2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一元及多元信号分解发展历程与展望

陈启明 文青松 郎恂 谢磊 苏宏业

陈启明, 文青松, 郎恂, 谢磊, 苏宏业. 一元及多元信号分解发展历程与展望. 自动化学报, 2024, 50(1): 1−20 doi: 10.16383/j.aas.c220632
引用本文: 陈启明, 文青松, 郎恂, 谢磊, 苏宏业. 一元及多元信号分解发展历程与展望. 自动化学报, 2024, 50(1): 1−20 doi: 10.16383/j.aas.c220632
Chen Qi-Ming, Wen Qing-Song, Lang Xun, Xie Lei, Su Hong-Ye. Univariate and multivariate signal decomposition: Review and future directions. Acta Automatica Sinica, 2024, 50(1): 1−20 doi: 10.16383/j.aas.c220632
Citation: Chen Qi-Ming, Wen Qing-Song, Lang Xun, Xie Lei, Su Hong-Ye. Univariate and multivariate signal decomposition: Review and future directions. Acta Automatica Sinica, 2024, 50(1): 1−20 doi: 10.16383/j.aas.c220632

一元及多元信号分解发展历程与展望

doi: 10.16383/j.aas.c220632
基金项目: 国家自然科学基金(62003298, 62073286), 云南省基础研究计划(202201AT070577)资助
详细信息
    作者简介:

    陈启明:浙江大学工业控制技术国家重点实验室博士研究生、阿里巴巴达摩院高级算法工程师. 主要研究方向为信号分解与时频分析, 控制系统性能评估. E-mail: chenqiming@zju.edu.cn

    文青松:阿里巴巴达摩院高级算法专家. 主要研究方向为时间序列异常检测与预测. E-mail: qingsong.wen@alibaba-inc.com

    郎恂:云南大学信息学院副教授. 分别于2014年和2019年获得浙江大学学士和博士学位. 主要研究方向为信号处理, 控制系统性能评估. 本文通信作者. E-mail: langxun@ynu.edu.cn

    谢磊:浙江大学教授. 分别于2000年和2005年获得浙江大学学士和博士学位. 主要研究方向为信号处理, 控制系统性能评估. E-mail: leix@iipc.zju.edu.cn

    苏宏业:浙江大学教授. 主要研究方向为控制理论与控制工程. E-mail: hysu69@zju.edu.cn

Univariate and Multivariate Signal Decomposition: Review and Future Directions

Funds: Supported by National Natural Science Foundation of China (62003298, 62073286) and Yunnan Fundamental Research Program (202201AT070577)
More Information
    Author Bio:

    CHEN Qi-Ming Ph.D. candidate at the State Key Laboratory of Industrial Control Technology, Zhejiang University, and senior algorithm engineer at the Damo Academy, Alibaba Group. His research interest covers signal decomposition & time-frequency analysis and control system performance evaluation

    WEN Qing-Song Staff algorithm engineer at the Damo Academy, Ali-baba Group. His research interest covers time series anomaly detection and forecasting

    LANG Xun Associate professor at the School of Information, Yunnan University. He received his bachelor and Ph.D. degrees from Zhejiang University in 2014 and 2019, respectively. His research interest covers signal processing and control system performance evaluation. Corresponding author of this paper

    XIE Lei Professor at Zhejiang University. He received his bachelor and Ph.D. degrees from Zhejiang University in 2000 and 2005, respectively. His research interest covers signal processing and control system performance evaluation

    SU Hong-Ye Professor at Zhejiang University. His research interest covers control theory and control engineering

  • 摘要: 现实世界中, 所获得的信号大部分都是非平稳和非线性的, 将此类复杂信号分解为多个简单的子信号是重要的信号处理方法. 1998年, 提出希尔伯特–黄变换(Hilbert-Huang transform, HHT)以来, 历经20余年的发展, 信号分解已经成为信号处理领域相对独立又具有创新性的重要内容. 特别是近10年, 多元/多变量/多通道信号分解理论方法方兴未艾, 在诸多领域得到了成功应用, 但目前尚未见到相关综述报道. 为填补这个空缺, 从单变量和多变量两个方面系统综述了国内/外学者对主要信号分解方法的研究现状, 对这些方法的时频表达性能进行分析和比较, 指出这些分解方法的优势和存在的问题. 最后, 对信号分解研究进行总结和展望.
  • 图  1  一个IMF的波形示意图

