2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

虹膜呈现攻击检测综述

王财勇 刘星雨 房美玲 赵光哲 何召锋 孙哲南

王财勇, 刘星雨, 房美玲, 赵光哲, 何召锋, 孙哲南. 虹膜呈现攻击检测综述. 自动化学报, 2024, 50(2): 241−281 doi: 10.16383/j.aas.c230109
引用本文: 王财勇, 刘星雨, 房美玲, 赵光哲, 何召锋, 孙哲南. 虹膜呈现攻击检测综述. 自动化学报, 2024, 50(2): 241−281 doi: 10.16383/j.aas.c230109
Wang Cai-Yong, Liu Xing-Yu, Fang Mei-Ling, Zhao Guang-Zhe, He Zhao-Feng, Sun Zhe-Nan. A survey on iris presentation attack detection. Acta Automatica Sinica, 2024, 50(2): 241−281 doi: 10.16383/j.aas.c230109
Citation: Wang Cai-Yong, Liu Xing-Yu, Fang Mei-Ling, Zhao Guang-Zhe, He Zhao-Feng, Sun Zhe-Nan. A survey on iris presentation attack detection. Acta Automatica Sinica, 2024, 50(2): 241−281 doi: 10.16383/j.aas.c230109

虹膜呈现攻击检测综述

doi: 10.16383/j.aas.c230109
基金项目: 国家自然科学基金(62106015, 62176025, 62276263), 北京市自然科学基金(4242018), 北京市科技新星计划(20230484444), 北京市科协青年人才托举工程(BYESS2023130), 北京建筑大学“建大英才”培养工程(JDYC20220819)资助
详细信息
    作者简介:

    王财勇:北京建筑大学电气与信息工程学院讲师. 2020年获得中国科学院自动化研究所博士学位. 主要研究方向为生物特征识别, 计算机视觉与模式识别. E-mail: wangcaiyong@bucea.edu.cn

    刘星雨:北京建筑大学电气与信息工程学院硕士研究生. 2020年获得浙江师范大学学士学位. 主要研究方向为生物特征识别. E-mail: liuxingyu@stu.bucea.edu.cn

    房美玲:德国达姆施塔特弗劳恩霍夫计算机图形研究所研究员. 2023年获得德国达姆施塔特工业大学博士学位. 主要研究方向为机器学习, 计算机视觉, 生物特征识别. E-mail: meiling.fang@igd.fraunhofer.de

    赵光哲:北京建筑大学电气与信息工程学院教授. 2012年获得日本名古屋大学博士学位. 主要研究方向为计算机视觉与图像处理, 模式识别, 人工智能. E-mail: zhaoguangzhe@bucea.edu.cn

    何召锋:北京邮电大学人工智能学院教授. 2010年获得中国科学院自动化研究所博士学位. 主要研究方向为生物特征识别, 视觉计算, 智能博弈决策, AI+IC协同优化. E-mail: zhaofenghe@bupt.edu.cn

    孙哲南:中国科学院自动化研究所研究员, 中国科学院大学人工智能学院教授. 2006年获得中国科学院自动化研究所博士学位. 主要研究方向为生物特征识别, 模式识别, 计算机视觉. 本文通信作者. E-mail: znsun@nlpr.ia.ac.cn

  • 中图分类号: Y

A Survey on Iris Presentation Attack Detection

Funds: Supported by National Natural Science Foundation of China (62106015, 62176025, 62276263), Beijing Natural Science Foundation (4242018), Beijing Nova Program (20230484444), Young Elite Scientist Sponsorship Program by BAST (BYESS2023130), and Pyramid Talent Training Project of BUCEA (JDYC20220819)
More Information
    Author Bio:

    WANG Cai-Yong Lecturer at School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture. He received his Ph.D. degree from the Institute of Automation, Chinese Academy of Sciences in 2020. His research interest covers biometrics, computer vision, and pattern recognition

    LIU Xing-Yu Master student at School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture. She received her bachelor degree from Zhejiang Normal University in 2020. Her main research interest is biometrics

    FANG Mei-Ling Researcher at Fraunhofer Institute for Computer Graphics Research IGD, Darmstadt, Germany. She received her Ph.D. degree from Technical University of Darmstadt, Germany in 2023. Her research interest covers machine learning, computer vision, and biometrics

    ZHAO Guang-Zhe Professor at School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture. He received his Ph.D. degree from Nagoya University, Japan in 2012. His research interest covers computer vision, image processing, pattern recognition, and artificial intelligence

    HE Zhao-Feng Professor at School of Artificial Intelligence, Beijing University of Posts and Telecommunications. He received his Ph.D. degree from the Institute of Automation, Chinese Academy of Sciences in 2010. His research interest covers biometrics, visual computing, intelligent game decision-making, and AI+IC collaborative optimization

    SUN Zhe-Nan Professor at Institute of Automation, Chinese Academy of Sciences, and also at the School of Artificial Intelligence, University of Chinese Academy of Sciences. He received his Ph.D. degree from the Institute of Automation, Chinese Academy of Sciences in 2006. His research interest covers biometrics, pattern recognition, and computer vision. Corresponding author of this paper

  • 摘要: 虹膜识别技术因唯一性、稳定性、非接触性、准确性等特性广泛应用于各类现实场景中. 然而, 现有的许多虹膜识别系统在认证过程中仍然容易遭受各种攻击的干扰, 导致安全性方面可能存在风险隐患. 在不同的攻击类型中, 呈现攻击(Presentation attacks, PAs)由于出现在早期的虹膜图像获取阶段, 且形式变化多端, 因而虹膜呈现攻击检测(Iris presentation attack detection, IPAD)成为虹膜识别技术中首先需要解决的安全问题之一, 得到了学术界和产业界的广泛重视. 本综述是目前已知第一篇虹膜呈现攻击检测领域的中文综述, 旨在帮助研究人员快速、全面地了解该领域的相关知识以及发展动态. 总体来说, 本文对虹膜呈现攻击检测的难点、术语和攻击类型、主流方法、公共数据集、比赛及可解释性等方面进行全面归纳. 具体而言, 首先介绍虹膜呈现攻击检测的背景、虹膜识别系统现存的安全漏洞与呈现攻击的目的. 其次, 按照是否使用额外硬件设备将检测方法分为基于硬件与基于软件的方法两大类, 并在基于软件的方法中按照特征提取的方式作出进一步归纳和分析. 此外, 还整理了开源方法、可申请的公开数据集以及概括了历届相关比赛. 最后, 对虹膜呈现攻击检测未来可能的发展方向进行了展望.
    1)  11下载地址: http://www.cripac.ia.ac.cn/people/znsun/irisclassification/CASIA-Iris-Fake.rar
  • 图  1  使用义眼进行虹膜呈现攻击图示(插图取自电影《辛普森一家》)

    Fig.  1  An illustration of iris presentation attack using artificial eye (the figure is from 《The Simpsons》)

    图  2  虹膜识别及虹膜呈现攻击检测的应用场景

    Fig.  2  Application scenarios of iris recognition and iris presentation attack detection

    图  3  具有虹膜呈现攻击检测功能的虹膜识别产品

    Fig.  3  Iris recognition products with IPAD function

    图  4  虹膜呈现攻击检测的中国专利数量

    Fig.  4  The number of Chinese patents related to IPAD

    图  5  申请虹膜呈现攻击检测中国专利的公司名称词云

    Fig.  5  Word cloud of companies applying for Chinese patents related to IPAD

    图  6  虹膜识别一般流程及关于呈现攻击的脆弱性

    Fig.  6  General pipeline of iris recognition and its vulnerability to presentation attacks

    图  7  虹膜呈现攻击检测和虹膜识别的两种集成方式

    Fig.  7  Tow schemes for integrating iris presentation attack detection and iris recognition

