2024年 第50卷 第3期
2024, 50(3): 431-449.
doi: 10.16383/j.aas.c230161
摘要:
近年来, 智能体集群的能量高效利用(Energy efficient utilization, EEU)机制已经成为多智能体系统领域的热点问题, 如何使用有限的能量资源实现系统性能最优是该问题的核心研究内容. 考虑到智能体集群与生物族群的相似性, 探究生物族群的能量高效利用机制对提升智能体集群节能性能有着重要的研究价值. 为此, 首先介绍不同生物族群中蕴含的能量利用机制, 并根据节能方式的差异分成3类, 流体优势利用机制、流体阻碍克服机制和热量交换与扩散机制; 然后对这些机制进行总结与分析, 并...
近年来, 智能体集群的能量高效利用(Energy efficient utilization, EEU)机制已经成为多智能体系统领域的热点问题, 如何使用有限的能量资源实现系统性能最优是该问题的核心研究内容. 考虑到智能体集群与生物族群的相似性, 探究生物族群的能量高效利用机制对提升智能体集群节能性能有着重要的研究价值. 为此, 首先介绍不同生物族群中蕴含的能量利用机制, 并根据节能方式的差异分成3类, 流体优势利用机制、流体阻碍克服机制和热量交换与扩散机制; 然后对这些机制进行总结与分析, 并...
2024, 50(3): 450-474.
doi: 10.16383/j.aas.c230120
摘要:
模糊认知图(Fuzzy cognitive map, FCM)是建立在认知图和模糊集理论上的一类代表性的软计算理论, 兼具神经网络和模糊决策两者的优势, 已成功地应用于复杂系统建模和时间序列分析等众多领域. 学习权重矩阵是基于模糊认知图建模的首要任务, 是模糊认知图研究领域的焦点. 针对这一核心问题, 首先, 全面综述模糊认知图的基本理论框架, 系统地总结近年来模糊认知图的拓展模型. 其次, 归纳、总结和分析模糊认知图学习算法的最新研究进展, 对学习算法进行重新定义和划分, 深度阐述各类学习算法...
模糊认知图(Fuzzy cognitive map, FCM)是建立在认知图和模糊集理论上的一类代表性的软计算理论, 兼具神经网络和模糊决策两者的优势, 已成功地应用于复杂系统建模和时间序列分析等众多领域. 学习权重矩阵是基于模糊认知图建模的首要任务, 是模糊认知图研究领域的焦点. 针对这一核心问题, 首先, 全面综述模糊认知图的基本理论框架, 系统地总结近年来模糊认知图的拓展模型. 其次, 归纳、总结和分析模糊认知图学习算法的最新研究进展, 对学习算法进行重新定义和划分, 深度阐述各类学习算法...
2024, 50(3): 475-485.
doi: 10.16383/j.aas.c210585
摘要:
针对光伏(Photovoltaic, PV)−电池−超级电容直流微电网系统中光伏发电间歇性造成的功率失配问题, 提出一种基于事件触发的无差拍预测控制(Event-triggered deadbeat predictive control, ETDPC)方法, 以实现有效的能量管理. ETDPC方法结合事件触发控制策略和无差拍预测控制策略(Deadbeat predictive control, DPC)的优点, 根据微电网的拓扑结构构建状态空间模型, 用于设计适用于微电网能量管理的触发条件: 当...
针对光伏(Photovoltaic, PV)−电池−超级电容直流微电网系统中光伏发电间歇性造成的功率失配问题, 提出一种基于事件触发的无差拍预测控制(Event-triggered deadbeat predictive control, ETDPC)方法, 以实现有效的能量管理. ETDPC方法结合事件触发控制策略和无差拍预测控制策略(Deadbeat predictive control, DPC)的优点, 根据微电网的拓扑结构构建状态空间模型, 用于设计适用于微电网能量管理的触发条件: 当...
2024, 50(3): 486-504.
doi: 10.16383/j.aas.c230240
摘要:
以一种折叠式高超声速变外形飞行器(Hypersonic morphing vehicle, HMV)为研究对象, 综合考虑变形引起的气动特性、动力学特性的动态变化和模型不确定性、外部干扰的影响, 开展飞行器建模与固定时间预设性能控制方法研究. 首先, 建立高超声速变外形飞行器的运动模型和姿态控制模型; 然后, 采用固定时间干扰观测器实现对模型不确定性和外部干扰构成的复合总扰动的精确估计, 并设计一种新型固定时间预设性能函数以定量描述期望性能约束, 在此基础上, 基于预设性能控制架构并结合动态面控...