    Fig.  1  Waveform diagram of an IMF

    图  2  EMD的筛分过程示意图

    Fig.  2  Schematic diagram of sifting process of EMD

    图  3  ITD分解过程示意图

    Fig.  3  Schematic diagram of ITD decomposition process

    图  4  EWT的模态频谱分割示意图

    Fig.  4  Schematic diagram of modal spectrum division of EWT

    图  5  VMD原理示意图

    Fig.  5  Schematic diagram of VMD principle

    图  6  NCMD频率解调过程示意图

    Fig.  6  Schematic diagram of NCMD frequency demodulation process

    图  7  EMD分解结果

    Fig.  7  The decomposition results of EMD

    图  8  VMD分解结果

    Fig.  8  The decomposition results of VMD

    图  9  NCMD分解结果

    Fig.  9  The decomposition results of NCMD

    图  10  多元/多通道/多变量信号分解领域术语的图形化解释

    Fig.  10  Graphical interpretation of terms in multivariate signal decomposition

    图  11  单变量ICMD分解多变量信号的结果

    Fig.  11  The decomposition results of multivariate signals by the univariate ICMD

    图  12  多变量ICMD分解多变量信号的结果

    Fig.  12  The decomposition results of multivariate signals by the multivariate ICMD

    图  13  BEMD的分解原理示意图

    Fig.  13  Principle of the decomposition of BEMD

    图  14  BEMD的两种二维包络的均值计算示意图

    Fig.  14  Schematic diagram of the calculation of the mean value of two envelopes of two-dimensional signal for BEMD

    图  15  二维局部极值点示例

    Fig.  15  Example of two-dimensional local extreme points

    图  16  双变量信号

    Fig.  16  Bivariate signal

    图  17  双变量信号的投影信号

    Fig.  17  Projection signal of bivariate signal

    图  18  双变量信号的局部均值

    Fig.  18  Local mean of bivariate signal

    图  19  多变量IMF

    Fig.  19  Multivariate IMF

    图  20  等角度采样

    Fig.  20  Uniform angle sampling

    图  21  Halton-Hammersley序列采样

    Fig.  21  Halton-Hammersley sequences based sampling

    图  22  MEMD的分解结果

    Fig.  22  The decomposition results of MEMD

    图  23  MVMD的分解结果

    Fig.  23  The decomposition results of MVMD

    图  24  MNCMD的分解结果

    Fig.  24  The decomposition results of MNCMD

    表  1  常见单变量信号分解方法归类总结

    Table  1  Classification and summary of common univariate signal decomposition methods

    方法名称作用域优点局限性
    FT频域经典方法, 理论完备, 简单高效仅适用于线性平稳信号
    STFT时频域经典方法, 简单高效窗函数选取问题, 分辨率固定
    WVD时频域经典方法, 理论完备不能处理交叉频率和多分量情况
    WT时频域经典方法, 理论完备母小波和尺度需人为指定
    EMD时域自适应性强, 适用于非线性和非平稳信号, 应用场景广泛噪声敏感, 模态混叠和端点效应问题严重, 缺乏理论基础
    EEMD时域自适应性强, 对信号间歇性鲁棒计算效率低, 重构误差大, 受辅助噪声参数影响大
    CEEMD时域对信号间歇性鲁棒, 计算效率和重构误差优于EEMD辅助噪声的参数会影响分解结果
    MEEMD时域对信号间歇性鲁棒, 噪声鲁棒性好, 模态分裂概率低计算效率低于EEMD
    MCEEMD时域噪声鲁棒性和分解完备性好、模态分裂概率低计算效率低于CEEMD
    LMD时域能处理非平稳信号噪声敏感、参数影响大
    ITD时域计算效率优于EMD, 易于实施在线计算噪声敏感、模态提取能力劣于EMD
    SST时频域能有效表征非平稳信号的时变调频特征在处理强、变信号时, 会产生较大误差且无法处理时频面
    交叉和重叠信号
    EWT频域数据驱动自适应划分频段噪声鲁棒性弱, 分辨率有限
    VMD频域噪声鲁棒性和采样频率鲁棒性好, 数学理论完善局限于处理窄带信号, 参数影响大
    NCMD时频域数学理论完善, 宽带信号处理能力强需要提前指定参数
    ICMD时频域宽带信号处理能力强, 计算效率高, 能处理交叉瞬时频率需要提前指定参数
    下载: 导出CSV

    表  2  多元信号分解方法归类总结

    Table  2  Classification and summary of multivariate signal decomposition methods

