2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高仿生形态布局的仿鸽扑翼飞行机器人系统设计

王久斌 贺威 孟亭亭 邹尧 付强

王久斌, 贺威, 孟亭亭, 邹尧, 付强. 基于高仿生形态布局的仿鸽扑翼飞行机器人系统设计. 自动化学报, 2024, 50(2): 308−319 doi: 10.16383/j.aas.c220836
引用本文: 王久斌, 贺威, 孟亭亭, 邹尧, 付强. 基于高仿生形态布局的仿鸽扑翼飞行机器人系统设计. 自动化学报, 2024, 50(2): 308−319 doi: 10.16383/j.aas.c220836
Wang Jiu-Bin, He Wei, Meng Ting-Ting, Zou Yao, Fu Qiang. System design of dove-like flapping-wing flying robot based on highly bionic morphological layout. Acta Automatica Sinica, 2024, 50(2): 308−319 doi: 10.16383/j.aas.c220836
Citation: Wang Jiu-Bin, He Wei, Meng Ting-Ting, Zou Yao, Fu Qiang. System design of dove-like flapping-wing flying robot based on highly bionic morphological layout. Acta Automatica Sinica, 2024, 50(2): 308−319 doi: 10.16383/j.aas.c220836

基于高仿生形态布局的仿鸽扑翼飞行机器人系统设计

doi: 10.16383/j.aas.c220836
基金项目: 国家自然科学基金(62225304, 61933001, 62173031), 北京高校高精尖学科“北京科技大学−人工智能科学与工程”资助
详细信息
    作者简介:

    王久斌:北京科技大学智能科学与技术学院博士研究生. 主要研究方向为扑翼机器人系统设计, 智能控制, 扑翼机器人集群控制. E-mail: b20200306@xs.ustb.edu.cn

    贺威:北京科技大学智能科学与技术学院教授. 2006年获得华南理工大学自动化学院学士学位, 2011年获得新加坡国立大学电气工程与计算机科学系博士学位. 主要研究方向为机器人学, 分布参数系统控制, 振动控制和智能控制系统. 本文通信作者. E-mail: weihe@ieee.org

    孟亭亭:北京科技大学智能科学与技术学院副教授. 2017年获得电子科技大学控制工程系硕士学位, 2020年获得中国科学院数学与系统科学研究院博士学位. 主要研究方向为扑翼飞行机器人, 智能控制, 分布参数系统控制. E-mail: mengting0715@163.com

    邹尧:北京科技大学智能科学与技术学院教授. 2010年获得大连理工大学自动化专业学士学位, 2016年获得北京航空航天大学控制科学与工程专业博士学位. 主要研究方向为非线性控制, 无人机控制, 多智能体控制. E-mail: zouyao@ustb.edu.cn

    付强:北京科技大学智能科学与技术学院副教授. 2009年获北京交通大学热能与动力工程专业学士学位. 2016年获北京航空航天大学控制科学与工程专业博士学位. 主要研究方向为视觉导航, 视觉伺服和扑翼飞行器. E-mail: fuqiang@ustb.edu.cn

System Design of Dove-like Flapping-wing Flying Robot Based on Highly Bionic Morphological Layout

Funds: Supported by National Natural Science Foundation of China (62225304, 61933001, 62173031) and Beijing Top Discipline for Artificial Intelligent Science and Engineering, University of Science and Technology Beijing
More Information
    Author Bio:

    WANG Jiu-Bin Ph.D. candidate at the School of Intelligence Science and Technology, University of Science and Technology Beijing. His research interest covers system design of flapping-wing robots, intelligent control, and swarm control of flapping-wing robots

    HE Wei Professor at the School of Intelligence Science and Technology, University of Science and Technology Beijing. He received his bachelor degree from the College of Automation Science and Engineering, South China University of Technology in 2006, and his Ph.D. degree from the Department of Electrical and Computer Engineering, National University of Singapore (NUS), Singapore in 2011. His research interest covers robotics, control of distributed parameter systems, vibration control, and intelligent control systems. Corresponding author of this paper

