2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进舰尾流模型和多层耦合分析的机载雷达测量建模

葛泉波 王远亮 李宏

葛泉波, 王远亮, 李宏. 基于改进舰尾流模型和多层耦合分析的机载雷达测量建模. 自动化学报, 2024, 50(3): 1−23 doi: 10.16383/j.aas.c220815
引用本文: 葛泉波, 王远亮, 李宏. 基于改进舰尾流模型和多层耦合分析的机载雷达测量建模. 自动化学报, 2024, 50(3): 1−23 doi: 10.16383/j.aas.c220815
Ge Quan-Bo, Wang Yuan-Liang, Li Hong. Airborne radar measurement modeling based on improved wake model and multi-layer coupling analysis. Acta Automatica Sinica, 2024, 50(3): 1−23 doi: 10.16383/j.aas.c220815
Citation: Ge Quan-Bo, Wang Yuan-Liang, Li Hong. Airborne radar measurement modeling based on improved wake model and multi-layer coupling analysis. Acta Automatica Sinica, 2024, 50(3): 1−23 doi: 10.16383/j.aas.c220815

基于改进舰尾流模型和多层耦合分析的机载雷达测量建模

doi: 10.16383/j.aas.c220815
基金项目: 国家自然科学基金(62033010)资助
详细信息
    作者简介:

    葛泉波:南京信息工程大学教授. 主要研究方向为状态估计与信息融合, 自主智能无人系统, 飞行器测试数据分析和电力物联网技术. 本文通信作者. E-mail: 003535@nuist.edu.cn

    王远亮:上海海事大学物流工程学院博士研究生. 2020年获天津理工大学电气电子工程学院硕士学位. 主要研究方向为无人舰载机位姿估计, Kalman滤波算法的应用. E-mail: 202040210002@stu.shmtu.edu.cn

    李宏:中国飞行试验研究院研究员. 主要研究方向为航空飞行器测试, 光电测量, 试验数据处理, 系统工程设计. E-mail: lihongcfte@163.com

Airborne Radar Measurement Modeling Based on Improved Wake Model and Multi-layer Coupling Analysis

Funds: Supported by National Natural Science Foundation of China (62033010)
More Information
    Author Bio:

    GE Quan-Bo Professor at Nanjing University of Information Science and Technology. His research interest covers state estimation and information fusion, autonomous intelligent unmanned system, aircraft test data analysis, and power internet of things technology. Corresponding author of this paper

    WANG Yuan-Liang Ph.D. candidate at the Logistics Engineering college, Shanghai Maritime University. He received his master degree from the College of Electronic Engineering, Tianjin University of Technology in 2020. His research interest covers UCA pose estimation and application of Kalman filter algorithm

    LI Hong Researcher at Chinese Flight Test Establishment. His research interest covers aircraft test, photoelectric measurement, test data processing, and system engineering design

  • 摘要: 为提高复杂海洋环境中无人舰载机(Unmanned carrier-based aircraft, UCA)自动着舰时导航定位的准确性, 研究舰尾流对机载雷达测量过程的动态影响问题, 建立一种基于多层级耦合性分析的测量影响动态建模分析方法. 首先, 利用直接分解法和前向差分法建立一种基于离散化状态空间的时变舰尾流模型, 以克服传统传递函数方法存在的局限性; 其次, 基于舰尾流各分量均与飞机飞行速度相关的客观事实, 通过在时变系统中考虑舰尾流分量间的相互作用关系来构建一种更符合实际系统特征的分量自耦合舰尾流模型; 紧接着, 采用UCA姿态角变化能够改变坐标转换矩阵的思想, 研究舰尾流与UCA位姿变化间的耦合联系, 提出一种准确性更高的舰尾流对UCA位姿的深度影响模型; 然后, 以航母姿态变化对舰载雷达测量结果的影响模型为基础, 通过考虑本研究场景的内在特性, 建立UCA姿态变化对雷达测量结果的影响模型分析方法; 紧接着, 采用示意图方式获得位移变化对机载雷达测量结果的影响模型; 最后, 针对舰船受海洋大气(风、浪、流)干扰而出现失速这一现象, 建立实际海洋环境中舰尾流对机载雷达测量结果的非线性非高斯影响分析模型. 仿真实验研究验证了上述模型分析方法的有效性和优越性.
  • 图  1  研究思路框图