以一种折叠式高超声速变外形飞行器(Hypersonic morphing vehicle, HMV)为研究对象, 综合考虑变形引起的气动特性、动力学特性的动态变化和模型不确定性、外部干扰的影响, 开展飞行器建模与固定时间预设性能控制方法研究. 首先, 建立高超声速变外形飞行器的运动模型和姿态控制模型; 然后, 采用固定时间干扰观测器实现对模型不确定性和外部干扰构成的复合总扰动的精确估计, 并设计一种新型固定时间预设性能函数以定量描述期望性能约束, 在此基础上, 基于预设性能控制架构并结合动态面控...
2024, 50(3): 505-517.
doi: 10.16383/j.aas.c230552
摘要:
针对大气层内可回收火箭的动力下降问题, 提出一种多阶段的鲁棒优化(Robust optimization, RO)方法. 由于大气层内存在未知风场, 如何在火箭下降段考虑这种不确定性具有十分重要的意义. 首先, 建立一个关于高度的不确定风场模型, 在该风场下给出火箭动力下降的鲁棒最优控制问题. 为了求解该问题, 使用一种对不等式约束采取一阶近似并将一阶项作为安全裕量加入约束的鲁棒优化方法, 得到一个可以求解的单阶段鲁棒优化算法. 其次, 定量给出安全裕量的上界, 基于该上界提出一种多阶段鲁棒优化...
针对大气层内可回收火箭的动力下降问题, 提出一种多阶段的鲁棒优化(Robust optimization, RO)方法. 由于大气层内存在未知风场, 如何在火箭下降段考虑这种不确定性具有十分重要的意义. 首先, 建立一个关于高度的不确定风场模型, 在该风场下给出火箭动力下降的鲁棒最优控制问题. 为了求解该问题, 使用一种对不等式约束采取一阶近似并将一阶项作为安全裕量加入约束的鲁棒优化方法, 得到一个可以求解的单阶段鲁棒优化算法. 其次, 定量给出安全裕量的上界, 基于该上界提出一种多阶段鲁棒优化...
2024, 50(3): 518-526.
doi: 10.16383/j.aas.c230273
摘要:
模型未知的冗余机器人执行任务的过程中会产生较大的控制误差, 其末端执行器的位置与姿态也需要针对不同任务进行修正. 为解决该问题, 提出一种基于数据驱动的冗余机器人末端执行器位置与姿态控制方案. 该方案使用在线学习技术, 能够应用于模型未知的冗余机器人控制. 同时引入四元数表示法将控制机器人末端执行器姿态问题转化为基于四元数表示的控制方法. 随后, 设计一种神经动力学求解器对所提方案进行求解. 相关的理论分析、仿真及对比体现了所提方案的可行性、有效性与新颖性.
模型未知的冗余机器人执行任务的过程中会产生较大的控制误差, 其末端执行器的位置与姿态也需要针对不同任务进行修正. 为解决该问题, 提出一种基于数据驱动的冗余机器人末端执行器位置与姿态控制方案. 该方案使用在线学习技术, 能够应用于模型未知的冗余机器人控制. 同时引入四元数表示法将控制机器人末端执行器姿态问题转化为基于四元数表示的控制方法. 随后, 设计一种神经动力学求解器对所提方案进行求解. 相关的理论分析、仿真及对比体现了所提方案的可行性、有效性与新颖性.
2024, 50(3): 527-543.
doi: 10.16383/j.aas.c230272
摘要:
为解决电熔镁炉工况识别模型泛化能力和可解释性弱的缺陷, 提出一种基于深层卷积随机配置网络(Deep convolutional stochastic configuration networks, DCSCN)的可解释性电熔镁炉异常工况识别方法. 首先, 基于监督学习机制生成具有物理含义的高斯差分卷积核, 采用增量式方法构建深层卷积神经网络(Deep convolutional neural network, DCNN), 确保识别误差逐级收敛, 避免反向传播算法迭代寻优卷积核参数的过程. 定义...
为解决电熔镁炉工况识别模型泛化能力和可解释性弱的缺陷, 提出一种基于深层卷积随机配置网络(Deep convolutional stochastic configuration networks, DCSCN)的可解释性电熔镁炉异常工况识别方法. 首先, 基于监督学习机制生成具有物理含义的高斯差分卷积核, 采用增量式方法构建深层卷积神经网络(Deep convolutional neural network, DCNN), 确保识别误差逐级收敛, 避免反向传播算法迭代寻优卷积核参数的过程. 定义...
