2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑执行器非线性的固定时间全局预设性能车辆队列控制

高振宇 孙振超 郭戈

高振宇, 孙振超, 郭戈. 考虑执行器非线性的固定时间全局预设性能车辆队列控制. 自动化学报, 2024, 50(2): 320−333 doi: 10.16383/j.aas.c230189
引用本文: 高振宇, 孙振超, 郭戈. 考虑执行器非线性的固定时间全局预设性能车辆队列控制. 自动化学报, 2024, 50(2): 320−333 doi: 10.16383/j.aas.c230189
Gao Zhen-Yu, Sun Zhen-Chao, Guo Ge. Fixed-time global prescribed performance control for vehicular platoons with actuator nonlinearities. Acta Automatica Sinica, 2024, 50(2): 320−333 doi: 10.16383/j.aas.c230189
Citation: Gao Zhen-Yu, Sun Zhen-Chao, Guo Ge. Fixed-time global prescribed performance control for vehicular platoons with actuator nonlinearities. Acta Automatica Sinica, 2024, 50(2): 320−333 doi: 10.16383/j.aas.c230189

考虑执行器非线性的固定时间全局预设性能车辆队列控制

doi: 10.16383/j.aas.c230189
基金项目: 国家自然科学基金 (62303101), 河北省自然科学基金(F2023501001), 中央高校基本科研业务费 (N2223036), 2023年河北省硕士在读研究生创新能力培养资助项目 (CXZZSS2023205)资助
详细信息
    作者简介:

    高振宇:东北大学秦皇岛分校副研究员. 主要研究方向为网联车辆队列控制与智能交通系统. 本文通信作者. E-mail: 18840839109@163.com

    孙振超:东北大学秦皇岛分校硕士研究生. 主要研究方向为网联车辆队列控制与智能交通系统. E-mail: szc722@163.com

    郭戈:东北大学教授. 主要研究方向为智能交通系统, 交通大数据分析, 人工智能应用和信息物理系统. E-mail: geguo@yeah.net

Fixed-time Global Prescribed Performance Control for Vehicular Platoons With Actuator Nonlinearities

Funds: Supported by National Natural Science Foundation of China (62303101), Natural Science Foundation of Hebei Province (F2023501001), the Fundamental Research Funds for the Central Universities (N2223036), and 2023 Hebei Provincial Postgraduate Student Innovation Ability Training Funding Project (CXZZSS2023205)
More Information
    Author Bio:

    GAO Zhen-Yu Associate professor at Northeastern University at Qinhuangdao. His research interest covers platoon control of connected vehicles and intelligent transportation systems. Corresponding author of this paper

    SUN Zhen-Chao Master student at Northeastern University at Qinhuangdao. His research interest covers platoon control of connected vehicles and intelligent transportation systems

    GUO Ge Professor at Northeastern University. His research interest covers intelligent transportation systems, traffic big data analysis, artificial intelligence applications, and information physical systems

  • 摘要: 针对含有执行器非线性的车辆队列控制系统, 提出一种固定时间全局预设性能控制(Global prescribed performance control, GPPC) 控制方法. 首先, 设计一种平滑等效变换, 在同一框架下解决死区及饱和问题, 同时消除执行器非线性固有拐点问题. 其次, 构造两个新型性能函数, 并基于此提出一种全局预设性能控制算法, 实现如下目标: 1) 保证跟踪误差在固定时间内收敛到预定稳态区域; 2) 消除初始误差必须已知的限制; 3) 减小误差的超调量. 然后, 基于上述等效变换及预设性能控制算法, 设计一种固定时间滑模队列容错控制方案, 实现固定时间单车稳定及队列稳定. 最后, 通过 MATLAB 仿真实验, 验证了所提算法的有效性.
  • 图  1  车辆队列构型