    Fig.  1  Block diagram of research ideas

    图  2  自耦合存在性示意图

    Fig.  2  Self coupling existence diagram

    图  3  航母姿态角对应无人机姿态角示意图

    Fig.  3  Schematic diagram of UCA attitude angle corresponding to aircraft carrier attitude angle

    图  4  不同平台中雷达所处位置坐标示意图

    Fig.  4  Schematic diagram of radar position coordinates in different platforms

    图  5  由横滚角和俯仰角导致的方位角影响

    Fig.  5  Azimuth error caused by roll and pitch angle

    图  6  姿态变化对传感器测量的距离影响示意图

    Fig.  6  Schematic diagram of the influence of attitude change on the distance measured by the sensor

    图  7  UCA位置确定示意图和位置变化示意图

    Fig.  7  UCA location determination diagram and location change diagram

    图  8  沿Z轴、Y轴和X轴运动的测量影响示意图

    Fig.  8  Schematic diagram of measurement error along Z-axis, Y-axis and X-axis

    图  9  大气紊流状态空间模型三个方向风速对比图

    Fig.  9  Comparison of wind speeds in three directions of the spatial model of atmospheric turbulence states

    图  10  随机分量状态空间模型三个方向风速对比图

    Fig.  10  Comparison plot of wind speeds in three directions of the stochastic component state space model

    图  11  不同舰尾流模型三个方向风速对比图

    Fig.  11  Comparison of three directions of different carrier air wake models

    图  12  不同舰尾流模型三个方向风速误差对比图

    Fig.  12  Comparison of wind speed errors in three directions of different carrier air wake models

    图  13  惯性坐标系三轴方向的位移变化模型

    Fig.  13  Displacement variation model in three-axis direction in inertial coordinate system

    图  14  惯性坐标系三轴方向的位移变化误差对比图

    Fig.  14  Comparison plot of displacement change error in the triaxial direction of the inertial coordinate system

    图  15  UCA姿态角变化模型

    Fig.  15  UCA attitude angle change model

    图  16  UCA姿态角变化误差对比

    Fig.  16  Comparison of UCA attitude angle change error

    图  17  位移变化对机载雷达测量结果的影响仿真对比图

    Fig.  17  Simulation comparison diagram of the influence of displacement change on the measurement accuracy of airborne radar

    图  18  位移变化对雷达测量结果的影响误差仿真对比图

    Fig.  18  Error simulation comparison diagram of influence of displacement change on radar measurement accuracy

    图  19  姿态变化对雷达测量结果的影响仿真对比图

    Fig.  19  Simulation comparison diagram of the influence of attitude change on radar measurement accuracy

    图  20  姿态变化对雷达测量结果的影响误差仿真对比图

    Fig.  20  Error simulation comparison diagram of influence of attitude change on airborne radar measurement accuracy

    图  21  位姿变化对机载雷达测量结果的影响仿真对比图

    Fig.  21  Simulation comparison diagram of the influence of position and attitude changes on the measurement accuracy of airborne radar

    图  22  位姿变化对雷达测量结果的影响误差仿真对比图

    Fig.  22  Error simulation comparison diagram of influence of position and attitude change on airborne radar measurement accuracy

    图  23  舰尾流对雷达测量结果影响的非高斯性验证

    Fig.  23  Verification of non-Gaussian effect of ship wake on radar measurement accuracy

