 机器学习和文字识别. E-mail: xyz@nlpr.ia.ac.cn

    朱顺痣:厦门理工学院计算机与信息工程学院教授. 2007年获厦门大学博士学位. 主要研究方向为数据挖掘, 视频分析与处理, 信息推荐, 系统工程. E-mail: szzhu@xmut.edu.cn

  • 中图分类号: Y

Offline Handwriting Verification Based on Siamese Network and Multi-channel Fusion

Funds: Supported by National Natural Science Foundation of China (61773325, 62222609, 62076236), Industry-University Cooperation Project of Fujian Science and Technology Department (2021H6035), Fujian Key Technological Innovation and Industrialization Projects (2023XQ023), Fu-Xia-Quan National Independent Innovation Demonstration Project (2022FX4), Type 2030 Green and Intelligent Ship in the Fujian Region (CBG4N21-4-4), and the Education and Scientific Research Projects for Middle-Aged and Young Teachers of Fujian Province (JAT231102)
More Information
    Author Bio:

    LIN Chao-Qun Master student at the School of Computer and Information Engineering, Xiamen University of Technology. His main research interest is offline signature verification

    WANG Da-Han Professor and researcher at the School of Computer and Information Engineering, Xiamen University of Technology. He received his Ph.D. degree from the University of Chinese Academy of Sciences in 2012. His research interest covers pattern recognition, computer vision, and deep learning. Corresponding author of this paper

    XIAO Shun-Xin  Lecturer at the School of Computer and Information Engineering, Xiamen University of Technology. He received his Ph.D. degree from Fuzhou University in 2023. His research interest covers graph neural networks, representation learning, bioinformatics computing, and trusted artificial intelligence

    CHI Xue-Ke Received her master degree from Xiamen University of Technology in 2022. Her research interest covers computer vision and handwritten mathematical formula recognition

    WANG Chi-Ming Lecturer at the School of Computer and Information Engineering, Xiamen University of Technology. He received his Ph.D. degree from Xiamen University in 2020. His research interest covers intelligent operation and maintenance of ships, sound and vibration perception

    ZHANG Xu-Yao Professor at the Institute of Automation, Chinese Academy of Sciences. He received his Ph.D. degree from University of Chinese Academy of Sciences in 2013. His research interest covers pattern recognition, machine learning, and handwriting recognition

    ZHU Shun-Zhi Professor at the School of Computer and Information Engineering, Xiamen University of Technology. He received his Ph.D. degree from Xiamen University in 2007. His research interest covers data mining, video analysis and processing, information recommendation, and systems engineering

  • 摘要: 脱机签名验证模型因其具有判断签名是否伪造的能力而备受关注. 当今大多数脱机签名验证模型可分为深度度量学习方法和双通道判别方法. 大部分深度度量学习方法利用孪生网络生成每张图片的细节特征向量, 采用欧氏距离法判断相似度, 但是欧氏距离仅考虑两个点之间的绝对距离, 而容易忽视点的方向、缩放的信息, 不会考虑数据之间的相关性, 因此无法捕获特征向量内部之间的关系; 而双通道判别方法在网络训练前就进行特征的判别, 更能判断不同图像的相似性, 但此时图像的细节特征不够清晰, 大量特征丢失. 针对双通道判别方法中特征消失过多的问题, 提出了一种面向独立于书写者场景的手写签名离线验证模型MCFFN (Multi-channel feature fusion network). 在 CEDAR、BHSig-B、BHSig-H 和 ChiSig 四个不同语言的签名数据集上测试了所提出的方法, 实验证明了所提方法的优势和潜力.
  • 图  1  孪生网络结构图

    Fig.  1  Structure of Siamese network

    图  2  双通道网络图

    Fig.  2  Structure of 2-channel network

    图  3  MCFFN结构图

    Fig.  3  Structure of MCFFN

    图  4  双重逆鉴别注意力模块

    Fig.  4  Dual reverse forensic attention module

    图  5  注意力特征图

    Fig.  5  Attentional characteristics map

    表  1  脱机签名验证数据集

    Table  1  Offline signature verification dataset

    数据集名称 语言 签名种类 图片数量 真实伪造样本比
    CEDAR 英语 55 2624 24/24
    BHSig-B 孟加拉语 100 5400 24/30
    BHSig-H 印地语 160 8640 24/30
    ChiSig 中文 102 10242 −/−
    下载: 导出CSV