    Fig.  1  Configuration of vehicular platoon

    图  2  $u_{ui}(\varLambda_i)$ 和 $H_i(\varLambda_i)$ 的曲线图

    Fig.  2  Curves of $u_{ui}(\varLambda_i)$ and $H_i(\varLambda_i)$

    图  3  每辆车位置信息 $x_i(t)$

    Fig.  3  The position $x_i(t)$ of each vehicle

    图  8  每辆车跟踪误差信息 $e_i(t)$

    Fig.  8  The tracking error $e_i(t)$ of each vehicle

    图  4  每辆车速度信息 $v_i(t)$

    Fig.  4  The velocity $v_i(t)$ of each vehicle

    图  5  每辆车加速度信息 $a_i(t)$

    Fig.  5  The acceleration $a_i(t)$ of each vehicle

    图  6  每辆车控制输入信息 $u_i(t)$

    Fig.  6  The control input $u_i(t)$ of each vehicle

    图  7  每辆车滑模面信息 $S_i(t)$

    Fig.  7  The sliding mode surface $S_i(t)$ of each vehicle

    图  9  每辆车滑模面信息 $S_i(t)$

    Fig.  9  The sliding mode surface $S_i(t)$ of each vehicle

    图  10  每辆车跟踪误差信息 $e_i(t)$

    Fig.  10  The tracking error $e_i(t)$ of each vehicle

    图  11  每辆车滑模面信息 $S_i(t)$

    Fig.  11  The sliding mode surface $S_i(t)$ of each vehicle

    图  12  每辆车跟踪误差信息 $e_i(t)$

    Fig.  12  The tracking error $e_i(t)$ of each vehicle

    表  1  车辆 i 各参数的定义

    Table  1  The definition of each parameter of vehicle i

    参数 定义 参数 定义
    $m_i$ 第 $i$ 辆车的质量 $\rho_a$ 空气质量
    $\omega_i(t)$ 外部扰动 $C_{ai}$ 空气动力阻力系数
    $g$ 重力加速度 $\theta_i$ 道路坡度角度
    $A_i$ 车辆横截面积 $b_i$ 道路阻力滚动系数
    $u_i(t)$ 控制输入 $\tau_i$ 发动机时间常数
    $\rho_i(t)$ 驱动效率 $r_i(t)$ 偏置故障
    下载: 导出CSV
  • [1] Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature, 2012, 488(7411): 294-303 doi: 10.1038/nature11475
    [2] 李永福, 邬昌强, 朱浩, 唐晓铭. 考虑车辆跟驰作用和通信时延的网联车辆队列轨迹跟踪控制. 自动化学报, 2021, 47(9): 2264-2275 doi: 10.16383/j.aas.c190046

    Li Yong-Fu, Wu Chang-Qiang, Zhu Hao, Tang Xiao-Ming. Trajectory tracking control for connected vehicle platoon considering car-following interactions and time delays. Acta Automatica Sinica, 2021, 47(9): 2264-2275 doi: 10.16383/j.aas.c190046
    [3] Liu Y, Yao D Y, Li H Y, Lu R Q. Distributed cooperative compound tracking control for a platoon of vehicles with adaptive NN. IEEE Transactions on Cybernetics, 2022, 52(7): 7039-7048 doi: 10.1109/TCYB.2020.3044883
    [4] 罗捷, 鲁良叶, 何德峰, 俞立, 杜海平. 通信拓扑切换下车辆队列分布式模型预测控制. 控制理论与应用, 2021, 38(7): 887-896 doi: 10.7641/CTA.2021.00662

    Luo Jie, Lu Liang-Ye, He De-Feng, Yu Li, Du Hai-Ping. Distributed model predictive control of vehicle platoons with switching communication topologies. Control Theory & Applications, 2021, 38(7): 887-896 doi: 10.7641/CTA.2021.00662
    [5] Zhu Y, Zhu F. Distributed adaptive longitudinal control for uncertain third-order vehicle platoon in a networked environment. IEEE Transactions on Vehicular Technology, 2018, 67(10), 9183-9197 doi: 10.1109/TVT.2018.2863284
    [6] 郭戈, 赵梓唯. 网联车辆队列有限时间终端滑模控制. 控制理论与应用, 2023, 40(1): 149-159

    Guo Ge, Zhao Zi-Wei. Finite-time terminal sliding mode control of connected vehicle platoons. Control Theory & Application, 2023, 40(1): 149-159
    [7] 原豪男, 郭戈. 交通信息物理系统中的车辆协同运行优化调度. 自动化学报, 2019, 45(1): 143-152 doi: 10.16383/j.aas.c180354

    Yuan Hao-Nan, Guo Ge. Vehicle cooperative optimization scheduling in transportation cyber physical systems. Acta Automatica Sinica, 2019, 45(1): 143-152 doi: 10.16383/j.aas.c180354
    [8] Guo X G, Xu W, Wang J L, Park J H, Yan H C. BLF-based neuroadaptive fault-tolerant control for nonlinear vehicular platoon with time-varying fault directions and distance restrictions. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8), 12388-12398 doi: 10.1109/TITS.2021.3113928
    [9] Guo X G, Xu W, Wang J L, Ju H P. Distributed neuroadaptive fault-tolerant sliding-mode control for 2-D plane vehicular platoon systems with spacing constraints and unknown direction faults. Automatica, 2021, 129: Article No. 109675
    [10] Verginis C K, Bechlioulis C P, Dimarogonas D V, Kyriakopoulos K J. Robust distributed control protocols for large vehicular platoons with prescribed transient and steady-state performance. IEEE Transactions on Control Systems Technology, 2018, 26(1): 299-304 doi: 10.1109/TCST.2017.2658180
    [11] Li D D, Guo G. Prescribed performance concurrent control of connected vehicles with nonlinear third-order dynamics. IEEE Transactions on Vehicular Technology, 2020, 69(12): 14793-14802 doi: 10.1109/TVT.2020.3040302
    [12] Wang J G, Luo X Y, Wong W C, Guan X P. Specified-time vehicular platoon control with flexible safe distance constraint. IEEE Transactions on Vehicular Technology, 2019, 69(11): 10489-10503
    [13] Wang J G, Wong W C, Luo X Y, Li X Y, Guan X P. Connectivity-maintained and specified-time vehicle platoon control systems with disturbance observer. International Journal of Robust and Nonlinear Control, 2021, 31(16): 7844-7861 doi: 10.1002/rnc.5723
    [14] 高振宇, 孙振超, 郭戈. 网联车辆有限时间滑模预设性能队列控制. 控制理论与应用, 2023, 40(11): 1891−1902