    图  24  风速误差对比图

    Fig.  24  Comparison diagram of wind speed error

    图  25  两种模型对雷达测量结果影响的误差仿真对比图

    Fig.  25  Error simulation comparison diagram of the influence of two models on radar measurement results

    表  1  三种模型均方根误差结果

    Table  1  Root mean square error results of three models

    TCAWACAWCCAW
    ug-RMSE0.47910.30360.2979
    lg-RMSE0.24810.20250.1951
    wg-RMSE0.71800.39600.3918
    下载: 导出CSV

    表  2  两种位移变化模型均方根误差结果

    Table  2  Root mean square error results of two displacement variation models

    DTCAWDCCAW
    dx-RMSE0.04420.0240
    dy-RMSE0.06610.0410
    dz-RMSE0.03930.0218
    下载: 导出CSV

    表  3  两种姿态变化模型均方根误差结果

    Table  3  Root mean square error results of two attitude change models

    ATCAWACCAW
    ${\rm{d}}\theta$-RMSE0.01440.0079
    ${\rm{d}}\psi$-RMSE0.00500.0040
    ${\rm{d}}\phi$-RMSE0.07200.0397
    下载: 导出CSV

    表  4  两种位移变化干扰下测量影响模型均方根误差结果

    Table  4  Root mean square error results of measurement influence model under two kinds of displacement changes

    RDTCAWRDCCAW
    dR-RMSE0.06640.0356
    dE-RMSE5.5629 × 10−42.6464 × 10−4
    dA-RMSE8.2381 × 10−42.6558 × 10−4
    下载: 导出CSV

    表  5  两种姿态变化干扰下测量影响模型均方根误差结果

    Table  5  Root mean square error results of measurement influence model under two kinds of attitude changes

    RATCAWRACCAW
    ${\rm{d}}R$-RMSE0.02130.0130
    ${\rm{d}}E$-RMSE0.04360.0276
    ${\rm{d}}A$-RMSE0.41170.2321
    下载: 导出CSV

    表  6  两种位姿变化干扰下测量影响模型均方根误差结果

    Table  6  Root mean square error results of measurement influence model under the interference of two kinds of posture changes

    RPTCAWRPCCAW
    ${\rm{d}}R$-RMSE0.07450.0347
    ${\rm{d}}E$-RMSE0.04360.0277
    ${\rm{d}}A$-RMSE0.41170.2321
    下载: 导出CSV

    表  7  两种模型均方根误差结果

    Table  7  Root mean square error results of two models

    CCAWSCCAW
    ug-RMSE0.25600.2260
    lg-RMSE0.22610.1905
    wg-RMSE0.33160.3143
    下载: 导出CSV

    表  8  两种模型均方根误差结果

    Table  8  Root mean square error results of two models

    RPCCAWWRPCCAW
    ${\rm{d}}R$-RMSE0.04520.0379
    ${\rm{d}}E$-RMSE0.05470.0504
    ${\rm{d}}A$-RMSE0.67780.6772
    下载: 导出CSV
  • [1] Ahmed R F, Golam K B. Robust ground moving target detection for airborne radar using a novel feature-based machine learning approach. Journal of the Franklin Institute, 2022, 359(09): 23-36.
    [2] Chen H M, Lu Y B, Liu J, Yi X L, Sun H W, Mu H Q, et al. Efficient knowledge-aided target relocation algorithm for airborne radar. The Journal of Engineering, 2019, 2019(21): 7589-7592. doi: 10.1049/joe.2019.0642
    [3] Kang X J, Li J, Fan X T, Wan W H. Real-Time RGB-D Simultaneous Localization and Mapping Guided by Terrestrial LiDAR Point Cloud for Indoor 3-D Reconstruction and Camera Pose Estimation. Applied Sciences, 2019, 9(16): 77-91.
    [4] Chen L L, Lv Z Y, Shen X Y, Wu Y H, Sun X M. Adaptive Attitude Control for a Coaxial Tilt-Rotor UAV via Immersion and Invariance Methodology. IEEE/CAA Journal of Automatica Sinica, 2022, 9(09): 1710-1713. doi: 10.1109/JAS.2022.105827
    [5] 王峰, 黄子路, 韩孟臣, 邢立宁, 王凌. 基于KnCMPSO算法的异构无人机协同多任务分配. 自动化学报, 2022, 48(x): 1-17.