    方法名称拓展方式优点局限性
    CEMD复数性质可处理复数信号实部虚部模态数量可能不一致
    RCEMD复数空间
    旋转概念
    复数空间中极值定义明确, 实部虚部模态一致局限于处理复数信号
    BEMD单位圆投影向量可分解双变量信号局限于处理双变量信号
    TEMD球面投影可分解三变量信号局限于处理三变量信号
    QEMD超球面投影可分解四变量信号局限于处理四变量信号
    MEMD高维空间投影适用于双变量及多变量信号分解投影向量的数量和方向敏感, 抗噪声能力差, 计算效率低
    FMEMD高维空间投影大幅提高了MEMD的计算效率投影向量的数量和方向敏感, 噪声鲁棒性略低于MEMD
    IMITD高维空间投影局部特征处理效果好, 计算效率高于MEMD投影向量的数量和方向会影响到基线提取
    DMITD高维空间投影投影向量鲁棒性优于IMITD运算效率低于IMITD
    MSST多变量振荡时频谱清晰, 适用于探索性数据分析不能直接重构模态
    MEWT多变量振荡可以重构模态需要有效的频谱分割, 来显示构造自适应小波滤波器组
    CVMD复数性质噪声和采样频率鲁棒性好局限于处理复数窄带信号, 参数影响大
    MVMD多变量调制振荡噪声和采样频率鲁棒性好, 模态之间信息泄露
    少, 自适应多变量最优维纳滤波器
    局限于处理窄带多变量信号, 参数影响大
    MNCMD多变量调制振荡可对时变多元信号进行分解复杂度高, 需要预估信号中的噪声水平和调整参数
    MICMD多变量调制振荡适用于宽带多元信号分解与时频分析, 计算复杂度低,
    参数鲁棒性好, 模态正交性强, 信息泄露少
    在强噪声条件下, 分解性能下降, 零频分量波动较明显
    下载: 导出CSV

    表  3  常见多元信号分解方法的适用场景

    Table  3  Applicable scenarios of common multivariate signal decomposition methods

    方法适用场景
    CEMD只适用于复数信号
    BEMD只适用于双变量信号
    MEMD适合分析信噪比高, 实时性要求低, 采样频率足够高, 模态频率间隔两倍以上的多元信号, 可以作为有效的探索性分析方法
    FMEMD适合分析信噪比高, 实时性要求高, 采样频率足够高, 模态频率间隔两倍以上的信号; 数据量大时, 建议采用FMEMD, 不采用MEMD
    IMITD适合分析局部特征明显, 实时性要求高, 采样频率足够高的多元信号
    DMITD适合分析通道间差异大, 实时性要求低, 采样频率足够高的多元信号
    CVMD只适用于具有窄带性质的复数信号
    MVMD适用于分量频率范围不重叠的窄带多元信号, 处理宽带信号效果非常有限
    MNCMD适用于宽带多元信号, 但计算复杂度较高
    MICMD适用于宽带多元信号和时频曲线有交叉的多元信号, 计算复杂度较低
    下载: 导出CSV
  • [1] 胡广书. 现代信号处理教程. 北京: 清华大学出版社, 2015.

    Hu Guang-Shu. Modern Signal Processing Tutorial. Beijing: Tsinghua University Press, 2015.
    [2] 郎恂. 基于时频分析的工业控制过程振荡检测及诊断研究 [博士学位论文], 浙江大学, 中国, 2019.

    Lang Xun. Research on Industrial Control Process Oscillation Detection and Diagnosis Based on Time-frequency Analysis [Ph.D. dissertation], Zhejiang University, China, 2019.
    [3] Huang N E, Shen Z, Long S R, Wu M C, Shih H H, Zheng Q, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings Mathematical Physical & Engineering ences, 1998, 454(1971): 903-995
    [4] 邹红星, 周小波, 李衍达. 时频分析: 回溯与前瞻. 电子学报, 2000, 28(9): 78-84 doi: 10.3321/j.issn:0372-2112.2000.09.022