    图  8  真实虹膜与常见虹膜呈现攻击类型(绿色框内为真实样本, 红色框内为假体样本)

    Fig.  8  Bona fide iris and common iris presentationattack types (green box contains bona fide samples,while red box contains fake samples)

    图  9  虹膜呈现攻击类型分类(蓝色框内为使用真实虹膜的攻击, 绿色框内为使用人工制品的攻击,紫色框内表示合成虹膜攻击)

    Fig.  9  Taxonomy of iris presentation attack types (blue box indicates PAs using real iris, green box indicates PAs using artifacts, and purple box indicates PAs using synthetic iris)

    图  10  虹膜识别与屏显虹膜进行静态虹膜呈现攻击 (插图取自电影《坏蛋联盟》)

    Fig.  10  Iris recognition and static iris presentation attack using the iris displayed on the mobile phone (the figure is from 《The Bad Guys》)

    图  11  来自CASIA-Iris-Syn[44]中012子集的合成虹膜样例, 其中(b)为(a)的虹膜旋转所得, (c)为(a)的瞳孔收缩所得, (d)为(a)的虹膜离焦变换所得

    Fig.  11  Synthetic iris samples from the 012 subset of CASIA-Iris-Syn[44], where (b), (c) and (d) are obtained from the iris rotation, pupil constriction, and iris defocus transformation of (a), respectively

    图  12  真实虹膜与iDCGAN生成的虹膜[38]

    Fig.  12  Bona fide iris and iris generated by iDCGAN[38]

    图  13  虹膜呈现攻击检测的发展进程

    Fig.  13  Development and progression of IPAD

    图  14  虹膜呈现攻击检测的论文数量(数据来源:Web of Science, EI Compendex, 中国知网)

    Fig.  14  Number of papers on IPAD (Data source: Web of Science, EI Compendex, CNKI)

    图  15  不同波长下的多光谱虹膜图像[53]

    Fig.  15  The multi-spectral iris images atdifferent wavelengths[53]

    图  16  使用文献[55]的成像系统捕获的真实虹膜和伪造虹膜的样例图像

    Fig.  16  Example images of bona fide and fake irises by using the proposed camera system in [55]

    图  17  使用(a) OCT, (b) 近红外和(c) 可见光成像获取的真实活体虹膜、义眼和纹理隐形眼镜的样例图像, 其中可见光图像中的红线表示OCT扫描仪的遍历扫描方向[59]

    Fig.  17  Example images of bona fide iris, artificial eye and textured contact lens captured using (a) OCT, (b) NIR and (c) VIS imaging modalities, where the red line in the VIS image shows the traverse scanning direction of the OCT scanner[59]

    图  18  活体人眼在光照刺激下的瞳孔缩放效应示例

    Fig.  18  Illustration of the pupil contraction/dilation of live eye due to visible light stimulus

    图  19  近年来有代表性的基于软件的虹膜呈现攻击检测方法

    Fig.  19  Recent representative software-based iris presentation attack detection solutions

    图  20  GLCM计算过程示例

    Fig.  20  Example of GLCM calculation process

    图  21  纹理隐形眼镜图像的虹膜预处理过程[73]

    Fig.  21  Iris preprocessing process for images withtextured contact lens[73]

    图  22  基于质量相关特征的虹膜活体检测方法流程图[89]

    Fig.  22  General diagram of the iris liveness detection method based on quality related features[89]

    图  23  25种图像质量评价指标的分类[90]

    Fig.  23  Classification of the 25 image quality measures[90]

    图  24  不同的图像预处理模块, 其中(a)来自文献[96], (b)来自文献[97], (c)来自文献[98]

    Fig.  24  Different image preprocessing modules, where (a) is from [96], (b) is from [97], and (c) is from [98]

    图  25  基于微条纹分析的虹膜呈现攻击检测方法[100]

    Fig.  25  Micro stripes analyses for iris presentation attack detection[100]

    图  26  基于二分类(上)和单分类(下)的虹膜呈现攻击检测算法在处理未知攻击时的效果示意图[108]

    Fig.  26  Illustration of the effects of IPAD algorithms based on binary classification (top) and one-class classification (bottom) in handling unseen presentation attacks[108]

    图  27  D-NetPAD的特征可视化[20]

    Fig.  27  Feature visualization of D-NetPAD[20]

    图  28  AG-PAD的Grad-CAM热图[21]

    Fig.  28  Grad-CAM heatmaps of AG-PAD[21]

    图  29  不同方法的Score-CAM热图[9]

    Fig.  29  Score-CAM heatmaps of different methods[9]

    图  30  DCNN的Grad-CAM热图[22]

    Fig.  30  Grad-CAM heatmaps of DCNN[22]

    表  1  国内外虹膜识别主要厂商部署虹膜呈现攻击检测技术概览

    Table  1  Overview of IPAD technology deployed by major iris recognition manufacturers at home and abroad

    公司名称官方网址是否拥有
    虹膜呈现
    攻击检测
    技术
    技术支持
    方法支持检测的呈现攻击类型
    北京万里红科技有限公司http://www.superred.com.cn/卷积神经网络、视频序列分析美瞳、义眼、打印、
    屏显或重放攻击
    北京中科虹霸科技有限公司http://www.irisking.com/频谱分析、多尺度LBP、
    SIFT、CNN
    美瞳、义眼、打印或重放攻击
    上海点与面智能科技有限公司https://www.pixsur.com.cn/深度神经网络美瞳、义眼、打印、
    屏显或重放攻击
    上海聚虹光电科技有限公司http://www.irisian.com/红外灯闪烁、多光谱成像、
    机器学习
    美瞳或打印攻击
    北京眼神科技有限公司https://www.eyecool.cn/CNN、瞳孔光照反应美瞳、打印或重放攻击
    武汉虹识技术有限公司https://www.homsh.cn/LBP、GLCM、红外检测、
    深度学习
    美瞳、打印或合成攻击
    IriTech, Inc. (美国)https://iritech.com/虹膜动态变化N/R
    Iris ID (韩国)https://www.irisid.com/N/RN/R
    BioEnable Technologies (印度)https://www.bioenabletech.com/N/RN/R
    IrisGuard (英国)https://www.irisguard.com/瞳孔收缩变化、视频序列分析重放攻击
    EyeLock (美国)https://www.eyelock.com/多帧图像(视频)特征分析重放攻击
    Neurotechnology (立陶宛)https://www.neurotechnology.com/N/R美瞳或打印攻击
    注: N/R = not reported, 未公布.
    数据来源: 官网、问卷调查、专利.
    下载: 导出CSV

    表  2  虹膜呈现攻击检测方法汇总

    Table  2  Summary of iris presentation attack detection algorithms

    方法分类代表文献算法思想优点缺点
    一级分类二级分类
    基于硬件
    的方法
    多光谱成像[4954]眼组织不同层的光谱特性采集信息丰富, 检测
    准确率高, 可解释性好
    需要额外的成像设备, 成本较高, 采集效率低, 可能对用户有较大干扰
    3D成像[5559]眼睛的曲率、3D特性和
    内部结构
    瞳孔光照反应[6061]照明变化对瞳孔
    大小的影响
    眼动信号[6365]眼球运动过程中
    的物理特征
    基于软件
    的方法
    基于传统计算机视觉的方法基于图像纹理的方法[7376]LBP、BSIF、小波变换、
    GLCM等算子从灰度
    图中提取纹理特征
    不需要额外
    设备, 成本
    较低, 对用
    户的干扰
    较小
    计算复杂度低、容易实现, 适合纹理隐形眼镜检测泛化性不足
    基于图像质量的方法[8990]真假虹膜图像之间的
    “质量差异”
    简洁、快速、非接触性、用户友好、廉价容易误检真实噪声虹膜
    图像、未定制图像
    质量评价标准
    基于深度学习的方法传统CNNs[20, 48, 96103]通过CNNs进行虹膜
    真假分类
    特征提取和分类器学习联合优化、
    准确率较高
    计算复杂度高、容易
    过拟合、可解释
    性差
    生成对抗网络[108, 110111]生成器和判别器对抗博弈有利于检测未知攻击模型训练较为
    复杂、困难
    域自适应[10, 113]学习域不变特征提升检测泛化性收集目标域数据
    较困难
    注意力机制[9, 21, 119121]强化或者抑制特征映射提升CNN特征表达能力, 提高检测准确性和泛化性增加额外模型参数
    多源特征融合的方法[6, 122128]传统特征与深度特征融合、多模态特征融合融合特征的性能一般优于单一特征, 能提升检测的鲁棒性及泛化性计算复杂度高、
    部署困难
    下载: 导出CSV