    Wang F, Huang Z L, Han M C, Xing L N, Wang L. Cooperative multi task allocation of heterogeneous UAVs based on kncpso algorithm. Acta Automatica Sinica, 2022, 48(x): 1-17.
    [6] 杨智博. 舰载机自动着舰系统纵向控制策略研究. 哈尔滨工程大学, 2020.

    Yang Z B. Research on longitudinal control strategy of automatic landing system of Shipborne aircraft. Harbin Engineering University, 2020.
    [7] Li X, Duan H B, Tian Y L, Wang F Y. Exploring Image Generation for UAV Change Detection. IEEE/CAA Journal of Automatica Sinica, 2022, 9(06): 1061-1072. doi: 10.1109/JAS.2022.105629
    [8] 范云生, 陈欣宇, 赵永生, 宋保健. 基于扩张状态观测器的四旋翼吊挂飞行系统非线性控制[J/OL]. 自动化学报, 2022, 20(x): 1-13.

    Fan Y S, Chen X Y, Zhao Y S, Song B J. Nonlinear Control of Four Rotor Suspended Flight System Based on Extended State Observer[J/OL]. Acta Automatica Sinica, 2022, 20(x): 1-13.
    [9] 王鑫. 飞翼布局无人机自主着舰控制关键技术研究. 南京航空航天大学, 2017.

    Wang X. Research on Key Technologies of autonomous landing control of flying wing UAV. Nanjing University of Aeronautics and Astronautics, 2017.
    [10] Hao R Z, Huang J. On construction method of shipborne and airborne radar intelligence and related equipment knowledge graph. Journal of Physics: Conference Series, 2017, 887(1): 012042-012042.
    [11] 谭文渊, 曹义华. 基于嵌套网格的舰载直升机流场仿真及风限图计算. 航空动力学报, 2020, 35(10): 2166-2175.

    Tan W Y, Cao Y H. Flow field simulation and wind limit diagram calculation of Shipborne helicopter based on nested grid. Journal of Aeronautical dynamics, 2020, 35(10): 2166-2175.
    [12] Department of Defense Interface Standard. Flying Qualities of Pilot Aircraft. MIL-HDBK-1797. 1997: 686-690.
    [13] 赵所, 李震, 侯中喜, 张大为. 舰尾流场扰动影响分析及抑制技术研究. 华中科技大学学报(自然科学版), 2021, 49(06): 86-91.

    Zhao S, Li Z, Hou Z X, Zhang D W. Analysis of the influence of the disturbance of the stern flow field and Research on the suppression technology. Journal of Huazhong University of science and Technology (Natural Science Edition), 2021, 49(06): 86-91.
    [14] 陶杨, 韩维. 基于改进多目标遗传算法的舰尾紊流模拟方法. 北京航空航天大学学报, 2015, 41(03): 443-448.

    Yang T, Wei H. Simulation method of stern Turbulence Based on improved multi-objective genetic algorithm. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(03): 443-448.
    [15] 罗飞, 张军红, 王博, 唐瑞琳, 唐炜. 基于直接升力与动态逆的舰尾流抑制方法. 航空学报, 2021, 42(12): 193-208.

    Luo F, Zhang J H, Wang B, Tang R L, Tang W. A method of ship wake suppression based on direct lift and dynamic inversion. Acta Aeronautica Sinica, 2021, 42(12): 193-208.
    [16] 周俊. 舰载机着舰飞/推综合控制技术研究. 南京航空航天大学, 2018.