    Zhou Hong-Xing, Zhou Xiao-Bo, Li Yan-Da. Time-frequency analysis: Backward and forward. Acta Electronica Sinica, 2000, 28(9): 78-84 doi: 10.3321/j.issn:0372-2112.2000.09.022
    [5] Cooley J W, Tukey J W. An algorithm for the machine calculation of complex fourier series. Mathematics of Computation, 1965, 19(90): 297-301 doi: 10.1090/S0025-5718-1965-0178586-1
    [6] Qian S, Chen D. Joint Time-frequency Analysis: Methods and Applications. New York: Prentice-Hall, 1996.
    [7] Gabor D. Theory of communication. part 1: The analysis of information. Journal of the Institution of Electrical Engineers-Part III: Radio and Communication Engineering, 1946, 93(26): 429-441
    [8] Cohen L. Generalized phase-space distribution functions. Journal of Mathematical Physics, 1966, 7(5): 781-786 doi: 10.1063/1.1931206
    [9] Wigner E P. On the Quantum Correction for Thermodynamic Equilibrium. Berlin: Springer, 1997. 110−120
    [10] Qian T, Zhang L M, Li Z X. Algorithm of adaptive Fourier decomposition. IEEE Transactions on Signal Processing, 2011, 59(12): 5899-5906 doi: 10.1109/TSP.2011.2168520
    [11] Coifman R R, Steinerberger S, Wu H. Carrier frequencies, holomorphy, and unwinding. SIAM Journal on Mathematical Analysis, 2017, 49(6): 4838-4864 doi: 10.1137/16M1081087
    [12] Gilles J. Empirical wavelet transform. IEEE Transactions on Signal Processing, 2013, 61(16): 3999-4010 doi: 10.1109/TSP.2013.2265222
    [13] Khaldi K, Turki-Hadj Alouane M, Boudraa A O. Voiced speech enhancement based on adaptive filtering of selected intrinsic mode functions. Advances in Adaptive Data Analysis, 2010, 2(1): 65-80 doi: 10.1142/S1793536910000409
    [14] Looney D, Mandic D P. Multiscale image fusion using complex extensions of EMD. IEEE Transactions on Signal Processing, 2009, 57(4): 1626-1630 doi: 10.1109/TSP.2008.2011836
    [15] Lei Y, Lin J, He Z, Zuo M J. A review on empirical mode decomposition in fault diagnosis of rotating machinery. Mechanical Systems and Signal Processing, 2013, 35(1-2): 108-126 doi: 10.1016/j.ymssp.2012.09.015
    [16] Zhang J Y, Xu X Z, Chen Q M, Xie L, Su H Y. Extracting fetal heart rate from abdominal ECGs based on fast multivariate empirical mode decomposition. In: Proceedings of the 16th International Conference on Control, Automation, Robotics and Vision. New York, USA: IEEE, 2020. 648−653
    [17] Basha G, Ouarda T B M J, Marpu P R. Long‐term projections of temperature, precipitation and soil moisture using non‐stationary oscillation processes over the UAE region. International Journal of Climatology, 2015, 35(15): 4606-4618. doi: 10.1002/joc.4310
    [18] Huang N E, Wu Z. A review on Hilbert-Huang transform: Method and its applications to geophysical studies. Reviews of Geophysics, 2008, 46(2): Article No. 007RG000228
    [19] Huang N E, Attoh-Okine N O. The Hilbert-Huang Transform in Engineering. Boca Raton: CRC Press, 2005.
    [20] Huang N E. Hilbert-Huang Transform and Its Applications. Singapore: World Scientific, 2014.
    [21] Wu Z, Huang N E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41 doi: 10.1142/S1793536909000047
    [22] Yeh J R, Shieh J S, Huang N E. Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method. Advances in Adaptive Data Analysis, 2010, 2(2): 135-156 doi: 10.1142/S1793536910000422
    [23] Lang X, Ur Rehman N, Zhang Y F, Xie L, Su H Y. Median ensemble empirical mode decomposition. Signal Processing, 2020, 176: Article No. 107686 doi: 10.1016/j.sigpro.2020.107686
    [24] 刘淞华, 何冰冰, 郎恂, 陈启明, 张榆锋, 苏宏业. 中值互补集合经验模态分解. 自动化学报, DOI: 10.16383/j.aas.c201031

    Liu Song-Hua, He Bing-Bing, Lang Xun, Chen Qi-Ming, Zhang Yu-Feng, Su Hong-Ye. Median complementary ensemble empirical mode decomposition. Acta Automatica Sinica, DOI: 10.16383/j.aas.c201031
    [25] Meignen S, Perrier V. A new formulation for empirical mode decomposition based on constrained optimization. IEEE Signal Processing Letters, 2007, 14(12): 932-935 doi: 10.1109/LSP.2007.904706
    [26] Pustelnik N, Borgnat P, Flandrin P. Empirical mode decomposition revisited by multicomponent nonsmooth convex optimization. Signal Processing, 2014, 102: 313-331 doi: 10.1016/j.sigpro.2014.03.014
    [27] Colominas M A, Schlotthauer G, Torres M E. An unconstrained optimization approach to empirical mode decomposition. Digital Signal Processing, 2015, 40: 164-175 doi: 10.1016/j.dsp.2015.02.013
    [28] Lin L, Wang Y, Zhou H. Iterative filtering as an alternative algorithm for empirical mode decomposition. Advances in Adaptive Data Analysis, 2009, 1(4): 543-560 doi: 10.1142/S179353690900028X
    [29] Wang Y, Wei G W, Yang S Y. Iterative filtering decomposition based on local spectral evolution kernel. Journal of scientific computing, 2012, 50(3): 629-664 doi: 10.1007/s10915-011-9496-0
    [30] Cicone A, Liu J F, Zhou H M. Adaptive local iterative filtering for signal decomposition and instantaneous frequency analysis. Applied and Computational Harmonic Analysis, 2016, 41(2): 384-411 doi: 10.1016/j.acha.2016.03.001
    [31] Mallat S G, Zhang Z. Matching pursuits with timefrequency dictionaries. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415 doi: 10.1109/78.258082
    [32] 陈是扦, 彭志科, 周鹏. 信号分解及其在机械故障诊断中的应用研究综述. 机械工程学报, 2020, 56(17): 91-107 doi: 10.3901/JME.2020.17.091

