2024年 第50卷 第2期
2024, 50(2): 211-240.
doi: 10.16383/j.aas.c230126
摘要:
在面向工业过程的计算机视觉研究中, 智能感知模型能否实际应用取决于其对复杂工业环境的适应能力. 由于可利用的工业图像数据集存在分布不均、多样性不足和干扰严重等问题, 如何生成符合多工况分布的期望训练集是提高感知模型性能的关键. 为解决上述问题, 以城市固废焚烧(Municipal solid wastes incineration, MSWI)过程为背景, 综述目前面向工业过程的图像生成及其应用研究, 为进行面向工业图像的感知建模提供支撑. 首先, 梳理面向工业过程的图像生成定义和流程以及其应用...
在面向工业过程的计算机视觉研究中, 智能感知模型能否实际应用取决于其对复杂工业环境的适应能力. 由于可利用的工业图像数据集存在分布不均、多样性不足和干扰严重等问题, 如何生成符合多工况分布的期望训练集是提高感知模型性能的关键. 为解决上述问题, 以城市固废焚烧(Municipal solid wastes incineration, MSWI)过程为背景, 综述目前面向工业过程的图像生成及其应用研究, 为进行面向工业图像的感知建模提供支撑. 首先, 梳理面向工业过程的图像生成定义和流程以及其应用...
2024, 50(2): 241-281.
doi: 10.16383/j.aas.c230109
摘要:
虹膜识别技术因唯一性、稳定性、非接触性、准确性等特性广泛应用于各类现实场景中. 然而, 现有的许多虹膜识别系统在认证过程中仍然容易遭受各种攻击的干扰, 导致安全性方面可能存在风险隐患. 在不同的攻击类型中, 呈现攻击(Presentation attacks, PAs)由于出现在早期的虹膜图像获取阶段, 且形式变化多端, 因而虹膜呈现攻击检测(Iris presentation attack detection, IPAD)成为虹膜识别技术中首先需要解决的安全问题之一, 得到了学术界和产业界的广...
虹膜识别技术因唯一性、稳定性、非接触性、准确性等特性广泛应用于各类现实场景中. 然而, 现有的许多虹膜识别系统在认证过程中仍然容易遭受各种攻击的干扰, 导致安全性方面可能存在风险隐患. 在不同的攻击类型中, 呈现攻击(Presentation attacks, PAs)由于出现在早期的虹膜图像获取阶段, 且形式变化多端, 因而虹膜呈现攻击检测(Iris presentation attack detection, IPAD)成为虹膜识别技术中首先需要解决的安全问题之一, 得到了学术界和产业界的广...
2024, 50(2): 282-294.
doi: 10.16383/j.aas.c211013
摘要:
氧化亚铁(FeO)含量是衡量烧结矿强度和还原性的重要指标, 烧结过程FeO含量的实时准确预测对于提升烧结质量、优化烧结工艺具有重要意义. 然而烧结过程热状态参数缺失、过程参数波动频繁给FeO含量的高精度预测带来巨大的挑战, 为此, 提出一种基于知识与变权重回声状态网络融合(Fusion of data-knowledge and adaptive weight echo state network, DK-AWESN)的烧结过程FeO含量预测方法. 首先, 针对烧结过程热状态参数缺失的问题, 建...
氧化亚铁(FeO)含量是衡量烧结矿强度和还原性的重要指标, 烧结过程FeO含量的实时准确预测对于提升烧结质量、优化烧结工艺具有重要意义. 然而烧结过程热状态参数缺失、过程参数波动频繁给FeO含量的高精度预测带来巨大的挑战, 为此, 提出一种基于知识与变权重回声状态网络融合(Fusion of data-knowledge and adaptive weight echo state network, DK-AWESN)的烧结过程FeO含量预测方法. 首先, 针对烧结过程热状态参数缺失的问题, 建...
2024, 50(2): 295-307.
doi: 10.16383/j.aas.c221007
摘要:
本文研究了一类具有边界执行器动态特性的双曲线型偏微分方程(Partial differential equation, PDE)系统的输出调节问题. 特别地, 执行器由一组非线性常微分方程(Ordinary differential equation, ODE)描述, 控制输入出现在执行器的一端而非直接作用在PDE系统上, 这使得控制任务变得相当困难. 基于几何设计方法和有限维与无限维反步法, 本文提出了显式表达的输出调节器, 实现了该类系统的扰动补偿及跟踪控制. 并且我们采用Lyapunov稳...