    MENG Ting-Ting Associate professor at the School of Intelligence Science and Technology, University of Science and Technology Beijing. She received her master degree in control engineering from University of Electronic Science and Technology of China (UESTC) in 2017, and her Ph.D. degree at Academy of Mathematics and Systems Science, Chinese Academy of Sciences in 2020. Her research interest covers flapping-wing robots, intelligent control, and distributed parameter system control

    ZOU Yao Professor at the School of Intelligence Science and Technology, University of Science and Technology Beijing. He received his bachelor degree in automation from Dalian University of Technology (DUT) in 2010, and his Ph.D. degree in control science and engineering from Beihang University in 2016. His research interest covers nonlinear control, unmanned aerial vehicle control, and multi-agent control

    FU Qiang Associate professor at the School of Intelligence Science and Technology, University of Science and Technology Beijing. He received his bachelor degree in thermal energy and power engineering from Beijing Jiaotong University in 2009, and his Ph.D. degree in control science and engineering from Beihang University in 2016. His research interest covers vision-based navigation, visual servoing, and flapping-wing aerial vehicles

  • 摘要: 针对现有扑翼飞行机器人存在的飞行形态与实际鸟类相差较大, 以及翅膀、尾翼布局和俯仰、转向控制方式仿生度较低的问题, 提出一种形态布局与鸽子相仿的扑翼飞行机器人系统设计及实现方案. 通过设计弧面−折翼−后掠翅膀、仿鸟扇形尾翼以及尾翼挨近翅膀后缘布置的布局方式, 使扑翼机器人飞行形态更加接近真实鸟类, 提高扑翼机器人的形态仿生度. 在此基础上, 设计结合下扑角调控无需尾翼大角度上翘的俯仰控制方式, 以及不依赖于尾翼的翅膀收缩转向控制方式, 在提高仿生度的同时保证飞行控制的有效性. 在具体设计过程中, 首先参考鸽子翅膀型式选择不同类型翅膀并进行风洞测试, 确定出下扑角变化时仍能保持较优升推力性能的翅膀设计方案; 其次, 对各种尾翼型式进行分析和比较, 结合鸽子尾翼特点进行仿鸽尾翼及俯仰、转向控制机构设计, 并通过风洞测试验证; 最后, 设计飞控系统并装配整机, 进行外场飞行测试, 验证仿鸽扑翼飞行机器人平台的稳定性和可控性.
  • 图  1  USTB-Dove平台设计与系统组成

    Fig.  1  USTB-Dove platform design and system configuration

    图  2  USTB-Dove与真实信鸽

    Fig.  2  The USTB-Dove and the realistic carrier pigeon

    图  3  翅膀设计方案

    Fig.  3  Programs of wings' design

    图  4  折翼翅膀的两种弯折方式

    Fig.  4  Two bending modes of folded wings

    图  5  翅膀扑动及弯折角度

    Fig.  5  Flapping and bending angles of the wings

    图  6  风洞设备与测试装置

    Fig.  6  Wind tunnel and test equipment

    图  7  单翼平面翅膀与单翼弧面翅膀升推力性能比较

    Fig.  7  Lift and thrust of the single plane wings and cambered wings

    图  8  不同下扑角时单翼翅膀的升推力和俯仰力矩

    Fig.  8  The lift, thrust and pitch moment with different downstroke angles

    图  9  不同下扑角时折翼翅膀的升推力对比

    Fig.  9  The lift and thrust of folded cambered wings with different downstroke angles

    图  10  USTB-Dove不同的尾翼设计方案

    Fig.  10  Tail's different designs of the USTB-Dove

    图  11  鸽子平稳飞行时的翅膀和尾翼形态

    Fig.  11  The form of a pigeon's wing and tail in smooth flight

    图  12  USTB-Dove尾翼设计

    Fig.  12  Tail's design of the USTB-Dove

    图  13  下扑角电动调节机构

    Fig.  13  Electric adjustment mechanism of the downstroke angle

    图  14  USTB-Dove转向机构

    Fig.  14  Steering mechanism of the USTB-Dove

    图  15  翅膀收缩前后的不同状态

    Fig.  15  The wing's different states before and after it shrinks

    图  16  USTB-Dove球头拉杆及尾翼极限动作时的俯仰力矩

    Fig.  16  Pitch moment when USTB-Dove ball head lever and tail are in extreme action