    Chen Shi-Xuan, Peng Zhi-Ke, Zhou Peng. A review of research on signal decomposition and its application in mechanical fault diagnosis. Journal of Mechanical Engineering, 2020, 56(17): 91-107 doi: 10.3901/JME.2020.17.091
    [33] Hou T Y, Shi Z. Adaptive data analysis via sparse time-frequency representation. Advances in Adaptive Data Analysis, 2011, 3(01n02): 1-28 doi: 10.1142/S1793536911000647
    [34] Hou T Y, Shi Z. Data-driven time–frequency analysis. Applied and Computational Harmonic Analysis, 2013, 35(2): 284-308 doi: 10.1016/j.acha.2012.10.001
    [35] Hou T Y, Shi Z Q. Sparse time-frequency representation of nonlinear and nonstationary data. Science China Mathematics, 2013, 56(12): 2489-2506 doi: 10.1007/s11425-013-4733-7
    [36] Hou T Y, Shi Z. Sparse time-frequency decomposition based on dictionary adaptation. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 374(2065): 1-16
    [37] Peng S, Hwang W L. Adaptive signal decomposition based on local narrow band signals. IEEE Transactions on Signal Processing, 2008, 56(7): 2669-2676 doi: 10.1109/TSP.2008.917360
    [38] Guo B K, Peng S L, Hu X Y, Xu P C. Complex-valued differential operator-based method for multi-component signal separation. Signal Processing, 2017, 132: 66-76 doi: 10.1016/j.sigpro.2016.09.015
    [39] Smith J S. The local mean decomposition and its application to EEG perception data. Journal of the Royal Society Interface, 2005, 2(5): 443-454 doi: 10.1098/rsif.2005.0058
    [40] Frei M G, Osorio I. Intrinsic time-scale decomposition: time–frequency–energy analysis and real-time filtering of nonstationary signals. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007, 463(2078): 321-342 doi: 10.1098/rspa.2006.1761
    [41] Daubechies I, Lu J, Wu H T. Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool. Applied and Computational Harmonic Analysis, 2011, 30(2): 243-261 doi: 10.1016/j.acha.2010.08.002
    [42] Daubechies I. Orthonormal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics, 1988, 41(7): 909-996 doi: 10.1002/cpa.3160410705
    [43] Auger F, Flandrin P. Improving the readability of time-frequency and time-scale representations by the reassignment method. IEEE Transactions on Signal Processing, 1995, 43(5): 1068-1089 doi: 10.1109/78.382394
    [44] Zheng J D, Pan H Y, Yang S B, Cheng J S. Adaptive parameterless empirical wavelet transform based time-frequency analysis method and its application to rotor rubbing fault diagnosis. Signal Processing, 2017, 130: 305-314 doi: 10.1016/j.sigpro.2016.07.023
    [45] Dragomiretskiy K, Zosso D. Variational mode decomposition. IEEE Transactions on Signal Processing, 2013, 62(3): 531-544
    [46] Chen S Q, Yang Y, Dong X J, Xing G P. Warped variational mode decomposition with application to vibration signals of varying-speed rotating machineries. IEEE Transactions on Instrumentation and Measurement, 2018, 68(8): 2755-2767
    [47] Zhang Y G, Pan G F, Chen B, Han J Y, Zhao Y, Zhang C H. Short-term wind speed prediction model based on GA-ANN improved by VMD. Renewable Energy, 2020, 156: 1373-1388 doi: 10.1016/j.renene.2019.12.047
    [48] Zhang T, Chen W Z, Li M Y. AR based quadratic feature extraction in the VMD domain for the automated seizure detection of EEG using random forest classifier. Biomedical Signal Processing and Control, 2017, 31: 550-559 doi: 10.1016/j.bspc.2016.10.001
    [49] Huang Y S, Gao Y L, Gan Y, Ye M. A new financial data forecasting model using genetic algorithm and long shortterm memory network. Neurocomputing, 2021, 425: 207-218 doi: 10.1016/j.neucom.2020.04.086
    [50] Rabbouch H, Saadaoui H, Saâdaoui F. VMD-based multiscaled LSTM-ARIMA to forecast post-COVID-19 us air traffic. In: Proceedings of the International Conference on Decision Aid Sciences and Applications. New York, USA: IEEE, 2022. 1678−1683