    Zhou J. Research on integrated control technology of landing flight / propulsion of Shipborne aircraft. Nanjing University of Aeronautics and Astronautics, 2018.
    [17] 贲亮亮. 舰载机着舰环境扰动影响及其响应分析. 南京航空航天大学, 2013.

    Peng L L. Impact and response analysis of environmental disturbance of carrier aircraft landing. Nanjing University of Aeronautics and Astronautics, 2013
    [18] 周志恒, 赵建军, 桑德一, 杨利斌. 舰艇姿态对作战系统动态对准精度的影响分析. 兵工自动化, 2016, 35(05): 51-55+71.

    Zhou Z H, Zhao J J, Yi S, Yang Li B. Analysis of influence of ship attitude on dynamic alignment accuracy of combat system. Ordnance automation, 2016, 35(05): 51-55+71.
    [19] 桑德一, 赵建军, 杨利斌. 航母运动对着舰引导雷达精度的影响. 中国舰船研究, 2014, 9(06): 8-13.

    Sang D Y, Zhao J J, Yang L B. Influence of aircraft carrier movement on the accuracy of ship guidance radar. China Ship Research, 2014, 9(06): 8-13.
    [20] 王可, 徐明亮, 李亚飞, 姜晓恒, 鲁爱国, 李鉴. 一种面向航空母舰甲板运动状态预估的鲁棒学习模型. 自动化学报, 2022, 48(x): 1-9.

    Wang K, Xu M L, Li Y F, Jiang X H, Lu A G, Li J. A robust learning model for aircraft carrier deck motion state prediction. Acta automatica Sinica, 2022, 48(x): 1-9.
    [21] 肖业伦, 金长江. 大气扰动中的飞行原理. 北京: 国防工业出版社, 1993.

    Xiao Y L, Jin C J. Flight principle in atmospheric disturbance. Beijing: National Defense Industry Press, 1993.
    [22] Xin J, Ju J, Wang X H, Zhen Z Y. Research on effects of sea states on air wake. ICIEA 2011, 2011: 758-762.
    [23] 李新飞. 舰载机起降关键技术仿真研究. 哈尔滨工程大学, 2012.

    Li X F. Simulation Research on Key Technologies of carrier aircraft take-off and landing. Harbin Engineering University, 2012.
    [24] Cui K K, Han W, Liu Y J, Wang X W, Su X C, Liu J. Model Predictive Control for Automatic Carrier Landing with Time Delay. International Journal of Aerospace Engineering, 2021: 20-31.
    [25] Zhu Q D, Yang Z B. Design of Air-Wake Rejection Control for Longitudinal Automatic Carrier Landing Cyber-Physical System. Computers and Electrical Engineering, 2020, 84(06): 115-129.
    [26] 牟杭. 多输入多输出振动系统状态空间建模方法研究. 南京航空航天大学, 2018.

    Mou H. Research on state space modeling method of multi input and multi output vibration system. Nanjing University of Aeronautics and Astronautics, 2018.
    [27] Nagrath J, Goral M. Control System Engineering. Wiley Eastern Limited. 2016.
    [28] 谢莉, 杨慧中, 丁锋. 非均匀采样数据系统的新型模型描述方法. 自动化学报, 2017, 43(05): 806-813.

    Xie L, Yang H Z, Ding F. A new model description method for non uniformly sampled data systems. Acta automatica Sinica, 2017, 43(05): 806-813.
    [29] 刘文定. 自动控制原理. 电子工业出版社, 2018.

    Liu W D. Automatic control principle. Electronic Industry Press, 2018.
    [30] 胡寿松. 自动控制原理. 科学出版社, 2019.

    Hu S S. Automatic control principle. Science Press, 2019.
    [31] 刘豹, 唐万生. 现代控制理论. 机械工业出版社, 2017.

    Liu B, Tang W S. Modern control theory. China Machine Press, 2017.
    [32] 段广仁. 高阶系统方法-Ⅱ. 能控性与全驱性. 自动化学报, 2020, 46(08): 1571-1581.