    图  17  USTB-Dove转向机构动作时的滚转和偏航力矩

    Fig.  17  Roll and yaw moment when USTB-Dove steering mechanism is in action

    图  18  USTB-Dove飞控系统

    Fig.  18  Flight control system of USTB-Dove

    图  19  地面站信息采集显示界面

    Fig.  19  Interface for the collection and display of information at the ground station

    图  20  起飞阶段的USTB-Dove

    Fig.  20  USTB-Dove during takeoff phase

    图  21  飞行中的USTB-Dove (白色)

    Fig.  21  USTB-Dove (white) in flight

    图  22  室外测试飞行轨迹

    Fig.  22  Flight trajectory in outdoor test

    图  23  室外飞行测试姿态曲线

    Fig.  23  Attitude curves in outdoor flight test

    表  1  USTB-Dove质量分解

    Table  1  Weight decomposition of USTB-Dove

    组件质量(g)比重(%)
    一对翅膀3213.1
    驱动机构(含电机)6526.5
    尾翼(含舵机)3514.3
    机架52.0
    飞控系统5020.0
    电池(1 000 mah 2 s)4819.6
    外壳104.1
    总计245100.0
    下载: 导出CSV
  • [1] 王国彪, 陈殿生, 陈科位, 张自强. 仿生机器人研究现状与发展趋势. 机械工程学报, 2015, 51(13): 27-44

    Wang Guo-Biao, Chen Dian-Sheng, Chen Ke-Wei, Zhang Zi-Qiang. The current research status and development strategy on biomimetic robot. Journal of Mechanical Engineering, 2015, 51(13):27-44
    [2] 吉爱红, 戴振东, 周来水. 仿生机器人的研究进展. 机器人, 2005, 27(3): 284-288

    Ji Ai-Hong, Dai Zhen-Dong, Zhou Lai-Shui. Research development of bio-inspired robotics. Robot, 2005, 27(3): 284-288
    [3] He W, Huang H F, Chen Y N, Xie W Z, Feng F S, Kang Y M, et al. Development of an autonomous flapping-wing aerial vehicle. Science China Information Sciences, 2017, 60(6): Article No. 063201
    [4] 贺威, 丁施强, 孙长银. 扑翼飞行器的建模与控制研究进展. 自动化学报, 2017, 43(5): 685-696

    He Wei, Ding Shi-Qiang, Sun Chang-Yin. Research progress on modeling and control of flapping-wing air vehicles. Acta Automatica Sinica, 2017, 43(5): 685-696
    [5] Floreano D, Wood R J. Science, technology and the future of small autonomous drones. Nature, 2015, 521(7553): 460-466 doi: 10.1038/nature14542
    [6] 侯宇, 方宗德, 孔建益, 李公法. 仿生扑翼飞行微机器人研究现状与关键技术. 机械设计, 2008, 25(7): 1-4, 40