    表  3  虹膜呈现攻击检测开源代码总览

    Table  3  Brief overview of open-source IPAD methods

    方法名称代码网址编程语言数据集
    PhotometricStereoIrisPAD[83]https://github.com/CVRL/PhotometricStereoIrisPADMATLABNDCLD15[86]
    OpenSourceIrisPAD[82]https://github.com/CVRL/OpenSourceIrisPADC++、PythonNDCLD15[86]、IIITD-WVU[14]
    LivDet-Iris 2017 (Clarkson)[14]
    RaspberryPiOpenSourceIris[85]https://github.com/CVRL/RaspberryPiOpenSourceIrisC++、PythonNDCLD15[86]、NDIris3D[84]
    Emvlc-ipad[124]https://github.com/akuehlka/emvlc-ipadPython、Objective-C、C++LivDet-Iris 2017[14]
    D-NetPAD[20]https://github.com/iPRoBe-lab/D-NetPADPythonNDCLD15[86]、LivDet-Iris 2017[14]
    AG-PAD[21]https://github.com/cunjian/AGPADPythonJHU-APL (私有)[21]、LivDet-Iris 2017[14]
    LFLD[58]https://github.com/luozhengquan/LFLDPythonCASIA-Iris-LFLD[57-58]
    下载: 导出CSV

    表  4  虹膜呈现攻击检测开放数据集总览

    Table  4  Brief overview of publicly available IPAD datasets

    数据集年份数据量(张)成像光谱攻击类型图像分辨率
    (像素)
    呈现攻击真实虹膜总数
    Warsaw-BioBase-Disease-Iris v1.0[36]2015441384825近红外、可见光病变$640\times480$
    Warsaw-BioBase-Disease-Iris v2.1[133]20152 2127842 996近红外、可见光病变$640\times480$
    Warsaw-BioBase-Post-Mortem-Iris v1.1[33]20161 59701 597近红外、可见光尸体$640\times480$
    Warsaw-BioBase-Post-Mortem-Iris v2.0[134]20192 98702 987近红外、可见光尸体$640\times480$
    Warsaw-BioBase-Post-Mortem-Iris v3.0[135]20201 87901 879近红外、可见光尸体$640\times480$
    CASIA-Iris-Syn[43]200810 000010 000N/A合成$640\times480$
    CASIA-Iris-Fake[136]20144 7306 00010 730近红外打印、隐形眼镜、
    义眼、合成
    大小不一
    CASIA-Iris-LFLD[5758]2019274230504近红外打印、屏显$128\times96$
    Eye Tracker Print-Attack Database (ETPAD v1)[63]2014200200400近红外打印$640\times480$
    Eye Tracker Print-Attack Database (ETPAD v2)[64]2015400400800近红外打印$640\times480$
    Synthetic Iris Textured Based[137]20067 00007 000N/A合成N/R
    Synthetic Iris Model Based[138]2007160 0000160 000N/A合成N/R
    UVCLI Database[139]20171 9251 8773 802可见光隐形眼镜N/R
    UnMIPA Database[93]20199 3879 31918 706近红外隐形眼镜N/R
    Cataract Mobile Periocular Database (CMPD)[140]2016N/RN/R2 380可见光病变$4 \;608\times3\; 456$
    WVU Mobile Iris Spoofing (IIITD-WVU) Dataset[14]20177 5072 95210 459近红外隐形眼镜、打印$640\times480$
    IIITD Contact Lens Iris Database[141]2013N/RN/R6 570近红外隐形眼镜$640\times480$
    ND Cosmetic Contact Lenses 2013 Dataset (NDCLD13)[142]20131 7003 4005 100近红外隐形眼镜$640\times480$
    The Notre Dame Contact Lense Dataset 2015 (NDCLD15)[86]20152 5004 8007 300近红外隐形眼镜$640\times480$
    The Notre Dame LivDet-Iris 2017 Subset[14]20172 4002 4004 800近红外隐形眼镜$640\times480$
    Notre Dame Photometric Stereo Iris Dataset (WACV 2019)[83]20192 6643 1325 796近红外隐形眼镜$640\times480$
    NDIris3D[84]20213 3923 4586 850近红外隐形眼镜$640\times480$
    注: N/R = not reported, 未公布.
    N/A = not applicable, 不适用.
    透明隐形眼镜虹膜图像归类为真实虹膜图像.
    下载: 导出CSV

    表  5  虹膜呈现攻击检测竞赛

    Table  5  Iris presentation attack detection competitions

    比赛名称组织者数据集图像数攻击类型成像光谱参赛团
    队数量
    冠军团队
    算法名称
    评价指标
    训练测试 BPCER (%)APCER (%)
    LivDet-Iris 2013[11]克拉克森大学670686打印、纹理隐形眼镜近红外3Federico28.565.72
    华沙工业大学4311 236
    圣母大学3 0001 200
    MoblLive 2014[12]INESC TEC800800打印可见光6IIT Indore0.500.00
    波尔图大学
    LivDet-Iris 2015[13]克拉克森大学(LG)1 8721 854打印、纹理隐形眼镜近红外4Federico1.685.48
    克拉克森大学(Dalsa)2 4191 836
    华沙工业大学1 6675 892
    LivDet-Iris 2017[14]克拉克森大学4 9373 158打印、纹理隐形眼镜近红外3Anon13.3614.71
    华沙工业大学4 5137 500
    圣母大学1 2002 700
    西弗吉尼亚大学
    印度理工学院德里分校6 2504 209
    LivDet-Iris 2020[15]克拉克森大学12 432打印、纹理隐形眼镜、屏显虹膜、义眼、尸体虹膜、组合攻击近红外3USACH/
    TOC
    0.4659.10
    华沙工业大学
    圣母大学
    瑞士IDIAP研究所
    华沙医科大学
    下载: 导出CSV
  • [1] Daugman J G. High confidence visual recognition of persons by a test of statistical independence. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(11): 1148-1161 doi: 10.1109/34.244676
    [2] Daugman J G. How Iris recognition works. IEEE Transactions on Circuits and Systems for Video Technology, 2004, 14(1): 21-30 doi: 10.1109/TCSVT.2003.818350
    [3] Wildes R P. Iris recognition: An emerging biometric technology. Proceedings of the IEEE, 1997, 85(9): 1348-1363 doi: 10.1109/5.628669
    [4] International Organization for Standardization. Information Technology-biometric Presentation Attack Detection——Part 1: Framework, ISO/IEC 30107-1: 2016, 2016.
    [5] 孙哲南, 赫然, 王亮, 阚美娜, 冯建江, 郑方, 等. 生物特征识别学科发展报告. 中国图象图形学报, 2021, 26(6): 1254-1329 doi: 10.11834/jig.210078