    Gao Zhen-Yu, Sun Zhen-Chao, Guo Ge. Finite-time sliding mode prescribed performance platoon control of connected vehicles. Control Theory & Applications, 2023, 40(11): 1891−1902
    [15] Gao Z Y, Zhang Y, Guo G. Fixed-time prescribed performance adaptive fixed-time sliding mode control for vehicular platoons with actuator saturation. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12): 24176-24189 doi: 10.1109/TITS.2022.3202365
    [16] Wang H, Bai W, Zhao X, Liu P X. Finite-time-prescribed performance-based adaptive fuzzy control for strict-feedback nonlinear systems with dynamic uncertainty and actuator faults. IEEE Transactions on Cybernetics, 2021, 52(7): 6959-6971
    [17] Guo X G, Wang J L, Liao F, Teo R S. Distributed adaptive control for vehicular platoon with unknown dead-zone inputs and velocity/acceleration disturbances. International Journal of Robust and Nonlinear Control, 2017, 27(16): 2961-2981 doi: 10.1002/rnc.3720
    [18] Guo X G, Wang J L, Liao F, Leo R S. Neuroadaptive quantized PID sliding-mode control for heterogeneous vehicular platoon with unknown actuator deadzone. International Journal of Robust and Nonlinear Control, 2019, 29(1): 188-208 doi: 10.1002/rnc.4394
    [19] Chen J Z, Liang H, Li J, Lv Z K. Connected automated vehicle platoon control with input saturation and variable time headway strategy. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(8): 4929-4940 doi: 10.1109/TITS.2020.2983468
    [20] Gao Z Y, Zhang Y, Guo G. Adaptive fixed-time sliding mode control of vehicular platoons with asymmetric actuator saturation. IEEE Transactions on Vehicular Technology, 2023, 72(7): 8409−8423
    [21] Guo X G, Zhao J J, Li H J, Wang J L, Liao F, Chen Y. Novel auxiliary saturation compensation design for neuroadaptive NTSM tracking control of high speed trains with actuator saturation. Journal of the Franklin Institute-Engineering and Applied Mathematics, 2020, 357(3): 1582-1602 doi: 10.1016/j.jfranklin.2019.11.006
    [22] Guo G, Li P, Hao L Y. A new quadratic spacing policy and adaptive fault-tolerant platooning with actuator saturation. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(2): 1200-1212 doi: 10.1109/TITS.2020.3023453
    [23] Guo X G, Ahn C K. Adaptive fault-tolerant pseudo-PID sliding-mode control for high-speed train with integral quadratic constraints and actuator saturation. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(12): 7421-7431 doi: 10.1109/TITS.2020.3002550
    [24] Guo G, Li P, Hao L Y. Adaptive fault-tolerant control of platoons with guaranteed traffic flow stability. Transactions on Vehicular Technology, 2022, 69(7): 6916-6927
    [25] Gao Z Y, Zhang Y, Guo G. Adaptive fixed-time prescribed performance control of vehicular platoons with unknown dead-zone and actuator saturation. International Journal of Robust and Nonlinear Control, 2023, 33(2): 1231-1253 doi: 10.1002/rnc.6405
    [26] 郭戈, 张茜, 高振宇. 具有预设瞬稳态性能的有限时间智能车辆固定构型编队控制. 中国公路学报, 2022, 35(3): 28-42 doi: 10.3969/j.issn.1001-7372.2022.03.004

    Guo Ge, Zhang Qian, Gao Zhen-Yu. Finite-time fixed configuration formation control of intelligent vehicles with prescribed transient and steady-state performance. China Journal of Highway and Transport, 2022, 35(3): 28-42 doi: 10.3969/j.issn.1001-7372.2022.03.004
    [27] Polyakov A. Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Transactions on Automatic Control, 2012, 57(8): 2106-2110. doi: 10.1109/TAC.2011.2179869
    [28] Zuo Z Y. Nonsingular fixed-time consensus tracking for second-order multi-agent networks. Automatica, 2015, 54: 305-309 doi: 10.1016/j.automatica.2015.01.021
    [29] Yang H J, Ye D. Adaptive fixed-time bipartite tracking consensus control for unknown nonlinear multi-agent systems: An information classification mechanism. Information Sciences, 2018, 459: 238-254 doi: 10.1016/j.ins.2018.04.016
    [30] Guo G, Li D D. Adaptive sliding mode control of vehicular platoons with prescribed tracking performance. IEEE Transactions on Vehicular Technology, 2019, 68(8): 7511-7520 doi: 10.1109/TVT.2019.2921816
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  805
  • HTML全文浏览量:  349
  • PDF下载量:  287
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-07
  • 录用日期:  2023-06-14
  • 网络出版日期:  2023-07-10
  • 刊出日期:  2024-02-26

目录

    /

    返回文章
    返回