本文研究了一类具有边界执行器动态特性的双曲线型偏微分方程(Partial differential equation, PDE)系统的输出调节问题. 特别地, 执行器由一组非线性常微分方程(Ordinary differential equation, ODE)描述, 控制输入出现在执行器的一端而非直接作用在PDE系统上, 这使得控制任务变得相当困难. 基于几何设计方法和有限维与无限维反步法, 本文提出了显式表达的输出调节器, 实现了该类系统的扰动补偿及跟踪控制. 并且我们采用Lyapunov稳...
2024, 50(2): 308-319.
doi: 10.16383/j.aas.c220836
摘要:
针对现有扑翼飞行机器人存在的飞行形态与实际鸟类相差较大, 以及翅膀、尾翼布局和俯仰、转向控制方式仿生度较低的问题, 提出一种形态布局与鸽子相仿的扑翼飞行机器人系统设计及实现方案. 通过设计弧面−折翼−后掠翅膀、仿鸟扇形尾翼以及尾翼挨近翅膀后缘布置的布局方式, 使扑翼机器人飞行形态更加接近真实鸟类, 提高扑翼机器人的形态仿生度. 在此基础上, 设计结合下扑角调控无需尾翼大角度上翘的俯仰控制方式, 以及不依赖于尾翼的翅膀收缩转向控制方式, 在提高仿生度的同时保证飞行控制的有效性. 在具体设计过程中,...
针对现有扑翼飞行机器人存在的飞行形态与实际鸟类相差较大, 以及翅膀、尾翼布局和俯仰、转向控制方式仿生度较低的问题, 提出一种形态布局与鸽子相仿的扑翼飞行机器人系统设计及实现方案. 通过设计弧面−折翼−后掠翅膀、仿鸟扇形尾翼以及尾翼挨近翅膀后缘布置的布局方式, 使扑翼机器人飞行形态更加接近真实鸟类, 提高扑翼机器人的形态仿生度. 在此基础上, 设计结合下扑角调控无需尾翼大角度上翘的俯仰控制方式, 以及不依赖于尾翼的翅膀收缩转向控制方式, 在提高仿生度的同时保证飞行控制的有效性. 在具体设计过程中,...
2024, 50(2): 320-333.
doi: 10.16383/j.aas.c230189
摘要:
针对含有执行器非线性的车辆队列控制系统, 提出一种固定时间全局预设性能控制(Global prescribed performance control, GPPC) 控制方法. 首先, 设计一种平滑等效变换, 在同一框架下解决死区及饱和问题, 同时消除执行器非线性固有拐点问题. 其次, 构造两个新型性能函数, 并基于此提出一种全局预设性能控制算法, 实现如下目标: 1) 保证跟踪误差在固定时间内收敛到预定稳态区域; 2) 消除初始误差必须已知的限制; 3) 减小误差的超调量. 然后, 基于上述等...
针对含有执行器非线性的车辆队列控制系统, 提出一种固定时间全局预设性能控制(Global prescribed performance control, GPPC) 控制方法. 首先, 设计一种平滑等效变换, 在同一框架下解决死区及饱和问题, 同时消除执行器非线性固有拐点问题. 其次, 构造两个新型性能函数, 并基于此提出一种全局预设性能控制算法, 实现如下目标: 1) 保证跟踪误差在固定时间内收敛到预定稳态区域; 2) 消除初始误差必须已知的限制; 3) 减小误差的超调量. 然后, 基于上述等...
2024, 50(2): 334-347.
doi: 10.16383/j.aas.c230070
摘要:
内窥镜是诊断人体器官疾病的重要医疗设备, 然而受人体内腔环境影响, 内窥镜图像分辨率一般较低, 需对其进行超分辨处理. 目前多数基于深度学习的超分辨算法直接使用双三次插值下采样从高质量图像中获取低分辨率(Low-resolution, LR)图像以进行配对训练, 此种方式会导致纹理细节丢失, 不适用于医学图像. 为解决该问题, 针对医学内窥镜图像开发了一种新颖的退化框架, 首先从真实低质量内窥镜图像中提取丰富多样的真实模糊核与噪声模式, 之后提出一种退化注入算法, 利用提取的真实模糊核与噪声将高...