    Sun Zhe-Nan, He Ran, Wang Liang, Kan Mei-Na, Feng Jian-Jiang, Zheng Fang, et al. Overview of biometrics research. Journal of Image and Graphics, 2021, 26(6): 1254-1329 doi: 10.11834/jig.210078
    [6] Agarwal A, Noore A, Vatsa M, Singh R. Generalized contact lens iris presentation attack detection. IEEE Transactions on Biometrics, Behavior, and Identity Science, 2022, 4(3): 373-385 doi: 10.1109/TBIOM.2022.3177669
    [7] Tapia J E, Gonzalez S, Busch C. Iris liveness detection using a cascade of dedicated deep learning networks. IEEE Transactions on Information Forensics and Security, 2022, 17: 42-52 doi: 10.1109/TIFS.2021.3132582
    [8] Maureira J, Tapia J E, Arellano C, Busch C. Analysis of the synthetic periocular iris images for robust presentation attacks detection algorithms. IET Biometrics, 2022, 11(4): 343-354 doi: 10.1049/bme2.12084
    [9] Fang M L, Damer N, Boutros F, Kirchbuchner F, Kuijper A. Iris presentation attack detection by attention-based and deep pixel-wise binary supervision network. In: Proceedings of the IEEE International Joint Conference on Biometrics (IJCB). Shenzhen, China: IEEE, 2021. 1−8
    [10] Li Y C, Lian Y, Wang J J, Chen Y H, Wang C M, Pu S L. Few-shot one-class domain adaptation based on frequency for iris presentation attack detection. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Singapore: IEEE, 2022. 2480−2484
    [11] Yambay D, Doyle J S, Bowyer K W, Czajka A, Schuckers S. LivDet-iris 2013——Iris liveness detection competition 2013. In: Proceedings of the IEEE International Joint Conference on Biometrics (IJCB). Clearwater, USA: IEEE, 2014. 1−8
    [12] Sequeira A F, Oliveira H P, Monteiro J C, Monteiro J P, Cardoso J S. MobiLive 2014——Mobile iris liveness detection competition. In: Proceedings of the IEEE International Joint Conference on Biometrics (IJCB). Clearwater, USA: IEEE, 2014. 1−6
    [13] Yambay D, Walczak B, Schuckers S, Czajka A. LivDet-iris 2015——Iris liveness detection competition 2015. In: Proceedings of the IEEE International Conference on Identity, Security and Behavior Analysis (ISBA). New Delhi, India: IEEE, 2017. 1−6
    [14] Yambay D, Becker B, Kohli N, Yadav D, Czajka A, Bowyer K W, et al. LivDet iris 2017——Iris liveness detection competition 2017. In: Proceedings of the IEEE International Joint Conference on Biometrics (IJCB). Denver, USA: IEEE, 2017. 733−741
    [15] Das P, McFiratht J, Fang Z Y, Boyd A, Jang G, Mohammadi A, et al. Iris liveness detection competition (livDet-iris)——The 2020 edition. In: Proceedings of the IEEE International Joint Conference on Biometrics (IJCB). Houston, USA: IEEE, 2020. 1−9
    [16] Czajka A, Bowyer K W. Presentation attack detection for iris recognition: An assessment of the state-of-the-art. ACM Computing Surveys, 2019, 51(4): Article No. 86
    [17] Boyd A, Fang Z Y, Czajka A, Bowyer K W. Iris presentation attack detection: Where are we now? Pattern Recognition Letters, 2020, 138: 483-489 doi: 10.1016/j.patrec.2020.08.018
    [18] Galbally J, Gomez-Barrero M. A review of iris anti-spoofing. In: Proceedings of the 4th International Conference on Biometrics and Forensics (IWBF). Limassol, Cyprus: IEEE, 2016. 1−6
    [19] Morales A, Fierrez J, Galbally J, Gomez-Barrero M. Introduction to iris presentation attack detection. Handbook of Biometric Anti-Spoofing. Berlin: Springer, 2019. 135−150
    [20] Sharma R, Ross A. D-NetPAD: An explainable and interpretable iris presentation attack detector. In: Proceedings of the IEEE International Joint Conference on Biometrics (IJCB). Houston, USA: IEEE, 2020. 1−10
    [21] Chen C J, Ross A. An explainable attention-guided iris presentation attack detector. In: Proceedings of the IEEE Winter Conference on Applications of Computer Vision Workshops (WACVW). Waikola, USA: IEEE, 2021. 97−106
    [22] Trokielewicz M, Czajka A, Maciejewicz P. Presentation attack detection for cadaver iris. In: Proceedings of the IEEE 9th International Conference on Biometrics Theory, Applications and Systems (BTAS). Redondo Beach, USA: IEEE, 2018. 1−10
    [23] Fang M L, Damer N, Kirchbuchner F, Kuijper A. Demographic bias in presentation attack detection of iris recognition systems. In: Proceedings of the 28th European Signal Processing Conference (EUSIPCO). Amsterdam, Netherlands: IEEE, 2021. 835−839
    [24] Husseis A, Liu-Jimenez J, Goicoechea-Telleria I, Sanchez-Reillo R. A survey in presentation attack and presentation attack detection. In: Proceedings of the International Carnahan Conference on Security Technology (ICCST). Chennai, India: IEEE, 2019. 1−13
    [25] Ma L, Tan T N, Wang Y H, Zhang D X. Personal identification based on iris texture analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(12): 1519-1533 doi: 10.1109/TPAMI.2003.1251145
    [26] Sun Z N, Wang Y H, Tan T N, Cui J L. Improving iris recognition accuracy via cascaded classifiers. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2005, 35(3): 435-441 doi: 10.1109/TSMCC.2005.848169
    [27] Jain A K, Deb D, Engelsma J J. Biometrics: Trust, but verify. IEEE Transactions on Biometrics, Behavior, and Identity Science, 2022, 4(3): 303-323 doi: 10.1109/TBIOM.2021.3115465
    [28] Islam I, Munim K M, Islam M N, Karim M M. A proposed secure mobile money transfer system for SME in Bangladesh: An industry 4.0 perspective. In: Proceedings of the International Conference on Sustainable Technologies for Industry 4.0 (STI). Dhaka, Bangladesh: IEEE, 2019. 1−6
    [29] Tinsley P, Czajka A, Flynn P J. Haven't I seen you before? Assessing identity leakage in synthetic irises. In: Proceedings of the IEEE International Joint Conference on Biometrics (IJCB). Abu Dhabi, United Arab Emirates: IEEE, 2022. 1−9
    [30] Dhar P, Kumar A, Kaplan K, Gupta K, Ranjan R, Chellappa R. EyePAD++: A distillation-based approach for joint eye authentication and presentation attack detection using periocular images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, USA: IEEE, 2022. 20186−20195
    [31] 国家市场监督管理总局, 国家标准化管理委员会. 信息技术 生物特征识别呈现攻击检测 第1部分: 框架, GB/T 41815.1-2022, 2022.