    Hou Yu, Fang Zong-De, Kong Jian-Yi, Li Gong-Fa. Current research status and key technology of bionic flapping wing flying mini-robots. Journal of Machine Design, 2008, 25(7): 1-4, 40
    [7] Wang L, Song B F, Sun Z C, Yang X J. Review on ultra-lightweight flapping-wing nano air vehicles: Artificial muscles, flight control mechanism, and biomimetic wings. Chinese Journal of Aeronautics, 2023, 36(6): 63-91 doi: 10.1016/j.cja.2023.03.031
    [8] Feliz E. Hummingbird Nano UAV. Avionics Magazine, 2011, 35(10): 10-11
    [9] Keennon M, Klingebiel K, Won H, Andriukov A. Development of the Nano hummingbird: A tailless flapping wing micro air vehicle. In: Proceedings of the 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Nashville, Tennessee: AIAA, 2012.
    [10] Phan H V, Truong Q T, Park H C. Implementation of initial passive stability in insect-mimicking flapping-wing micro air vehicle. International Journal of Intelligent Unmanned Systems, 2015, 3(1): 18-38 doi: 10.1108/IJIUS-12-2014-0010
    [11] Phan H V, Park H C. Mechanisms of collision recovery in flying beetles and flapping-wing robots. Science, 2020, 370(6521): 1214-1219 doi: 10.1126/science.abd3285
    [12] Karásek M, Muijres F T, De Wagter C, Remes B D W, de Croon G C H E. A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns. Science 2018, 361(6407): 1089-1094 doi: 10.1126/science.aat0350
    [13] Chin Y W, Kok J M, Zhu Y Q, Chan W L, Chahl J S, Khoo B C, et al. Efficient flapping wing drone arrests high-speed flight using post-stall soaring. Science Robotics, 2020, 5(44): Article No. eaba2386 doi: 10.1126/scirobotics.aba2386
    [14] Send W, Fischer M, Jebens K, Mugrauer R, Nagarathinam A, Scharstein F. Artificial hinged-wing bird with active torsion and partially linear kinematics. In: Proceedings of 28th Congress of the International Council of the Aeronautical Sciences. Brisbane, Australia: Optimage Ltd., 2012. 1148−1157
    [15] Zufferey R, Tormo-Barbero J, Guzmán M M, Maldonado F J, Sanchez-Laulhe E, Grau P, et al. Design of the high-payload flapping wing robot E-flap. IEEE Robotics and Automation Letters, 2021, 6(2): 3097-3104 doi: 10.1109/LRA.2021.3061373
    [16] Yang W Q, Wang L G, Song B F. Dove: A biomimetic flapping-wing micro air vehicle. International Journal of Micro Air Vehicles, 2018, 10(1): 70-84 doi: 10.1177/1756829317734837
    [17] Xue D, Song B F. Tuning the deformation of flapping wing to improve the flight efficiency of dove FWMAV. Journal of Aerospace Engineering, 2021, 34(6): Article No. 04021069
    [18] Chen A, Song B F, Wang Z H, Xue D, Liu K. A novel actuation strategy for an agile bioinspired FWAV performing a morphing-coupled wingbeat pattern. IEEE Transactions on Robotics, 2023, 39(1): 452-469 doi: 10.1109/TRO.2022.3189812
    [19] Pan E Z, Xu H, Yuan H, Peng J Q, Xu W F. HIT-Hawk and HIT-Phoenix: Two kinds of flapping-wing flying robotic birds with wingspans beyond 2 meters. Biomimetic Intelligence and Robotics, 2021, 1: Article No. 100002 doi: 10.1016/j.birob.2021.100002
    [20] Wu X Y, He W, Wang Q, Meng T T, He X Y, Fu Q. A long-endurance flapping-wing robot based on mass distribution and energy consumption method. IEEE Transactions on Industrial Electronics, 2023, 70(8): 8215-8224 doi: 10.1109/TIE.2022.3213905
    [21] Dvořák R. Aerodynamics of bird flight. EPJ Web of Conferences, 2016, 114: Article No. 01001
    [22] Berg A M, Biewener A A. Wing and body kinematics of takeoff and landing flight in the pigeon (Columba livia). Journal of Experimental Biology, 2010, 213(10): 1651-1658 doi: 10.1242/jeb.038109
    [23] Guidi G. A study of the wing-beats of pigeons in flight. The Aeronautical Journal, 1938, 42(336): 1104-1115
    [24] Ajanic E, Paolini A, Coster C, Floreano D, Johansson C. Robotic avian wing explains aerodynamic advantages of wing folding and stroke tilting in flapping flight. Advanced Intelligent Systems, 2023, 5(2): Article No. 2200148 doi: 10.1002/aisy.202200148
    [25] Ruiz C, Acosta J Á, Ollero A. Optimal elastic wing for flapping-wing robots through passive morphing. IEEE Robotics and Automation Letters, 2023, 8(2): 608-615 doi: 10.1109/LRA.2022.3226065
    [26] Yang H H, Lee S G, Addo-Akoto R, Han J H. Parameter optimization of foldable flapping-wing mechanism for maximum lift. Journal of Mechanisms and Robotics, 2024, 16(3): Article No. 031002
    [27] Hassanalian M, Abdelkefi A, Wei M J, Ziaei-Rad S. A novel methodology for wing sizing of bio-inspired flapping wing micro air vehicles: Theory and prototype. Acta Mechanica 2017, 228(3): 1097-1113 doi: 10.1007/s00707-016-1757-4
    [28] Nian P, Song B F, Xuan J L, Yang W Q, Dong Y B. A wind tunnel experimental study on the flexible flapping wing with an attached airfoil to the root. IEEE Access, 2019, 7: 47891-47903 doi: 10.1109/ACCESS.2019.2909916
    [29] 昂海松, 曾锐, 段文博, 史志伟. 柔性扑翼微型飞行器升力和推力机理的风洞试验和飞行试验. 航空动力学报, 2007, 22(11): 1838-1845