内窥镜是诊断人体器官疾病的重要医疗设备, 然而受人体内腔环境影响, 内窥镜图像分辨率一般较低, 需对其进行超分辨处理. 目前多数基于深度学习的超分辨算法直接使用双三次插值下采样从高质量图像中获取低分辨率(Low-resolution, LR)图像以进行配对训练, 此种方式会导致纹理细节丢失, 不适用于医学图像. 为解决该问题, 针对医学内窥镜图像开发了一种新颖的退化框架, 首先从真实低质量内窥镜图像中提取丰富多样的真实模糊核与噪声模式, 之后提出一种退化注入算法, 利用提取的真实模糊核与噪声将高...
2024, 50(2): 348-355.
doi: 10.16383/j.aas.c230327
摘要:
针对网联车队列系统易受到干扰和拒绝服务(Denial of service, DoS)攻击问题, 提出一种外部干扰和随机DoS攻击作用下的网联车安全H∞ 队列控制方法. 首先, 采用马尔科夫随机过程, 将网联车随机DoS攻击特性建模为一个随机通信拓扑切换模型, 据此设计网联车安全队列控制协议. 然后, 采用线性矩阵不等式(Linear matrix inequality, LMI)技术计算安全队列控制器参数, 并应用Lyapunov-Krasovskii稳定性理论, 建立在外部扰动和随机DoS攻...
针对网联车队列系统易受到干扰和拒绝服务(Denial of service, DoS)攻击问题, 提出一种外部干扰和随机DoS攻击作用下的网联车安全H∞ 队列控制方法. 首先, 采用马尔科夫随机过程, 将网联车随机DoS攻击特性建模为一个随机通信拓扑切换模型, 据此设计网联车安全队列控制协议. 然后, 采用线性矩阵不等式(Linear matrix inequality, LMI)技术计算安全队列控制器参数, 并应用Lyapunov-Krasovskii稳定性理论, 建立在外部扰动和随机DoS攻...
2024, 50(2): 356-371.
doi: 10.16383/j.aas.c220820
摘要:
在大数据、云计算和机器学习等新一代人工智能技术的推动下, 自动驾驶的感知智能在近年来得到显著的提升与发展. 然而, 与人类驾驶过程中隐含的以自我目的实现为引导的自探索性和自主性相比, 现阶段自动驾驶技术主要以辅助驾驶功能为主, 还停留在以被动感知、规划与控制为主的初级智能自动驾驶阶段. 为实现车辆智能从数据驱动的环境感知、辅助决策、被动规划到知识驱动的场景认知、推理决策、主动规划的提升, 亟需增强车辆自身对复杂外界信息归纳提炼、推理决策、评价估计等类人能力. 首先回顾自动驾驶关键技术演化及其应用...
在大数据、云计算和机器学习等新一代人工智能技术的推动下, 自动驾驶的感知智能在近年来得到显著的提升与发展. 然而, 与人类驾驶过程中隐含的以自我目的实现为引导的自探索性和自主性相比, 现阶段自动驾驶技术主要以辅助驾驶功能为主, 还停留在以被动感知、规划与控制为主的初级智能自动驾驶阶段. 为实现车辆智能从数据驱动的环境感知、辅助决策、被动规划到知识驱动的场景认知、推理决策、主动规划的提升, 亟需增强车辆自身对复杂外界信息归纳提炼、推理决策、评价估计等类人能力. 首先回顾自动驾驶关键技术演化及其应用...
2024, 50(2): 372-385.
doi: 10.16383/j.aas.c230441
摘要:
针对输出受不对称时变约束的不确定高阶严反馈系统, 提出一种基于全驱系统方法的高阶自适应动态面输出约束控制方法. 所研究的高阶严反馈系统, 每个子系统都是高阶形式, 通过非线性转换函数将原输出约束系统转换为新的无约束系统, 从而将原系统输出约束问题转化为新系统输出有界的问题. 进一步结合全驱系统方法和自适应动态面控制, 直接将每个高阶子系统作为一个整体进行控制器设计, 而不需要将其转化为一阶系统形式, 有效简化了设计步骤; 同时通过引入一系列低通滤波器来获得虚拟控制律的高阶导数, 以代替复杂的微分...