    表  2  基于CEDAR数据集的对比实验 (%)

    Table  2  Comparison on CEDAR dataset (%)

    模型名称 FRR FAR ACC
    SigNet (2017arXiv) 0 0 100.00
    DeepHSV (2019ICDAR) 100.00
    IDN (2019CVPR) 2.17 5.87 96.38
    SDINet (2021AAAI) 3.42 0.73 98.25
    2C2S (2023EAAI) 0 0 100.00
    OURS 0 0 100.00
    下载: 导出CSV

    表  3  基于BHSig-B数据集的对比实验 (%)

    Table  3  Comparison on BHSig-B dataset (%)

    模型名称 FRR FAR ACC
    SigNet (2017arXiv) 13.89 13.89 86.11
    DeepHSV (2019ICDAR) 88.08
    IDN (2019CVPR) 5.24 4.12 95.32
    SDINet (2021AAAI) 7.86 3.30 94.42
    SURDS (2022ICPR) 5.42 19.89 87.34
    2C2S (2023EAAI) 8.11 5.37 93.25
    TransOSV (2022ICME) 9.95 9.95 90.05
    OURS 3.86 3.84 95.61
    下载: 导出CSV

    表  4  基于BHSig-H数据集的对比实验 (%)

    Table  4  Comparison on BHSig-H dataset (%)

    模型名称 FRR FAR ACC
    SigNet (2017arXiv) 15.36 15.36 84.64
    DeepHSV (2019ICDAR) 86.66
    IDN (2019CVPR) 4.93 8.99 93.04
    SDINet (2021AAAI) 3.77 6.24 95.00
    SURDS (2022ICPR) 8.98 12.01 89.50
    2C2S (2023EAAI) 9.98 8.66 90.68
    TransOSV (2022ICME) 3.39 3.39 96.61
    OURS 4.89 4.89 95.70
    下载: 导出CSV

    表  5  基于ChiSig数据集的消融实验 (%)

    Table  5  Ablation experiment on ChiSig dataset (%)

    模型名称 EER TAR ACC
    InceptionResnet 6.60 28.10 93.60
    SigNet 82.28
    IDN (基线) 17.91 10.50 84.82
    IDN (通道融合) 14.81 9.61 85.72
    IDN (通道融合 + 注意力) 11.38 7.82 88.96
    OURS (无反灰度图片, 无注意力) 11.78 32.49 88.09
    OURS (无反灰度图片, 单注意力) 10.83 89.20
    OURS (反灰度图片, 无注意力) 7.84 92.14
    OURS 5.19 28.96 95.23
    下载: 导出CSV

    表  6  基于ChiSig数据集的主流参数 (%)

    Table  6  Main parameters on ChiSig dataset (%)

    模型名称 FRR FAR ACC
    IDN 10.46 17.91 84.82
    IDN (通道融合) 9.61 18.97 85.72
    IDN (通道融合 + 注意力) 7.82 14.27 88.96
    OURS (无反灰度图片, 无注意力) 21.91 17.26 88.09
    OURS (无反灰度图片, 单注意力) 15.59 16.30 89.20
    OURS (反灰度图片, 无注意力) 6.90 17.18 92.14
    OURS 5.34 5.34 95.23
    下载: 导出CSV

    表  7  跨语言实验 (%)

    Table  7  Cross-language test (%)

    训练集 测试集
    CEDAR BHSig-B BHSig-H ChiSig
    CEDAR 100.00 48.76 49.89 57.48
    BHSig-B 64.86 95.61 82.79 63.71
    BHSig-H 50.11 86.27 95.70 20.00
    ChiSig 54.60 70.02 55.37 95.23
    下载: 导出CSV
  • [1] Bromley J, Bentz J W, Bottou L, Guyon I, Lecun Y, Moore C, et al. Signature verification using a “Siamese” time delay neural network. International Journal of Pattern Recognition and Artificial Intelligence, 1993, 7(4): 669−688 doi: 10.1142/S0218001493000339
    [2] Cpałka K, Zalasiński M, Rutkowski L. New method for the on-line signature verification based on horizontal partitioning. Pattern Recognition, 2014, 47(8): 2652−2661 doi: 10.1016/j.patcog.2014.02.012
    [3] Xia X H, Song X Y, Luan F G, Zheng J G, Chen Z L, Ma X F. Discriminative feature selection for on-line signature verification. Pattern Recognition, 2018, 74: 422−433 doi: 10.1016/j.patcog.2017.09.033
    [4] 邹杰, 孙宝林, 於俊. 基于笔画特征的在线笔迹匹配算法. 自动化学报, 2016, 42(11): 1744−1757