    State Administration for Market Regulation, Standardization Administration of the People's Republic of China. Information Technology——Biometric Presentation Attack Detection——Part 1: Framework, GB/T 41815.1-2022, 2022.
    [32] Sansola A K H. Postmortem Iris Recognition and Its Application in Human Identification [Master thesis], Boston University, USA, 2015.
    [33] Trokielewicz M, Czajka A, Maciejewicz P. Human iris recognition in post-mortem subjects: Study and database. In: Proceedings of the IEEE 8th International Conference on Biometrics Theory, Applications and Systems (BTAS). Niagara Falls, USA: IEEE, 2016. 1−6
    [34] Sauerwein K, Saul T B, Steadman D W, Boehnen C B. The effect of decomposition on the efficacy of biometrics for positive identification. Journal of Forensic Sciences, 2017, 62(6): 1599-1602 doi: 10.1111/1556-4029.13484
    [35] Bolme D S, Tokola R A, Boehnen C B, Saul T B, Sauerwein K A, Steadman D W. Impact of environmental factors on biometric matching during human decomposition. In: Proceedings of the IEEE 8th International Conference on Biometrics Theory, Applications and Systems (BTAS). Niagara Falls, USA: IEEE, 2016. 1−8
    [36] Trokielewicz M, Czajka A, Maciejewicz P. Database of iris images acquired in the presence of ocular pathologies and assessment of iris recognition reliability for disease-affected eyes. In: Proceedings of the IEEE 2nd International Conference on Cybernetics (CYBCONF). Gdynia, Poland: IEEE, 2015. 495−500
    [37] Boyd A, Speth J, Parzianello L, Bowyer K W, Czajka A. Comprehensive study in open-set iris presentation attack detection. IEEE Transactions on Information Forensics and Security, 2023, 18: 3238-3250 doi: 10.1109/TIFS.2023.3274477
    [38] Kohli N, Yadav D, Vatsa M, Singh R, Noore A. Synthetic iris presentation attack using iDCGAN. In: Proceedings of the IEEE International Joint Conference on Biometrics (IJCB). Denver, USA: IEEE, 2017. 674−680
    [39] Lefohn A, Budge B, Shirley P, Caruso R, Reinhard E. An ocularist's approach to human iris synthesis. IEEE Computer Graphics and Applications, 2003, 23(6): 70-75 doi: 10.1109/MCG.2003.1242384
    [40] Cui J L, Wang Y H, Huang J Z, Tan T N, Sun Z N. An iris image synthesis method based on PCA and super-resolution. In: Proceedings of the 17th International Conference on Pattern Recognition. Cambridge, UK: IEEE, 2004. 471−474
    [41] Wei L Y, Levoy M. Fast texture synthesis using tree-structured vector quantization. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAP). New Orleans, USA: ACM, 2000. 479−488
    [42] Makthal S, Ross A. Synthesis of iris images using Markov random fields. In: Proceedings of the 13th European Signal Processing Conference (EUSIPCO). Antalya, Turkey: IEEE, 2005. 1−4
    [43] Wei Z S, Tan T N, Sun Z N. Synthesis of large realistic iris databases using patch-based sampling. In: Proceedings of the 19th International Conference on Pattern Recognition (ICPR). Tampa, USA: IEEE, 2008. 1−4
    [44] Biometrics Ideal Test (BIT). CASIA iris image database 4.0 [Online], available: http://biometrics.idealtest.org/dbDetailForUser.do?id=4, October 22, 2023
    [45] Boutros F, Damer N, Raja K, Ramachandra R, Kirchbuchner F, Kuijper A. Iris and periocular biometrics for head mounted displays: Segmentation, recognition, and synthetic data generation. Image and Vision Computing, 2020, 104: Article No. 104007 doi: 10.1016/j.imavis.2020.104007
    [46] Galbally J, Savvides M, Venugopalan S, Ross A A. Iris image reconstruction from binary templates. Handbook of Iris Recognition. London, UK: Springer, 2016. 469−496
    [47] Daugman J G. Demodulation by complex-valued wavelets for stochastic pattern recognition. International Journal of Wavelets, Multiresolution and Information Processing, 2003, 1(1): 1-17 doi: 10.1142/S0219691303000025
    [48] Silva P, Luz E, Baeta R, Pedrini H, Falcao A X, Menotti D. An approach to iris contact lens detection based on deep image representations. In: Proceedings of the 28th SIBGRAPI Conference on Graphics, Patterns and Images. Salvador, Brazil: IEEE, 2015. 157−164
    [49] Lee E C, Park K R, Kim J. Fake iris detection by using Purkinje image. In: Proceedings of the International Conference on Biometrics. Hong Kong, China: Springer, 2006. 397−403
    [50] Lee S J, Park K R, Lee Y J, Bae K, Kim J H. Multifeature-based fake iris detection method. Optical Engineering, 2007, 46(12): Article No. 127204 doi: 10.1117/1.2815719
    [51] He Y Q, Hou Y S, Li Y J, Wang Y M. Liveness iris detection method based on the eye's optical features. In: Proceedings of SPIE 7838, Optics and Photonics for Counterterrorism and Crime Fighting VI and Optical Materials in Defence Systems Technology VII. Toulouse, France: SPIE, 2010. 236−243
    [52] Park J H, Kang M G. Multispectral iris authentication system against counterfeit attack using gradient-based image fusion. Optical Engineering, 2007, 46(11): Article No. 117003 doi: 10.1117/1.2802367
    [53] 陈瑞, 孙静宇, 林喜荣, 丁天怀. 利用多光谱图像的伪造虹膜检测算法. 电子学报, 2011, 39(3): 710-713

    Chen Rui, Sun Jing-Yu, Lin Xi-Rong, Ding Tian-Huai. An algorithm for fake irises detection using multi-spectral images. Acta Electronica Sinica, 2011, 39(3): 710-713
    [54] Chen R, Lin X R, Ding T H. Liveness detection for iris recognition using multispectral images. Pattern Recognition Letters, 2012, 33(12): 1513-1519 doi: 10.1016/j.patrec.2012.04.002
    [55] Lee E C, Park K R. Fake iris detection based on 3D structure of iris pattern. International Journal of Imaging Systems and Technology, 2010, 20(2): 162-166 doi: 10.1002/ima.20227
    [56] Raghavendra R, Busch C. Presentation attack detection on visible spectrum iris recognition by exploring inherent characteristics of light field camera. In: Proceedings of the IEEE International Joint Conference on Biometrics (IJCB). Clearwater, USA: IEEE, 2014. 1−8
    [57] 宋平, 黄玲, 王云龙, 刘菲, 孙哲南. 基于计算光场成像的虹膜活体检测方法. 自动化学报, 2019, 45(9): 1701-1712 doi: 10.16383/j.aas.c180213

    Song Ping, Huang Ling, Wang Yun-Long, Liu Fei, Sun Zhe-Nan. Iris liveness detection based on light field imaging. Acta Automatica Sinica, 2019, 45(9): 1701-1712 doi: 10.16383/j.aas.c180213
    [58] Luo Z Q, Wang Y L, Liu N F, Wang Z L. Combining 2D texture and 3D geometry features for Reliable iris presentation attack detection using light field focal stack. IET Biometrics, 2022, 11(5): 420-429 doi: 10.1049/bme2.12092
    [59] Sharma R, Ross A. Viability of optical coherence tomography for iris presentation attack detection. In: Proceedings of the 25th International Conference on Pattern Recognition (ICPR). Milan, Italy: IEEE, 2021. 6165−6172
    [60] Park K R. Robust fake iris detection. In: Proceedings of the 4th International Conference on Articulated Motion and Deformable Objects. Port d'Andratx, Spain: Springer, 2006. 10−18
    [61] Czajka A. Pupil dynamics for iris liveness detection. IEEE Transactions on Information Forensics and Security, 2015, 10(4): 726-735 doi: 10.1109/TIFS.2015.2398815
    [62] 苟超, 卓莹, 王康, 王飞跃. 眼动跟踪研究进展与展望. 自动化学报, 2022, 48(5): 1173-1192 doi: 10.16383/j.aas.c210514