针对输出受不对称时变约束的不确定高阶严反馈系统, 提出一种基于全驱系统方法的高阶自适应动态面输出约束控制方法. 所研究的高阶严反馈系统, 每个子系统都是高阶形式, 通过非线性转换函数将原输出约束系统转换为新的无约束系统, 从而将原系统输出约束问题转化为新系统输出有界的问题. 进一步结合全驱系统方法和自适应动态面控制, 直接将每个高阶子系统作为一个整体进行控制器设计, 而不需要将其转化为一阶系统形式, 有效简化了设计步骤; 同时通过引入一系列低通滤波器来获得虚拟控制律的高阶导数, 以代替复杂的微分...
2024, 50(2): 386-402.
doi: 10.16383/j.aas.c210830
摘要:
由于容易实施, 基于投影梯度的分布式在线优化模型逐渐成为一种主流的在线学习方法. 然而, 在处理大数据应用时, 投影步骤成为该方法的计算瓶颈. 近年来, 研究者提出了面向凸代价函数的分布式在线条件梯度算法, 其悔界为\begin{document}${\rm O}(T^{3/4})$\end{document} , 其中\begin{document}$T$\end{document} 是一个时间范围. 该算法存在两方面的问题, 一是其悔界劣于公认的悔界\begin{document}${\rm O...
由于容易实施, 基于投影梯度的分布式在线优化模型逐渐成为一种主流的在线学习方法. 然而, 在处理大数据应用时, 投影步骤成为该方法的计算瓶颈. 近年来, 研究者提出了面向凸代价函数的分布式在线条件梯度算法, 其悔界为
2024, 50(2): 403-416.
doi: 10.16383/j.aas.c230252
摘要:
聚焦多机器人系统协同寻源问题, 即通过驱使多个机器人相互协同寻找未知环境中物理信号放射源的位置. 由于执行任务的机器人通常处于户外开放网络环境中, 攻击者在网络中生成的虚假数据注入攻击容易导致多机器人系统寻源任务的失败. 为在网络攻击情形下仍旧能够追寻到源点, 提出一种基于弹性向量趋同的多机器人系统协同多维寻源方法. 有别于现有文献在处理多维寻源时将向量分解成各个维度上的标量进而设计基于标量的弹性趋同协议, 所提出的多维寻源方法不仅能够有效抵御虚假数据注入攻击完成寻源任务, 而且其界定的安全区间...
聚焦多机器人系统协同寻源问题, 即通过驱使多个机器人相互协同寻找未知环境中物理信号放射源的位置. 由于执行任务的机器人通常处于户外开放网络环境中, 攻击者在网络中生成的虚假数据注入攻击容易导致多机器人系统寻源任务的失败. 为在网络攻击情形下仍旧能够追寻到源点, 提出一种基于弹性向量趋同的多机器人系统协同多维寻源方法. 有别于现有文献在处理多维寻源时将向量分解成各个维度上的标量进而设计基于标量的弹性趋同协议, 所提出的多维寻源方法不仅能够有效抵御虚假数据注入攻击完成寻源任务, 而且其界定的安全区间...
2024, 50(2): 417-430.
doi: 10.16383/j.aas.c230159
摘要:
以对比语言−图像预训练(Contrastive language-image pre-training, CLIP)模型为基础, 提出一种面向视频行为识别的多模态模型, 该模型从视觉编码器的时序建模和行为类别语言描述的提示学习两个方面对CLIP模型进行拓展, 可更好地学习多模态视频表达. 具体地, 在视觉编码器中设计虚拟帧交互模块(Virtual-frame interaction module, VIM), 首先, 由视频采样帧的类别分词做线性变换得到虚拟帧分词; 然后, 对其进行基于时序卷积...
以对比语言−图像预训练(Contrastive language-image pre-training, CLIP)模型为基础, 提出一种面向视频行为识别的多模态模型, 该模型从视觉编码器的时序建模和行为类别语言描述的提示学习两个方面对CLIP模型进行拓展, 可更好地学习多模态视频表达. 具体地, 在视觉编码器中设计虚拟帧交互模块(Virtual-frame interaction module, VIM), 首先, 由视频采样帧的类别分词做线性变换得到虚拟帧分词; 然后, 对其进行基于时序卷积...