2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

干涉型光纤海洋参数传感器的分布式测量方法研究

郑洪坤 吕日清 赵勇 彭昀 林子婷 刘睿杰

郑洪坤, 吕日清, 赵勇, 彭昀, 林子婷, 刘睿杰. 干涉型光纤海洋参数传感器的分布式测量方法研究. 自动化学报, 2023, 49(9): 1941−1950 doi: 10.16383/j.aas.c220682
引用本文: 郑洪坤, 吕日清, 赵勇, 彭昀, 林子婷, 刘睿杰. 干涉型光纤海洋参数传感器的分布式测量方法研究. 自动化学报, 2023, 49(9): 1941−1950 doi: 10.16383/j.aas.c220682
Zheng Hong-Kun, Lv Ri-Qing, Zhao Yong, Peng Yun, Lin Zi-Ting, Liu Rui-Jie. Research on the distributed measurement method of ocean optical fiber sensor based on interferometer. Acta Automatica Sinica, 2023, 49(9): 1941−1950 doi: 10.16383/j.aas.c220682
Citation: Zheng Hong-Kun, Lv Ri-Qing, Zhao Yong, Peng Yun, Lin Zi-Ting, Liu Rui-Jie. Research on the distributed measurement method of ocean optical fiber sensor based on interferometer. Acta Automatica Sinica, 2023, 49(9): 1941−1950 doi: 10.16383/j.aas.c220682

干涉型光纤海洋参数传感器的分布式测量方法研究

doi: 10.16383/j.aas.c220682
基金项目: 国家自然科学基金(61933004, U22A2021), 河北省自然科学基金创新研究群体(F2020501040), 中央高校基本科研业务费(N2304003)资助
详细信息
    作者简介:

    郑洪坤:之江实验室光纤传感研究中心博士后. 2017年获得东北大学自动化专业学士学位, 2022年获得东北大学检测技术与自动化装置专业博士学位. 主要研究方向为光纤传感技术. E-mail: hongkunzheng@outlook.com

    吕日清:东北大学信息科学与工程学院副教授. 2008年获得东北大学生物医学工程专业学士学位, 2010年获得东北大学电路与系统专业硕士学位, 2014年获得东北大学检测技术与自动化装置专业博士学位. 主要研究方向为磁流体, 光纤传感器, 纳米材料和机器学习. 本文通信作者. E-mail: lvriqing@ise.neu.edu.cn

    赵勇:东北大学信息科学与工程学院教授. 1996年获得哈尔滨工业大学精密仪器系学士学位, 2001 年获得哈尔滨工业大学精密仪器系博士学位.主要研究方向为光纤传感器与器件的开发, 光纤布拉格光栅传感器, 新型传感器材料与原理和光学测量技术. E-mail: zhaoyong@ise.neu.edu.cn

    彭昀:东北大学秦皇岛分校控制工程学院讲师. 2015年获得河北科技大学机械工程学院学士学位, 2017年和2021年分别获得东北大学硕士学位和博士学位. 主要研究方向为光纤传感器件的开发, 量子等离激元传感器及量子测量技术. E-mail: pengyun@neuq.edu.cn

    林子婷:东北大学信息科学与工程学院博士研究生. 2018年获得东北大学控制工程学院学士学位. 主要研究方向为光纤传感器, 海洋多参数检测. E-mail: linziting@stumail.neu.edu.cn

    刘睿杰:东北大学信息科学与工程学院博士研究生. 2022年获得曲阜师范大学网络空间安全学院学士学位. 主要研究方向为光纤传感, 机器学习. E-mail: 2210332@stu.neu.edu.cn

Research on the Distributed Measurement Method of Ocean Optical Fiber Sensor Based on Interferometer

Funds: Supported by National Natural Science Foundation of China (61933004), National Natural Science Foundation of China (U22A2021), Natural Science Foundation of Hebei Province Innovative Research Group Project (F2020501040), and Fundamental Research Funds for the Central Universities (N2304003)
More Information
    Author Bio:

    ZHENG Hong-Kun Postdoctor at Research Center for Optical Fiber Sensing, Zhejiang Laboratory. He received his bachelor degree in automation and Ph.D. degree in detection technology and automation device from Northeastern University in 2017 and 2022, respectively. His main research interest is optical fiber sensing technology

    LV Ri-Qing Associate professor at College of Information Science and Engineering, Northeastern University. He received his bachelor degree in biomedical engineering, master degree in circuits and systems and Ph.D. degree in detection technology and automation device from Northeastern University in 2008, 2010 and 2014, respectively. His research interest covers magnetic fluids, fiber-optic sensors, nanomaterials and machine learning. Corresponding author of this paper

    ZHAO Yong Professor at College of Information Science and Engineering, Northeastern University. He received his bachelor degree and Ph.D. degree in precision instrument from Haerbin Institute of Technology in 1996 and 2001, respectively. His research interest covers development of fiber-optic sensors and devices, fiber Bragg grating sensors, novel sensor materials and principles and optical measurement technologies