    Gou Chao, Zhuo Ying, Wang Kang, Wang Fei-Yue. Research advances and prospects of eye tracking. Acta Automatica Sinica, 2022, 48(5): 1173-1192 doi: 10.16383/j.aas.c210514
    [63] Rigas I, Komogortsev O V. Gaze estimation as a framework for iris liveness detection. In: Proceedings of the IEEE International Joint Conference on Biometrics (IJCB). Clearwater, USA: IEEE, 2014. 1−8
    [64] Rigas I, Komogortsev O V. Eye movement-driven defense against iris print-attacks. Pattern Recognition Letters, 2015, 68: 316-326 doi: 10.1016/j.patrec.2015.06.011
    [65] Raju M H, Lohr D J, Komogortsev O. Iris print attack detection using eye movement signals. In: Proceedings of the Symposium on Eye Tracking Research and Applications (ETRA). Seattle, USA: ACM, 2022. Article No. 70
    [66] Kannala J, Rahtu E. BSIF: Binarized statistical image features. In: Proceedings of the 21st International Conference on Pattern Recognition. Tsukuba, Japan: IEEE, 2012. 1363−1366
    [67] Ojala T, Pietikainen M, Harwood D. Performance evaluation of texture measures with classification based on Kullback discrimination of distributions. In: Proceedings of the 12th International Conference on Pattern Recognition (ICPR). Jerusalem, Israel: IEEE, 1994. 582−585
    [68] Haralick R M, Shanmugam K, Dinstein I H. Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, 1973, SMC-3(6): 610-621 doi: 10.1109/TSMC.1973.4309314
    [69] Agarwal R, Jalal A S, Arya K V. Enhanced binary hexagonal extrema pattern (EBHXEP) descriptor for iris liveness detection. Wireless Personal Communications, 2020, 115(3): 2627-2643 doi: 10.1007/s11277-020-07700-9
    [70] Agarwal R, Jalal A S, Arya K V. Local binary hexagonal extrema pattern (LBHXEP): A new feature descriptor for fake iris detection. The Visual Computer, 2021, 37(6): 1357-1368 doi: 10.1007/s00371-020-01870-0
    [71] Cybenko G. Approximation by superpositions of a sigmoidal function[J]. Mathematics of control, signals and systems, 1989, 2(4): 303−314.
    [72] Ulaby F T, Kouyate F, Brisco B, Williams T H L. Textural infornation in SAR images. IEEE Transactions on Geoscience and Remote Sensing, 1986, GE-24(2): 235-245 doi: 10.1109/TGRS.1986.289643
    [73] He X F, An S J, Shi P F. Statistical texture analysis-based approach for fake iris detection using support vector machines. In: Proceedings of the International Conference on Biometrics. Seoul, South Korea: Springer, 2007. 540−546
    [74] Li D, Wu C, Wang Y M. A novel iris texture extraction scheme for iris presentation attack detection. Journal of Image and Graphics, 2021, 9(3): 95-102
    [75] Wei Z S, Qiu X C, Sun Z N, Tan T N. Counterfeit iris detection based on texture analysis. In: Proceedings of the 19th International Conference on Pattern Recognition (ICPR). Tampa, USA: IEEE, 2008. 1−4
    [76] He X F, Lu Y, Shi P F. A new fake iris detection method. In: Proceedings of the 3rd International Conference on Advances in Biometrics. Alghero, Italy: Springer, 2009. 1132−1139
    [77] Freund Y, Schapire R E. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 1997, 55(1): 119-139 doi: 10.1006/jcss.1997.1504
    [78] He Z F, Sun Z N, Tan T N, Wei Z S. Efficient iris spoof detection via boosted local binary patterns. In: Proceedings of the International Conference on Biometrics. Alghero, Italy: Springer, 2009. 1080−1090
    [79] Zhang H, Sun Z N, Tan T N. Contact lens detection based on weighted LBP. In: Proceedings of the 20th International Conference on Pattern Recognition (ICPR). Istanbul, Turkey: IEEE, 2010. 4279−4282
    [80] Alonso-Fernandez F, Bigun J. Exploting periocular and RGB information in fake iris detection. In: Proceedings of the 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). Opatija, Croatia: IEEE, 2014. 1354−1359
    [81] Sequeira A F, Murari J, Cardoso J S. Iris liveness detection methods in mobile applications. In: Proceedings of the International Conference on Computer Vision Theory and Applications (VISAPP). Lisbon, Portugal: IEEE, 2014. 22−33
    [82] McGrath J, Bowyer K W, Czajka A. Open source presentation attack detection baseline for iris recognition. arXiv: 1809.10172, 2018.
    [83] Czajka A, Fang Z Y, Bowyer K W. Iris presentation attack detection based on photometric stereo features. In: Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV). Waikoloa, USA: IEEE, 2019. 877−885
    [84] Fang Z Y, Czajka A, Bowyer K W. Robust iris presentation attack detection fusing 2D and 3D information. IEEE Transactions on Information Forensics and Security, 2021, 16: 510-520 doi: 10.1109/TIFS.2020.3015547
    [85] Fang Z Y, Czajka A. Open source iris recognition hardware and software with presentation attack detection. In: Proceedings of the IEEE International Joint Conference on Biometrics (IJCB). Houston, USA: IEEE, 2020. 1−8
    [86] Doyle J S, Bowyer K W. Robust detection of textured contact lenses in iris recognition using BSIF. IEEE Access, 2015, 3: 1672-1683 doi: 10.1109/ACCESS.2015.2477470
    [87] Dronky M R, Khalifa W, Roushdy M. Using residual images with BSIF for iris liveness detection. Expert Systems With Applications, 2021, 182: Article No. 115266 doi: 10.1016/j.eswa.2021.115266
    [88] 李星光, 孙哲南, 谭铁牛. 虹膜图像质量评价综述. 中国图象图形学报, 2014, 19(6): 813-824 doi: 10.11834/jig.20140601

    Li Xing-Guang, Sun Zhe-Nan, Tan Tie-Niu. Overview of iris image quality-assessment. Journal of Image and Graphics, 2014, 19(6): 813-824 doi: 10.11834/jig.20140601
    [89] Galbally J, Ortiz-Lopez J, Fierrez J, Ortega-Garcia J. Iris liveness detection based on quality related features. In: Proceedings of the 5th IAPR International Conference on Biometrics (ICB). New Delhi, India: IEEE, 2012. 271−276
    [90] Galbally J, Marcel S, Fierrez J. Image quality assessment for fake biometric detection: Application to iris, fingerprint, and face recognition. IEEE Transactions on Image Processing, 2014, 23(2): 710-724 doi: 10.1109/TIP.2013.2292332
    [91] Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86(11): 2278-2324 doi: 10.1109/5.726791
    [92] Selvaraju R R, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: Visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, 2017. 618−626
    [93] Yadav D, Kohli N, Vatsa M, Singh R, Noore A. Detecting textured contact lens in uncontrolled environment using DensePAD. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Long Beach, USA: IEEE, 2019. 2336−2344
    [94] Yadav D, Kohli N, Yadav S, Vatsa M, Singh R, Noore A. Iris presentation attack via textured contact lens in unconstrained environment. In: Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV). Lake Tahoe, USA: IEEE, 2018. 503−511
    [95] Van der Maaten L, Hinton G. Visualizing data using t-SNE. Journal of Machine Learning Research, 2008, 9(86): 2579-2605
    [96] He L X, Li H Q, Liu F, Liu N F, Sun Z N, He Z F. Multi-patch convolution neural network for iris liveness detection. In: Proceedings of the IEEE 8th International Conference on Biometrics Theory, Applications and Systems (BTAS). Niagara Falls, USA: IEEE, 2016. 1−7
    [97] Raghavendra R, Raja K B, Busch C. ContlensNet: Robust iris contact lens detection using deep convolutional neural networks. In: Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV). Santa Rosa, USA: IEEE, 2017. 1160−1167
    [98] Hoffman S, Sharma R, Ross A. Convolutional neural networks for iris presentation attack detection: Toward cross-dataset and cross-sensor generalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Salt Lake City, USA: IEEE, 2018. 1701−1709
    [99] Pala F, Bhanu B. Iris liveness detection by relative distance comparisons. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Honolulu, USA: IEEE, 2017. 664−671
    [100] Fang M L, Damer N, Kirchbuchner F, Kuijper A. Micro stripes analyses for iris presentation attack detection. In: Proceedings of the IEEE International Joint Conference on Biometrics (IJCB). Houston, USA: IEEE, 2020. 1−10
    [101] Fang M L, Damer N, Boutros F, Kirchbuchner F, Kuijper A. Cross-database and cross-attack iris presentation attack detection using micro stripes analyses. Image and Vision Computing, 2021, 105: Article No. 104057 doi: 10.1016/j.imavis.2020.104057
    [102] 刘明康, 王宏民, 李琦, 孙哲南. 增强型灰度图像空间实现虹膜活体检测. 中国图象图形学报, 2020, 25(7): 1421-1435 doi: 10.11834/jig.190503