2024, 50(3): 544-559.
doi: 10.16383/j.aas.c230043
摘要:
在现代社会中, 复杂物流配送场景的车辆路径规划问题(Vehicle routing problem, VRP)一般带有时间窗约束且需要提供同时取送货的服务. 这种复杂物流配送场景的车辆路径规划问题是NP-难问题. 当其规模逐渐增大时, 一般的数学规划方法难以求解, 通常使用启发式方法在限定时间内求得较优解. 然而, 传统的启发式方法从原大规模问题直接开始搜索, 无法利用先前相关的优化知识, 导致收敛速度较慢. 因此, 提出面向复杂物流配送场景的车辆路径规划多任务辅助进化算法(Multitask-...
在现代社会中, 复杂物流配送场景的车辆路径规划问题(Vehicle routing problem, VRP)一般带有时间窗约束且需要提供同时取送货的服务. 这种复杂物流配送场景的车辆路径规划问题是NP-难问题. 当其规模逐渐增大时, 一般的数学规划方法难以求解, 通常使用启发式方法在限定时间内求得较优解. 然而, 传统的启发式方法从原大规模问题直接开始搜索, 无法利用先前相关的优化知识, 导致收敛速度较慢. 因此, 提出面向复杂物流配送场景的车辆路径规划多任务辅助进化算法(Multitask-...
2024, 50(3): 560-575.
doi: 10.16383/j.aas.c210843
摘要:
国内城市固废焚烧(Municipal solid waste incineration, MSWI)过程通常依靠运行专家观察炉内火焰识别燃烧状态后再结合自身经验修正控制策略以维持稳定燃烧, 存在智能化水平低、识别结果具有主观性与随意性等问题. 由于MSWI过程的火焰图像具有强污染、多噪声等特性, 并且存在异常工况数据较为稀缺等问题, 导致传统目标识别方法难以适用. 对此, 提出一种基于混合数据增强的MSWI过程燃烧状态识别方法. 首先, 结合领域专家经验与焚烧炉排结构对燃烧状态进行标定; 接着,...
国内城市固废焚烧(Municipal solid waste incineration, MSWI)过程通常依靠运行专家观察炉内火焰识别燃烧状态后再结合自身经验修正控制策略以维持稳定燃烧, 存在智能化水平低、识别结果具有主观性与随意性等问题. 由于MSWI过程的火焰图像具有强污染、多噪声等特性, 并且存在异常工况数据较为稀缺等问题, 导致传统目标识别方法难以适用. 对此, 提出一种基于混合数据增强的MSWI过程燃烧状态识别方法. 首先, 结合领域专家经验与焚烧炉排结构对燃烧状态进行标定; 接着,...
2024, 50(3): 576-588.
doi: 10.16383/j.aas.c211146
摘要:
目前, 智能优化算法已广泛应用于工程优化中, 在当前多能耦合与互补的能源发展趋势下, 仅考虑系统经济指标的单目标优化模式已经不再适用于目前区域综合能源系统(Integrated energy system, IES)的运行优化调度, 需要研究一种多目标运行策略来解决区域综合能源系统的运行优化调度问题. 首先综合考虑经济与能源利用两个指标并结合商业住宅区域的特性, 以系统日运行收益和一次能源利用率为优化目标构建商业住宅区域综合能源系统多目标运行优化调度模型. 其次由于传统多目标智能优化算法缺乏一种...
目前, 智能优化算法已广泛应用于工程优化中, 在当前多能耦合与互补的能源发展趋势下, 仅考虑系统经济指标的单目标优化模式已经不再适用于目前区域综合能源系统(Integrated energy system, IES)的运行优化调度, 需要研究一种多目标运行策略来解决区域综合能源系统的运行优化调度问题. 首先综合考虑经济与能源利用两个指标并结合商业住宅区域的特性, 以系统日运行收益和一次能源利用率为优化目标构建商业住宅区域综合能源系统多目标运行优化调度模型. 其次由于传统多目标智能优化算法缺乏一种...
2024, 50(3): 589-606.
doi: 10.16383/j.aas.c230233
摘要:
数据流分类研究在开放、动态环境中如何提供更可靠的数据驱动预测模型, 关键在于从实时到达且不断变化的数据流中检测并适应概念漂移. 目前, 为检测概念漂移和更新分类模型, 数据流分类方法通常假设所有样本的标签都是已知的, 这一假设在真实场景下是不现实的. 此外, 真实数据流可能表现出较高且不断变化的类不平衡比率, 会进一步增加数据流分类任务的复杂性. 为此, 提出一种非平衡概念漂移数据流主动学习方法(Active learning method for imbalanced concept drif...