    PENG Yun Lecturer at School of Control Engineering, Northeastern University at Qinhuangdao. He received his bachelor degree from School of Mechanical Engineering, Hebei University of Science and Technology in 2015. He received his master and Ph.D. degrees from Northeastern University in 2017 and 2021, respectively. His research interest covers development of fiber-optic sensors and device, quantum plasmonic sensors and quantum measurement technologies

    LIN Zi-Ting Ph.D. candidate at College of Information Science and Engineering, Northeastern University. She received her bachelor degree from School of Control Engineering, Northeastern University in 2018. Her research interest covers optical fiber sensors and ocean multi parameter detection

    LIU Rui-Jie Ph.D. candidate at College of Information Science and Engineering, Northeastern University. He received his bachelor degree from Cyberspace Security College of Qufu Normal University in 2022. His research interest covers optical fiber sensor and machine learning

  • 摘要: 光纤传感器因其灵敏度高、体积小等优点在海洋监测领域得到了广泛关注. 目前高性能的海洋温盐深参数监测光纤传感器大都基于干涉原理, 难以实现同一系统内多个传感器的复用, 不能满足海洋环境参数高时空分辨力的监测需求. 基于调频连续波原理, 提出一种适用于干涉型海洋参数光纤传感器的大容量复用方法. 利用不同干涉仪端面反射光与参考光形成Mach-Zehnder干涉光谱的特征频率确定不同传感器的位置, 通过不同端面特征频率间的拍频还原了单个传感器的光谱. 设计并搭建了干涉型海洋参数传感器的分布式传感系统, 实现了系统中传感器的定位以及光谱信号还原, 并通过理论计算证明分布式传感系统中至少可以实现500个传感器的复用. 本论文的研究可以为高性能干涉型光纤传感器的海洋参数链式监测提供技术支持.
  • 图  1  FMCW原理示意图

    Fig.  1  Schematic graph of FMCW

    图  2  参考臂和传感臂频率随时间的变化

    Fig.  2  Frequency changing of reference beam and sensing arm with time

    图  3  分布式传感仿真系统图

    Fig.  3  Simulation configuration of the distributed sensing system

    图  4  仿真得到的系统光谱

    Fig.  4  Simulated spectrum of the system

    图  5  仿真光谱的频谱特性图((a)仿真光谱频谱特性图; (b)仿真光谱频谱特性分析放大图)

    Fig.  5  Frequency spectrum of the simulated spectrum ((a) Frequency spectrum of the simulated spectrum; (b) Partial enlarged drawing of the frequency spectrum)

    图  6  还原光谱与真实光谱对比((a)周期不匹配的情况; (b)周期匹配的情况)

    Fig.  6  Comparison between the retrieved and real spectrum ((a) Mismatch phenomenon; (b) Match phenomenon)

    图  7  实验搭建的FMCW系统

    Fig.  7  FMCW system configuration in experiment

    图  8  数据采集处理软件前面板

    Fig.  8  Front panel of the data processing software

    图  9  数据处理软件后面板

    Fig.  9  Back panel of the data processing software

    图  10  重采样后的复合传感光谱

    Fig.  10  Composite sensing spectrum after resampling

    图  11  重采样光谱的频谱图

    Fig.  11  Frequency spectrum of the resampled spectrum

    图  12  光纤应力特性测试装置

    Fig.  12  Strain characteristic test device of the optical fiber

    图  13  应力传感器响应特性((a)不同质量下谐振波长拟合效果; (b)固定质量下传感器波长监测)

    Fig.  13  Responses of the strain sensor ((a) Wavelength fitting result under different weights; (b) Wavelength record under a fixed weight)

    图  14  传感器盐度特性测试装置

    Fig.  14  Salinity characteristic test device of the sensor

    图  15  传感器2的光谱分解效果

    Fig.  15  Spectrum decomposition of sensor2

    图  16  传感器2盐度响应特性拟合

    Fig.  16  Salinity response characteristic fitting result of sensor 2

    图  17  传感器2盐度光谱的连续监测效果

    Fig.  17  Continuous wavelength record of the salinity spectrum of sensor 2

  • [1] 王力, 王永杰, 于非, 李芳. 光纤传感技术在物理海洋观测领域的应用研究. 激光与光电子学进展, 2021, 58(13): 199-216

    Wang Li, Wang Yong-Jie, Yu Fei, Li Fang. Application of optical fiber sensing technology in the field of physical ocean observation. Laser & Optoelectronics Progress, 2021, 58(13): 199-216
    [2] 李大海, 吴立新, 陈朝晖. “透明海洋”的战略方向与建设路径. 山东大学学报, 2019, 2: 130-136