    Zou Jie, Sun Bao-Lin, Yu Jun. Online handwriting matching algorithm based on stroke features. Acta Automatica Sinica, 2016, 42(11): 1744−1757
    [5] Guerbai Y, Chibani Y, Hadjadji B. The effective use of the one-class SVM classifier for handwritten signature verification based on writer-independent parameters. Pattern Recognition, 2015, 48(1): 103−113 doi: 10.1016/j.patcog.2014.07.016
    [6] Hu J, Chen Y B. Offline signature verification using real adaboost classifier combination of Pseudo-dynamic features. In: Proceedings of the 12th International Conference on Document Analysis and Recognition. Washington, USA: IEEE, 2013. 1345−1349
    [7] Kumar R, Sharma J D, Chanda B. Writer-independent off-line signature verification using surroundedness feature. Pattern Recognition Letters, 2012, 33(3): 301−308 doi: 10.1016/j.patrec.2011.10.009
    [8] Hafemann L G, Oliveira L S, Sabourin R. Fixed-sized representation learning from offline handwritten signatures of different sizes. International Journal on Document Analysis and Recognition (IJDAR), 2018, 21(3): 219−232 doi: 10.1007/s10032-018-0301-6
    [9] Hafemann L G, Sabourin R, Oliveira L S. Learning features for offline handwritten signature verification using deep convolutional neural networks. Pattern Recognition, 2017, 70: 163−176 doi: 10.1016/j.patcog.2017.05.012
    [10] Okawa M. Synergy of foreground-background images for feature extraction: Offline signature verification using Fisher vector with fused KAZE features. Pattern Recognition, 2018, 79: 480−489 doi: 10.1016/j.patcog.2018.02.027
    [11] Xing Z J, Yin F, Wu Y C, Liu C L. Offline signature verification using convolution Siamese network. In: Proceedings of SPIE 10615, 9th International Conference on Graphic and Image Processing (ICGIP). Qingdao, China: SPIE, 2017. 415−423
    [12] Soleimani A, Araabi B N, Fouladi K. Deep multitask metric learning for offline signature verification. Pattern Recognition Letters, 2016, 80: 84−90 doi: 10.1016/j.patrec.2016.05.023
    [13] Jain A K, Ross A, Prabhakar S. An introduction to biometric recognition. IEEE Transactions on Circuits and Systems for Video Technology, 2004, 14(1): 4−20
    [14] Kalera M K, Srihari S, Xu A H. Offline signature verification and identification using distance statistics. International Journal of Pattern Recognition and Artificial Intelligence, 2004, 18(7): 1339−1360 doi: 10.1142/S0218001404003630
    [15] Ferrer M A, Alonso J B, Travieso C M. Offline geometric parameters for automatic signature verification using fixed-point arithmetic. IEEE Transactions on Pattern Analysis And Machine Intelligence, 2005, 27(6): 993−997 doi: 10.1109/TPAMI.2005.125
    [16] Pal S, Alaei A, Pal U, Blumenstein M. Performance of an off-line signature verification method based on texture features on a large Indic-script signature dataset. In: Proceedings of the 12th IAPR workshop on Document Analysis Systems (DAS). Santorini, Greece: IEEE, 2016. 72−77
    [17] Zhang P R, Jiang J J, Liu Y L, Jin L W. MSDS: A large-scale Chinese signature and token digit string dataset for handwriting verification. In: Proceedings of the 36th International Conference on Neural Information Processings Systems. New Orleans, USA: 2022. 36507−36519
    [18] Yan K H, Zhang Y, Tang H R, Ren C K, Zhang J, Wang G A, et al. Signature detection, restoration, and verification: A novel Chinese document signature forgery detection benchmark. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). New Orleans, USA: IEEE, 2022. 5163−5172
    [19] Nagel R N, Rosenfeld A. Steps toward handwritten signature verification. In: Proceedings of the 1st International Joint Conference on Pattern Recognition. 1973. 59−66
    [20] Herbst N M, Liu C N. Automatic signature verification based on accelerometry. IBM Journal of Research and Development, 1977, 21(3): 245−253 doi: 10.1147/rd.213.0245
    [21] 刘成林, 刘迎建, 戴汝为. 基于多通道分解与匹配的笔迹鉴别研究. 自动化学报, 1997, 23(1): 56−63