    [51] Huang N E, Wu Z, Long S R, Arnold K C, Chen X Y, Blank K. On instantaneous frequency. Advances in Adaptive Data Analysis, 2009, 1(2): 177-229 doi: 10.1142/S1793536909000096
    [52] Li Z P, Chen J L, Zi Y Y, Pan J. Independ-enceoriented VMD to identify fault feature for wheel set bearing fault diagnosis of high speed locomotive. Mechanical Systems and Signal Processing, 2017, 85: 512-529 doi: 10.1016/j.ymssp.2016.08.042
    [53] Lian J J, Liu Z, Wang H J, Dong X F. Adaptive variational mode decomposition method for signal processing based on mode characteristic. Mechanical Systems and Signal Processing, 2018, 107: 53-77 doi: 10.1016/j.ymssp.2018.01.019
    [54] Cai G W, Wang L X, Yang D Y, Sun Z L, Wang B. Harmonic detection for power grids using adaptive variational mode decomposition. Energies, 2019, 12(2): Article No. 232 doi: 10.3390/en12020232
    [55] Chen Q M, Lang X, Xie L, Su H Y. Detecting non-linear oscillations in process control loop based on an improved VMD. IEEE Access, 2019, 7: 91446-91462 doi: 10.1109/ACCESS.2019.2925861
    [56] Zhu J, Wang C, Hu Z Y, Kong F R, Liu X C. Adaptive variational mode decomposition based on artificial fish swarm algorithm for fault diagnosis of rolling bearings. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2017, 231(4): 635-654 doi: 10.1177/0954406215623311
    [57] Zhang X, Miao Q, Zhang H, Wang L. A parameter-adaptive VMD method based on grasshopper optimization algorithm to analyze vibration signals from rotating machinery. Mechanical Systems and Signal Processing, 2018, 108: 58-72 doi: 10.1016/j.ymssp.2017.11.029
    [58] Chen Q M, Chen J H, Lang X, Xie L, Rehman N U, Su H Y. Self-tuning variational mode decomposition. Journal of the Franklin Institute, 2021, 358(15): 7825-7862 doi: 10.1016/j.jfranklin.2021.07.021
    [59] Chen S Q, Dong X J, Peng Z K, Zhang W M, Meng G. Nonlinear chirp mode decomposition: A variational method. IEEE Transactions on Signal Processing, 2017, 65(22): 6024-6037 doi: 10.1109/TSP.2017.2731300
    [60] Meignen S, Pham D H, McLaughlin S. On demodulation, ridge detection, and synchrosqueezing for multicomponent signals. IEEE Transactions on Signal Processing, 2017, 65(8): 2093-2103 doi: 10.1109/TSP.2017.2656838
    [61] Park B K, Boric-Lubecke O, Lubecke V M. Arctangent demodulation with DC offset compensation in quadrature Doppler radar receiver systems. IEEE Transactions on Microwave Theory and Techniques, 2007, 55(5): 1073-1079 doi: 10.1109/TMTT.2007.895653
    [62] Chen S Q, Yang Y, Peng Z K, Wang S B, Zhang W M, Chen X F. Detection of rub-impact fault for rotor-stator systems: A novel method based on adaptive chirp mode decomposition. Journal of Sound and Vibration, 2019, 440: 83-99 doi: 10.1016/j.jsv.2018.10.010
    [63] Yin W F, Yang X Z, Li L, Zhang L, Kitsuwan, N, Oki E. Hear: Approach for heartbeat monitoring with body movement compensation by iruwb radar. Sensors, 2018, 18(9): Article No. 3077 doi: 10.3390/s18093077
    [64] Chen S Q, Wang K Y, Chang C, Xie B, Zhai W M. A two-level adaptive chirp mode decomposition method for the railway wheel flat detection under variable-speed conditions. Journal of Sound and Vibration, 2021, 498: Article No. 115963 doi: 10.1016/j.jsv.2021.115963
    [65] Chen S Q, Yang Y, Peng Z K, Dong X J, Zhang W M, Meng G. Adaptive chirp mode pursuit: Algorithm and applications. Mechanical Systems and Signal Processing, 2019, 116: 566-584 doi: 10.1016/j.ymssp.2018.06.052
    [66] Chen Q M, Chen J H, Lang X, Xie L, Jiang C L, Su H Y. Diagnosis of nonlinearity-induced oscillations in process control loops based on adaptive chirp mode decomposition. In: Proceedings of the American Control Conference. New York, USA: IEEE, 2020. 2772−2777