数据流分类研究在开放、动态环境中如何提供更可靠的数据驱动预测模型, 关键在于从实时到达且不断变化的数据流中检测并适应概念漂移. 目前, 为检测概念漂移和更新分类模型, 数据流分类方法通常假设所有样本的标签都是已知的, 这一假设在真实场景下是不现实的. 此外, 真实数据流可能表现出较高且不断变化的类不平衡比率, 会进一步增加数据流分类任务的复杂性. 为此, 提出一种非平衡概念漂移数据流主动学习方法(Active learning method for imbalanced concept drif...
2024, 50(3): 607-616.
doi: 10.16383/j.aas.c230316
摘要:
针对视觉遮挡引起的人体姿态估计(Human pose estimation, HPE)性能下降问题, 提出基于渐进高斯滤波(Progressive Gaussian filtering, PGF)融合的人体姿态估计方法. 首先, 设计分层性能评估方法对多视觉量测进行分类处理, 以适应视觉遮挡引起的量测不确定性问题. 其次, 构建分布式渐进贝叶斯滤波融合框架, 以及设计一种分层分类融合估计方法来提升复杂量测融合的鲁棒性和准确性. 特别地, 针对量测统计特性变化问题, 利用局部估计间的交互信息来引导...
针对视觉遮挡引起的人体姿态估计(Human pose estimation, HPE)性能下降问题, 提出基于渐进高斯滤波(Progressive Gaussian filtering, PGF)融合的人体姿态估计方法. 首先, 设计分层性能评估方法对多视觉量测进行分类处理, 以适应视觉遮挡引起的量测不确定性问题. 其次, 构建分布式渐进贝叶斯滤波融合框架, 以及设计一种分层分类融合估计方法来提升复杂量测融合的鲁棒性和准确性. 特别地, 针对量测统计特性变化问题, 利用局部估计间的交互信息来引导...
2024, 50(3): 617-639.
doi: 10.16383/j.aas.c220815
摘要:
为提高复杂海洋环境中无人舰载机(Unmanned carrier-based aircraft, UCA)自动着舰时导航定位的准确性, 研究舰尾流对机载雷达测量过程的动态影响问题, 建立一种基于多层级耦合性分析的测量影响动态建模分析方法. 首先, 利用直接分解法和前向差分法建立一种基于离散化状态空间的时变舰尾流模型, 以克服传统传递函数方法存在的局限性; 其次, 基于舰尾流各分量均与飞机飞行速度相关的客观事实, 通过在时变系统中考虑舰尾流分量间的相互作用关系来构建一种更符合实际系统特征的分量自耦...
为提高复杂海洋环境中无人舰载机(Unmanned carrier-based aircraft, UCA)自动着舰时导航定位的准确性, 研究舰尾流对机载雷达测量过程的动态影响问题, 建立一种基于多层级耦合性分析的测量影响动态建模分析方法. 首先, 利用直接分解法和前向差分法建立一种基于离散化状态空间的时变舰尾流模型, 以克服传统传递函数方法存在的局限性; 其次, 基于舰尾流各分量均与飞机飞行速度相关的客观事实, 通过在时变系统中考虑舰尾流分量间的相互作用关系来构建一种更符合实际系统特征的分量自耦...
2024, 50(3): 640-648.
doi: 10.16383/j.aas.c230476
摘要:
针对现有异常检测(Anomaly detection, AD)模型计算效率低和检测性能差等问题, 提出一种多尺度流模型(Multi-scale normalizing flow, MS-Flow), 通过多尺度交叉融合实现高效的视觉图像异常识别. 具体地, 在流模型(Normalizing flow, NF)内部构建层级式的多尺度架构来避免多通道数据的冗余交叉计算, 同时保证网络的多尺度表达能力. 此外, 设计的层级感知模块通过逐层级的多粒度特征融合, 在细粒度级别表达多尺度特征, 有效地提高分...
针对现有异常检测(Anomaly detection, AD)模型计算效率低和检测性能差等问题, 提出一种多尺度流模型(Multi-scale normalizing flow, MS-Flow), 通过多尺度交叉融合实现高效的视觉图像异常识别. 具体地, 在流模型(Normalizing flow, NF)内部构建层级式的多尺度架构来避免多通道数据的冗余交叉计算, 同时保证网络的多尺度表达能力. 此外, 设计的层级感知模块通过逐层级的多粒度特征融合, 在细粒度级别表达多尺度特征, 有效地提高分...