    Liu Cheng-Lin, Liu Ying-Jian, Dai Ru-Wei. Writer identification by multichannel decomposition and matching. Acta Automatica Sinica, 1997, 23(1): 56−63
    [22] 朱勇, 谭铁牛, 王蕴红. 基于笔迹的身份鉴别. 自动化学报, 2001, 27(2): 229−234

    Zhu Yong, Tan Tie-Niu, Wang Yun-Hong. Writer identification based on texture analysis. Acta Automatica Sinica, 2001, 27(2): 229−234
    [23] Dey S, Dutta A, Toledo J I, Ghosh S K, Llados J, Pal U. SigNet: Convolutional Siamese network for writer independent offline signature verification. arXiv preprint arXiv: 1707.02131, 2017.
    [24] Li C, Lin F, Wang Z Y, Yu G, Yuan L, Wang H Q. DeepHSV: User-independent offline signature verification using two-channel CNN. In: Proceedings of the International Conference on Document Analysis and Recognition (ICDAR). Sydney, Australia: IEEE, 2019. 166−171
    [25] Wei P, Li H, Hu P. Inverse discriminative networks for handwritten signature verification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, USA: IEEE, 2019. 5764−5772
    [26] Li H, Wei P, Ma Z Y, Li C K, Zheng N N. Offline signature verification with transformers. In: Proceedings of the IEEE International Conference on Multimedia and Expo (ICME). Taipei, China: IEEE, 2022. 1−6
    [27] Cairang X M, Zhaxi D J, Yang X L, Hou Y, Zhao Q J, Gao D G, et al. Learning generalisable representations for offline signature verification. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN). Padua, Italy: IEEE, 2022. 1−7
    [28] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, et al. Attention is all you need. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, USA: Curran Associates Inc., 2017. 6000−6010
    [29] Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X H, Unterthiner T, et al. An image is worth 16×16 words: Transformers for image recognition at scale. In: Proceedings of the 9th International Conference on Learning Representations. Austria: OpenReview.net, 2021.
    [30] Pan X R, Ge C J, Lu R, Song S J, Chen G F, Huang Z Y, et al. On the integration of self-attention and convolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, USA: IEEE, 2022. 815−825
    [31] Bromley J, Guyon I, LeCun Y, Säckinger E, Shah R. Signature verification using a “Siamese” time delay neural network. In: Proceedings of the 6th International Conference on Neural Information Processing Systems. Denver, Colorado: Morgan Kaufmann Publishers Inc., 1993. 737−744
    [32] Liu L, Huang L L, Yin F, Chen Y B. Offline signature verification using a region based deep metric learning network. Pattern Recognition, 2021, 118: Article No. 108009 doi: 10.1016/j.patcog.2021.108009
    [33] Zagoruyko S, Komodakis N. Learning to compare image patches via convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, USA: IEEE, 2015. 4353−4361
    [34] Bhattacharya I, Ghosh P, Biswas S. Offline signature verification using pixel matching technique. Procedia Technology, 2013, 10: 970−977 doi: 10.1016/j.protcy.2013.12.445
    [35] Li H, Wei P, Hu P. Static-dynamic interaction networks for offline signature verification. In: Proceedings of the 35th AAAI Conference on Artificial Intelligence. Vancouver, Canada: AAAI Press, 2021. 1893−1901
    [36] Chattopadhyay S, Manna S, Bhattacharya S, Pal U. SURDS: Self-supervised attention-guided reconstruction and dual triplet loss for writer independent offline signature verification. In: Proceedings of the 26th International Conference on Pattern Recognition (ICPR). Montreal, Canada: IEEE, 2022. 1600−1606
    [37] Ren J X, Xiong Y J, Zhan H J, Huang B. 2C2S: A two-channel and two-stream transformer based framework for offline signature verification. Engineering Applications of Artificial Intelligence, 2023, 118: Article No. 105639 doi: 10.1016/j.engappai.2022.105639
  • 加载中
图(5) / 表(7)
计量
  • 文章访问数:  251
  • HTML全文浏览量:  65
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-18
  • 录用日期:  2024-03-10
  • 网络出版日期:  2024-03-27
  • 刊出日期:  2024-08-20

目录

    /

    返回文章
    返回