    Liu Ming-Kang, Wang Hong-Min, Li Qi, Sun Zhe-Nan. Enhanced gray-level image space for iris liveness detection. Journal of Image and Graphics, 2020, 25(7): 1421-1435 doi: 10.11834/jig.190503
    [103] Gautam G, Raj A, Mukhopadhyay S. Deep supervised class encoding for iris presentation attack detection. Digital Signal Processing, 2022, 121: Article No. 103329 doi: 10.1016/j.dsp.2021.103329
    [104] Goodfellow I J, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial nets. In: Proceedings of the 27th International Conference on Neural Information Processing Systems (NIPS). Montreal, Canada: MIT Press, 2014. 2672−2680
    [105] Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks. In: Proceedings of the 4th International Conference on Learning Representations. San Juan, Puerto Rico: ICLR, 2015.
    [106] Jolicoeur-Martineau A. The relativistic discriminator: A key element missing from standard GAN. In: Proceedings of the 7th International Conference on Learning Representations. New Orleans, USA: OpenReview.net, 2019. 1−26
    [107] Karras T, Laine S, Aila T. A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, USA: IEEE, 2019. 4396−4405
    [108] Yadav S, Chen C J, Ross A. Relativistic discriminator: A one-class classifier for generalized iris presentation attack detection. In: Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV). Snowmass, USA: IEEE, 2020. 2624−2633
    [109] Perera P, Oza P, Patel V M. One-class classification: A survey. arXiv: 2101.03064, 2021.
    [110] Ferreira P M, Sequeira A F, Pernes D, Rebelo A, Cardoso J S. Adversarial learning for a robust iris presentation attack detection method against unseen attack presentations. In: Proceedings of the International Conference of the Biometrics Special Interest Group (BIOSIG). Darmstadt, Germany: IEEE, 2019. 1−7
    [111] Yadav S, Ross A. CIT-GAN: Cyclic image translation generative adversarial network with application in iris presentation attack detection. In: Proceedings of the IEEE Winter Conference on Applications of Computer Vision. Waikoloa, USA: IEEE, 2021. 2411−2420
    [112] 刘建伟, 孙正康, 罗雄麟. 域自适应学习研究进展. 自动化学报, 2014, 40(8): 1576-1600

    Liu Jian-Wei, Sun Zheng-Kang, Luo Xiong-Lin. Review and research development on domain adaptation learning. Acta Automatica Sinica, 2014, 40(8): 1576-1600
    [113] El-Din Y S, Moustafa M N, Mahdi H. On the effectiveness of adversarial unsupervised domain adaptation for iris presentation attack detection in mobile devices. In: Proceedings of SPIE 11605, Thirteenth International Conference on Machine Vision (ICMV). Rome, Italy: SPIE, 2021. Article No. 116050W
    [114] Zhang Y B, Tang H, Jia K, Tan M K. Domain-symmetric networks for adversarial domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE, 2019. 5026−5035
    [115] Wang X L, Girshick R, Gupta A, He K M. Non-local neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, USA: IEEE, 2018. 7794−7803
    [116] Hu J, Shen L, Sun G. Squeeze-and-excitation networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City, USA: IEEE, 2018. 7132−7141
    [117] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, et al. Attention is all you need. In: Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS). Long Beach, USA: Curran Associates Inc., 2017. 6000−6010
    [118] Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X H, Unterthiner T, et al. An image is worth 16x16 words: Transformers for image recognition at scale. In: Proceedings of the 9th International Conference on Learning Representations. Vienna, Austria: ICLR, 2021. 1−21
    [119] 吕梦凌, 何玉青, 杨峻凯, 金伟其, 张丽君. 基于循环注意力机制的隐形眼镜虹膜防伪检测方法. 光学学报, 2022, 42(23): Article No. 2315001 doi: 10.3788/AOS202242.2315001

    Lv Meng-Ling, He Yu-Qing, Yang Jun-Kai, Jin Wei-Qi, Zhang Li-Jun. Anti-spoofing detection method for contact lens irises based on recurrent attention mechanism. Acta Optica Sinica, 2022, 42(23): Article No. 2315001 doi: 10.3788/AOS202242.2315001
    [120] 陈旭旗, 沈文忠. IrisBeautyDet: 虹膜定位和美瞳检测网络. 计算机工程与应用, 2023, 59(2): 120-128 doi: 10.3778/j.issn.1002-8331.2106-0460