    [67] Chen Q M, Chen J H, Lang X, Xie L, Lu S, Su H Y. Detection and diagnosis of oscillations in process control by fast adaptive chirp mode decomposition. Control Engineering Practice, 2020, 97: Article No. 104307 doi: 10.1016/j.conengprac.2020.104307
    [68] Chen Q M, Lang X, Xie L, Su H Y. Detecting oscillations via adaptive chirp mode decomposition. In: Proceedings of the CAA Symposium on Fault Detection, Supervision and Safety for Technical Processes. New York, USA: IEEE, 2019. 298−303
    [69] Chen S Q, Peng Z K, Yang Y, Dong X J, Zhang W M. Intrinsic chirp component decomposition by using Fourier series representation. Signal Processing, 2017, 137: 319-327 doi: 10.1016/j.sigpro.2017.01.027
    [70] Chen S Q, Dong X J, Xing G P, Peng Z K, Zhang W M, Meng G. Separation of overlapped non-stationary signals by ridge path regrouping and intrinsic chirp component decomposition. IEEE Sensors Journal, 2017, 17(18): 5994-6005 doi: 10.1109/JSEN.2017.2737467
    [71] Yang Y, Peng Z K, Dong X J, Zhang W M, Meng G. General parameterized time-frequency transform. IEEE Transactions on Signal Processing, 2014, 62(11): 2751-2764 doi: 10.1109/TSP.2014.2314061
    [72] Chen S Q, Dong X J, Xiong Y Y, Peng Z K, Zhang W M. Nonstationary signal denoising using an envelope-tracking filter. IEEE/ASME Transactions on Mechatronics, 2017, 23(4): 2004-2015
    [73] Dong X J, Chen S Q, Xing G P, Peng Z K, Zhang W M, Meng G. Doppler frequency estimation by parameterized time-frequency transform and phase compensation technique. IEEE Sensors Journal, 2018, 18(9): 3734-3744 doi: 10.1109/JSEN.2018.2812848
    [74] Tu X T, Bao W J, Hu Y, Abbas, S, Li F C. Parameterized synchrosqueezing transform with application to machine fault diagnosis. IEEE Sensors Journal, 2019, 19(18): 8107-8115 doi: 10.1109/JSEN.2019.2919776
    [75] Rehman N, Mandic D P. Multivariate empirical mode decomposition. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010, 466(2117): 1291-1302 doi: 10.1098/rspa.2009.0502
    [76] Wang Z, Wong C M, Rosa A, Qian T, Wan Feng. Adaptive fourier decomposition for multi-channel signal analysis. IEEE Transactions on Signal Processing, 2022, 70: 903-918 doi: 10.1109/TSP.2022.3143723
    [77] Chen Q M, Xie L, Su H Y. Multivariate nonlinear chirp mode decomposition. Signal Processing, 2020, 176: Article No. 107667 doi: 10.1016/j.sigpro.2020.107667
    [78] Zahra A, Kanwal N, Ur Rehman N, Ehsan S, McDonald-Maier K D. Seizure detection from EEG signals using multivariate empirical mode decomposition. Computers in Biology and Medicine, 2017, 88: 132-141 doi: 10.1016/j.compbiomed.2017.07.010
    [79] Han G, Lin B, Xu Z. Electrocardiogram signal denoising based on empirical mode decomposition technique: An overview. Journal of Instrumentation, 2017, 12(3): Article No. P03010
    [80] Hao H, Wang H L, Rehman N U. A joint framework for multivariate signal denoising using multivariate empirical mode decomposition. Signal Processing, 2017, 135: 263-273 doi: 10.1016/j.sigpro.2017.01.022
    [81] Ur Rehman N, Abbas S Z, Asif A, Javed A, Naveed K, Manilo D. Translation invariant multi-scale signal denoising based on goodness-of-fit tests. Signal Processing, 2017, 131: 220-234 doi: 10.1016/j.sigpro.2016.08.019
    [82] Mandic D P, Ur Rehman N, Wu Z H, Huang NE. Empirical mode decomposition-based time-frequency analysis of multivariate signals: The power of adaptive data analysis. IEEE Signal Processing Magazine, 2013, 30(6): 74-86 doi: 10.1109/MSP.2013.2267931
    [83] Ur Rehman N, Aftab H. Multivariate variational mode decomposition. IEEE Transactions on Signal Processing, 2019, 67(23): 6039-6052 doi: 10.1109/TSP.2019.2951223
    [84] Rilling G, Flandrin P, Gonçalves P, Lilly, JM. Bivariate empirical mode decomposition. IEEE Signal Processing Letters, 2007, 14(12): 936-939 doi: 10.1109/LSP.2007.904710