    Li Da-Hai, Wu Li-Xin, Chen Zhao-Hui. Strategic Direction and Construction Path of Transparent Oceans. Journal of Shandong University, 2019, 2: 130-136
    [3] Qian Yu, Zhao Yong, Wu Qi-Lu, YANG Yang. Review of salinity measurement technology based on optical fiber sensor. Sensors and Actuators B: Chemical, 2018, 260: 86-105 doi: 10.1016/j.snb.2017.12.077
    [4] MIN Rui, LIU Zheng-Yong, PEREIRA Luis, YANG Chen-Kun, SUI Qi, MARQUES Carlos. Optical fiber sensing for marine environment and marine structural health monitoring: A review. Optics & Laser Technology, 2021, 140: 107082
    [5] 周灵钧, 于洋, 孟洲. 光纤海洋温盐深传感器研究进展. 激光与光电子学进展, 2021, 58(13): 275-289

    ZHOU Ling-Jun, YU Yang, MENG Zhou. Review of Fiber Optic Ocean Conductivity-Temperature-Depth Sensor. Laser & Optoelectronics Progress, 2021, 58(13): 275-289
    [6] WANG Li, WANG Yong-Jie, WANG Jian-Feng, LI Fang. A high spatial resolution FBG sensor array for measuring ocean temperature and depth. Photonic Sensors, 2020, 10(1): 57-66 doi: 10.1007/s13320-019-0550-0
    [7] HUANG Jun, ZHOU Zu-De, WEN Xiao-Yan, ZHANG Dong-Sheng. A diaphragm-type fiber Bragg grating pressure sensor with temperature compensation. Measurement, 2013, 46(3): 1041-1046 doi: 10.1016/j.measurement.2012.10.010
    [8] SUN Meng-Ya, JIANG Hong-Tao, Shi Bin, ZHOU Gu-Yu, INYANG Hilary, FENG Chen-Xi. Development of FBG salinity sensor coated with lamellar polyimide and experimental study on salinity measurement of gravel aquifer. Measurement, 2019, 140: 526-537 doi: 10.1016/j.measurement.2019.03.020
    [9] LIAO Chang-Rui, WANG Ying, WANG Dong-Ning, YANG Ming-Wei. Fiber in-line Mach–Zehnder interferometer embedded in FBG for simultaneous refractive index and temperature measurement. IEEE Photonics Technology Letters, 2010, 22(22): 1686-1688 doi: 10.1109/LPT.2010.2079924
    [10] ZHENG Hong-Kun, LV Ri-Qing, ZHAO Yong, TONG Rui-Jie, LIN Zi-Ting, WANG Xi-Xin, et al. Multifunctional optical fiber sensor for simultaneous measurement of temperature and salinity. Optics Letters, 2020, 45(24): 6631-6634 doi: 10.1364/OL.409233
    [11] ZHENG Hong-Kun, ZHAO Yong, LV Ri-Qing, LIN Zi-Ting, WANG Xi-Xin, ZHOU Yi-Fan et al. Study on the temperature and salinity sensing characteristics of multifunctional reflective optical Fiber Probe. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 9514308
    [12] ZHENG Hong-Kun, LV Ri-Qing, ZHAO Yong, WANG Xi-Xin, LIN Zi-Ting, ZHOU Yi-Fan. A novel high accuracy optical path difference compensation method based on phase difference technology. Optics and Lasers in Engineering, 2021, 137: 106367 doi: 10.1016/j.optlaseng.2020.106367
    [13] XIE Jie-Hui, WANG Fu-Yin, PAN Yao, WANG Jun-Jie, HU Zheng-Liang, HU Yong-Ming. High resolution signal-processing method for extrinsic Fabry–Perot interferometric sensors. Optical Fiber Technology, 2015, 22: 1-6 doi: 10.1016/j.yofte.2014.11.010
    [14] ZHOU Xin-Lei, YU Qing-Xu. Wide-range displacement sensor based on fiber-optic Fabry–Perot interferometer for subnanometer measurement. IEEE sensors journal, 2010, 11(7): 1602-1606
    [15] LOU Xiu-Tao, FENG Ya-Bo, CHEN Chen, DONG Yong-Kang. Multi-point spectroscopic gas sensing based on coherent FMCW interferometry. Optics Express, 2020, 28(6): 9014-9026 doi: 10.1364/OE.389746
    [16] HANTO Dwi, IIYAMA Koichi. Low-cost interrogation of long-distance and multipoint FBG sensor using incoherent-FMCW optical ranging system. IEEE Sensors Journal, 2019, 20(7): 3599-3607
    [17] ZHENG Hong-Kun, ZHAO Yong, LV Ri-Qing, LIN Zi-Ting, WANG Xi-Xin, ZHOU Yi-Fan, et al. Reflective optical fiber sensor based on dual Fabry Perot cavities for simultaneous measurement of salinity and temperature. IEEE Sensors Journal, 2021, 21(24): 27495-27502 doi: 10.1109/JSEN.2021.3123387
  • 加载中
图(17)
计量
  • 文章访问数:  409
  • HTML全文浏览量:  223
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-30
  • 录用日期:  2022-12-01
  • 网络出版日期:  2023-08-24
  • 刊出日期:  2023-09-26

目录

    /

    返回文章
    返回