    Duan G R. High order system method-Ⅱ. Controllability and full drive. Acta automatica Sinica, 2020, 46(08): 1571-1581
    [33] Li W, Zhao S X, Liu K, Lu H C, Fan T H. Dynamic Response Calculation Algorithm for Floating Offshore Wind Turbines Based on a State-Space Method of Transfer Function. Frontiers in Energy Research, 2022, 25(06): 73-89.
    [34] 田玉平. 自动控制原理. 科学出版社, 2018.

    Tian Y P. Automatic control principle. Science Press, 2018.
    [35] Krzysztof B. Approximate State-Space and Transfer Function Models for 2×2 Linear Hyperbolic Systems with Collocated Boundary Inputs. International Journal of Applied Mathematics and Computer Science, 2020, 30(3): 475-49.
    [36] 李繁飙, 杨皓月, 王鸿鑫, 阳春华, 廖力清. 基于干扰估计的非对称运动下飞机刹车系统模型预测控制. 自动化学报, 2022, 48(07): 1690-1703.

    Li F X, Yang H Y, Wang H X, Yang C H, Liao L Q. Model predictive control of aircraft braking system under asymmetric motion based on disturbance estimation. Acta Automatica Sinica, 2022, 48(07): 1690-1703.
    [37] 李繁飙, 黄培铭, 阳春华, 廖力清, 桂卫华. 基于非线性干扰观测器的飞机全电刹车系统滑模控制设计. 自动化学报, 2021, 47(11): 2557-2569.

    Li F X, Huang P M, Yang C H, Liao L Q, Gui W H. Sliding mode control design of aircraft electric braking system based on nonlinear disturbance observer. Acta Automatica Sinica, 2021, 47(11): 2557-2569.
    [38] 孙荣恒. 应用数理统计. 科学出版社, 2014.

    Sun R H. Applied Mathematical Statistics. Science Press, 2014.
    [39] Wang Y L, Li H, Ge Q B. A Novel Modeling Analysis of Carrier Air Wake Based on Component Coupling Correlation. ICUS 2021, 2021, 2021: 970-975.
    [40] 李永泉, 郭雨, 张阳, 张立杰. 基于牛顿欧拉法的一种空间被动过约束并联机构动力学建模方法. 机械工程学报, 2020, 56(11): 48-57. doi: 10.3901/JME.2020.11.048

    Li Y Q, Guo Y, Zhang Y, Zhang L J. A dynamic modeling method of space passive overconstrained parallel mechanism based on Newton Euler method. Journal of Mechanical Engineering, 2020, 56(11): 48-57. doi: 10.3901/JME.2020.11.048
    [41] 谢新连, 王余宽, 何傲, 潘伟, 许小卫. 考虑风浪流影响的船舶路径规划及算法. 重庆交通大学学报(自然科学版), 2022, 41(07): 1-8.

    Xie X L, Wang Y K, He A, Pan W, Xu X W. Ship path planning and algorithm considering wind, wave and current Journal of Chongqing. Jiaotong University (Natural Science Edition), 2022, 41(07): 1-8.
    [42] 魏照坤. 风浪影响下的集装箱船舶航速优化. 大连海事大学, 2018.

    Wei Z K. The optimization of container ship speed under the influence of wind and waves. Dalian Maritime University, 2018.
    [43] 国强, 李文韬. 基于正则化约束总体最小二乘的TDOA/FDOA无源定位方法. 哈尔滨工业大学学报, 2022, 54(05): 81-87.

    Guo Q, Li W T. TDOA/FDOA passive location method based on regularized constrained total least squares. Journal of Harbin Institute of Technology, 2022, 54(05): 81-87.
  • 加载中
计量
  • 文章访问数:  137
  • HTML全文浏览量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-16
  • 录用日期:  2023-02-23
  • 网络出版日期:  2023-08-21

目录

    /

    返回文章
    返回