    Chen Xu-Qi, Shen Wen-Zhong. IrisBeautyDet: Neural network for iris localization and cosmetic contact lens detection. Computer Engineering and Applications, 2023, 59(2): 120-128 doi: 10.3778/j.issn.1002-8331.2106-0460
    [121] Fang M L, Boutros F, Damer N. Intra and cross-spectrum iris presentation attack detection in the NIR and visible domains. Handbook of Biometric Anti-Spoofing: Presentation Attack Detection and Vulnerability Assessment. Singapore: Springer, 2023. 171−199
    [122] Yadav D, Kohli N, Agarwal A, Vatsa M, Singh R, Noore A. Fusion of handcrafted and deep learning features for large-scale multiple iris presentation attack detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Salt Lake City, USA: IEEE, 2018. 685−692
    [123] Choudhary M, Tiwari V, Venkanna U. Iris liveness detection using fusion of domain-specific multiple BSIF and DenseNet features. IEEE Transactions on Cybernetics, 2022, 52(4): 2370-2381 doi: 10.1109/TCYB.2020.3005089
    [124] Kuehlkamp A, Pinto A, Rocha A, Bowyer K W, Czajka A. Ensemble of multi-view learning classifiers for cross-domain iris presentation attack detection. IEEE Transactions on Information Forensics and Security, 2019, 14(6): 1419-1431 doi: 10.1109/TIFS.2018.2878542
    [125] Gragnaniello D, Poggi G, Sansone C, Verdoliva L. Using iris and sclera for detection and classification of contact lenses. Pattern Recognition Letters, 2016, 82: 251-257 doi: 10.1016/j.patrec.2015.10.009
    [126] Hoffman S, Sharma R, Ross A. Iris + ocular: Generalized iris presentation attack detection using multiple convolutional neural networks. In: Proceedings of the International Conference on Biometrics (ICB). Crete, Greece: IEEE, 2019. 1−8
    [127] Gupta M, Singh V, Agarwal A, Vatsa M, Singh R. Generalized iris presentation attack detection algorithm under cross-database settings. In: Proceedings of the 25th International Conference on Pattern Recognition (ICPR). Milan, Italy: IEEE, 2021. 5318−5325
    [128] Agarwal A, Noore A, Vatsa M, Singh R. Enhanced iris presentation attack detection via contraction-expansion CNN. Pattern Recognition Letters, 2022, 159: 61-69 doi: 10.1016/j.patrec.2022.04.007
    [129] Jain V, Agarwal A, Singh R, Vatsa M, Ratha N. Robust IRIS presentation attack detection through stochastic filter noise. In: Proceedings of the 26th International Conference on Pattern Recognition (ICPR). Montreal, Canada: IEEE, 2022. 1134−1140
    [130] Sequeira A F, Thavalengal S, Ferryman J, Corcoran P, Cardoso J S. A realistic evaluation of iris presentation attack detection. In: Proceedings of the 39th International Conference on Telecommunications and Signal Processing (TSP). Vienna, Austria: IEEE, 2016. 660−664
    [131] Gragnaniello D, Sansone C, Poggi G, Verdoliva L. Biometric spoofing detection by a domain-aware convolutional neural network. In: Proceedings of the 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS). Naples, Italy: IEEE, 2016. 193−198
    [132] Hu Y, Sirlantzis K, Howells G. Iris liveness detection using regional features. Pattern Recognition Letters, 2016, 82: 242-250 doi: 10.1016/j.patrec.2015.10.010
    [133] Trokielewicz M, Czajka A, Maciejewicz P. Assessment of iris recognition reliability for eyes affected by ocular pathologies. In: Proceedings of the IEEE 7th International Conference on Biometrics Theory, Applications and Systems (BTAS). Arlington, USA: IEEE, 2015. 1−6
    [134] Trokielewicz M, Czajka A, Maciejewicz P. Iris recognition after death. IEEE Transactions on Information Forensics and Security, 2019, 14(6): 1501-1514 doi: 10.1109/TIFS.2018.2881671
    [135] Trokielewicz M, Czajka A, Maciejewicz P. Post-mortem iris recognition with deep-learning-based image segmentation. Image and Vision Computing, 2020, 94: Article No. 103866 doi: 10.1016/j.imavis.2019.103866
    [136] Sun Z N, Zhang H, Tan T N, Wang J Y. Iris image classification based on hierarchical visual codebook. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(6): 1120-1133 doi: 10.1109/TPAMI.2013.234
    [137] Shah S, Ross A. Generating synthetic irises by feature agglomeration. In: Proceedings of the International Conference on Image Processing (ICIP). Atlanta, USA: IEEE, 2006. 317−320
    [138] Zuo J Y, Schmid N A, Chen X H. On generation and analysis of synthetic iris images. IEEE Transactions on Information Forensics and Security, 2007, 2(1): 77-90 doi: 10.1109/TIFS.2006.890305
    [139] Yadav D, Kohli N, Vatsa M, Singh R, Noore A. Unconstrained visible spectrum iris with textured contact lens variations: Database and benchmarking. In: Proceedings of the IEEE International Joint Conference on Biometrics (IJCB). Denver, USA: IEEE, 2017. 574−580
    [140] Keshari R, Ghosh S, Agarwal A, Singh R, Vatsa M. Mobile periocular matching with pre-post cataract surgery. In: Proceedings of the 2016 IEEE International Conference on Image Processing. Phoenix, USA: IEEE, 2016. 3116−3120
    [141] Kohli N, Yadav D, Vatsa M, Singh R. Revisiting iris recognition with color cosmetic contact lenses. In: Proceedings of the International Conference on Biometrics (ICB). Madrid, Spain: IEEE, 2013. 1−7
    [142] Doyle J S, Bowyer K W, Flynn P J. Variation in accuracy of textured contact lens detection based on sensor and lens pattern. In: Proceedings of the IEEE 6th International Conference on Biometrics: Theory, Applications and Systems (BTAS). Arlington, USA: IEEE, 2013. 1−7
    [143] Yambay D, Das P, Boyd A, McGrath J, Fang Z Y, Czajka A, et al. Review of iris presentation attack detection competitions. Handbook of Biometric Anti-Spoofing: Presentation Attack Detection and Vulnerability Assessment (Third edition). Singapore: Springer, 2023. 149−169
    [144] Wang H F, Wang Z F, Du M N, Yang F, Zhang Z J, Ding S R, et al. Score-CAM: Score-weighted visual explanations for convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Seattle, USA: IEEE, 2020. 111−119
    [145] Ross A, Banerjee S, Chen C J, Chowdhury A, Mirjalili V, Sharma R, et al. Some research problems in biometrics: The future beckons. In: Proceedings of the International Conference on Biometrics (ICB). Crete, Greece: IEEE, 2019. 1−8
    [146] Agarwal A, Ratha N, Noore A, Singh R, Vatsa M. Misclassifications of contact lens iris PAD algorithms: Is it gender bias or environmental conditions? In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). Waikoloa, USA: IEEE, 2023. 961−970
    [147] Boyd A, Bowyer K, Czajka A. Human-aided saliency maps improve generalization of deep learning. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). Waikoloa, USA: IEEE, 2022. 1255−1264
    [148] Geng C X, Huang S J, Chen S C. Recent advances in open set recognition: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10): 3614-3631 doi: 10.1109/TPAMI.2020.2981604
    [149] Howard A G, Zhu M L, Chen B, Kalenichenko D, Wang W J, Weyand T, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv: 1704.04861, 2017.
    [150] Tan M X, Le Q V. EfficientNet: Rethinking model scaling for convolutional neural networks. In: Proceedings of the 36th International Conference on Machine Learning (ICML). Long Beach, USA: PMLR, 2019. 6105−6144
    [151] Chingovska I, Anjos A, Marcel S. Anti-spoofing in action: Joint operation with a verification system. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. Portland, USA: IEEE, 2013. 98−104
    [152] Grosz S A, Wijewardena K P, Jain A K. ViT unified: Joint fingerprint recognition and presentation attack detection. arXiv: 2305.07602, 2023.
    [153] Hospedales T, Antoniou A, Micaelli P, Storkey A. Meta-learning in neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(9): 5149-5169
    [154] Fang M L, Yang W F, Kuijper A, Štruc V, Damer N. Fairness in face presentation attack detection. Pattern Recognition, 2024, 147: Article No. 110002 doi: 10.1016/j.patcog.2023.110002
    [155] Singh R, Majumdar P, Mittal S, Vatsa M. Anatomizing bias in facial analysis. In: Proceedings of the 36th AAAI Conference on Artificial Intelligence, 34th Conference on Innovative Applications of Artificial Intelligence, the 12th Symposium on Educational Advances in Artificial Intelligence. Vancouver, Canada: AAAI, 2022. 12351−12358
    [156] Terhörst P, Kolf J N, Huber M, Kirchbuchner F, Damer N, Moreno A M, et al. A comprehensive study on face recognition biases beyond demographics. IEEE Transactions on Technology and Society, 2022, 3(1): 16-30 doi: 10.1109/TTS.2021.3111823
    [157] de Freitas Pereira T, Marcel S. Fairness in biometrics: A figure of merit to assess biometric verification systems. IEEE Transactions on Biometrics, Behavior, and Identity Science, 2022, 4(1): 19-29 doi: 10.1109/TBIOM.2021.3102862
    [158] Zhang C, Xie Y, Bai H, Yu B, Li W H, Gao Y. A survey on federated learning. Knowledge-Based Systems, 2021, 216: Article No. 106775 doi: 10.1016/j.knosys.2021.106775
    [159] Yang L, Zhang Z L, Song Y, Hong S D, Xu R S, Zhao Y, et al. Diffusion models: A comprehensive survey of methods and applications.ACM Computing Surveys,2023,56(4): Article No. 105
  • 加载中
图(30) / 表(5)
计量
  • 文章访问数:  812
  • HTML全文浏览量:  524
  • PDF下载量:  213
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-06
  • 录用日期:  2023-10-12
  • 网络出版日期:  2023-11-01
  • 刊出日期:  2024-02-26

目录

    /

    返回文章
    返回