    Ang Hai-Song, Zeng Rui, Duan Wen-Bo, Shi Zhi-Wei. Aerodynamic experimental investigation for mechanism of lift and thrust of flexible flapping-wing MAV. Journal of Aerospace Power, 2007, 22(11): 1838-1845
    [30] Maybury W J, Rayner J M V. The avian tail reduces body parasite drag by controlling flow separation and vortex shedding. Proceedings of the Royal Society B: Biological Sciences, 2001, 268(1474): 1405-1410 doi: 10.1098/rspb.2001.1635
    [31] Thomas A L R. Why do birds have tails? The tail as a drag reducing flap, and trim control. Journal of Theoretical Biology, 1996, 183(3): 247-253 doi: 10.1006/jtbi.1996.0218
    [32] Sadraey M H. Aircraft Design: A Systems Engineering Approach. Hoboken: Wiley, 2012.
    [33] Guzmán M M, Páez C R, Maldonado F J, Zufferey R, Tormo-Barbero J, Acosta J Á, et al. Design and comparison of tails for bird-scale flapping-wing robots. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Prague, Czech Republic: IEEE, 2021. 6358−6365
    [34] Thomas A L R. On the aerodynamics of birds' tails. Philosophical Transactions of the Royal Society B: Biological Sciences, 1993, 340(1294): 361-380 doi: 10.1098/rstb.1993.0079
    [35] Huang H F, He W, Wang J B, Zhang L, Fu Q. An all servo-driven bird-like flapping-wing aerial robot capable of autonomous flight. IEEE/ASME Transactions on Mechatronics, 2022, 27(6): 5484-5494 doi: 10.1109/TMECH.2022.3182418
    [36] Usherwood J R, Cheney J A, Song J L, Windsor S P, Stevenson J P J, Dierksheide U, et al. High aerodynamic lift from the tail reduces drag in gliding raptors. Journal of Experimental Biology, 2020, 223(3): Article No. jeb214809 doi: 10.1242/jeb.214809
    [37] 熊超, 宋笔锋, 袁昌盛, 邵立民, 张亚锋. 微型扑翼飞行器机翼纵向力矩特性风洞试验研究. 西北工业大学学报, 2007, 25(5): 733-736

    Xiong Chao, Song Bi-Feng, Yuan Chang-Sheng, Shao Li-Min, Zhang Ya-Feng. Investigating longitudinal moment characteristics of flapping-wing MAV in wind tunnel. Journal of Northwestern Polytechnical University, 2007, 25(5): 733-736
    [38] Ajanic E, Feroskhan M, Mintchev S, Noca F, Floreano D. Bioinspired wing and tail morphing extends drone flight capabilities. Science Robotics, 2020, 5(47): Article No. eabc2897 doi: 10.1126/scirobotics.abc2897
  • 加载中
图(23) / 表(1)
计量
  • 文章访问数:  783
  • HTML全文浏览量:  244
  • PDF下载量:  255
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-26
  • 录用日期:  2023-03-21
  • 网络出版日期:  2024-01-15
  • 刊出日期:  2024-02-26

目录

    /

    返回文章
    返回