    [85] Chen Q M, Lang X, Xie L, Su H Y. Multivariate intrinsic chirp mode decomposition. Signal Processing, 2021, 183: Article No. 108009 doi: 10.1016/j.sigpro.2021.108009
    [86] Tanaka T, Mandic D P. Complex empirical mode decomposition. IEEE Signal Processing Letters, 2007, 14(2): 101-104 doi: 10.1109/LSP.2006.882107
    [87] Altaf M U B, Gautama T, Tanaka T, Mandic D P. Rotation invariant complex empirical mode decomposition. In: Proceedings of the International Conference on Acoustics, Speech and Signal Processing. New York, USA: IEEE, 2007. 1009−1012
    [88] Ur Rehman N, Mandic D P. Empirical mode decomposition for trivariate signals. IEEE Transactions on Signal Processing, 2009, 58(3): 1059-1068
    [89] Ur Rehman N, Mandic D P. Quadrivariate empirical mode decomposition. In: Proceedings of the International Joint Conference on Neural Networks. New York, USA: IEEE, 2010. 1−7
    [90] Park C, Looney D, Ur Rehman N, Ahrabian A, Mandic D P. Classification of motor imagery BCI using multivariate empirical mode decomposition. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2012, 21(1): 10-22
    [91] Zhao X M, Patel T H, Zuo M J. Multivariate EMD and full spectrum based condition monitoring for rotating machinery. Mechanical Systems and Signal Processing, 2012, 27: 712-728 doi: 10.1016/j.ymssp.2011.08.001
    [92] Yu L A, Li J J, Tang L, Wang S. Linear and nonlinear granger causality investigation between carbon market and crude oil market: A multi-scale approach. Energy Economics, 2015, 51: 300-311 doi: 10.1016/j.eneco.2015.07.005
    [93] Quqa S, Landi L, Diotallevi P P. Seismic structural health monitoring using the modal assurance distribution. Earthquake Engineering & Structural Dynamics, 2021, 50(9): 2379-2397
    [94] Lang X, Zheng Q M, Zhang Z M, Lu S, Xie L, Horch A, et al. Fast multivariate empirical mode decomposition. IEEE Access, 2018, 6: 65521-65538 doi: 10.1109/ACCESS.2018.2877150
    [95] Lang X, Zhang Z M, Xie L, Horch A, Su H Y. Time-frequency analysis of plant-wide oscillations using multivariate intrinsic time-scale decomposition. Industrial & Engineering Chemistry Research, 2018, 57(3): 954-966
    [96] Lang X, Zheng Q, Xie L, Horch A, Su, H Y. Direct multivariate intrinsic time-scale decomposition for oscillation monitoring. IEEE Transactions on Control Systems Technology, 2019, 28(6): 2608-2615
    [97] Ahrabian A, Looney D, Stanković L, Mandic D P. Synchrosqueezing-based time-frequency analysis of multivariate data. Signal Processing, 2015, 106: 331-341 doi: 10.1016/j.sigpro.2014.08.010
    [98] Yadav U, Abbas S N, Hatzinakos D. Evaluation of PPG biometrics for authentication in different states. In: Proceedings of the International Conference on Biometrics. New York, USA: IEEE, 2018. 277−282
    [99] Lilly J M. Modulated oscillations in three dimensions. IEEE Transactions on Signal Processing, 2011, 59(12): 5930-5943 doi: 10.1109/TSP.2011.2164914
    [100] Lilly J M, Olhede S C. Analysis of modulated multivariate oscillations. IEEE Transactions on Signal Processing, 2011, 60(2): 600-612
    [101] Wang Y X, Liu F Y, Jiang Z S, He S L, Mo Q Y. Complex variational mode decomposition for signal processing applications. Mechanical systems and signal processing, 2017, 86: 75-85 doi: 10.1016/j.ymssp.2016.09.032
    [102] Yan X A, Liu Y, Xu Y D, Jia M P. Multichannel fault diagnosis of wind turbine driving system using multivariate singular spectrum decomposition and improved Kolmogorov complexity. Renewable Energy, 2021, 170: 724-748 doi: 10.1016/j.renene.2021.02.011
    [103] Das K, Pachori R B. Schizophrenia detection technique using multivariate iterative filtering and multichannel EEG signals. Biomedical Signal Processing and Control, 2021, 67: Article No. 102525 doi: 10.1016/j.bspc.2021.102525
    [104] Zheng Q, Chen T, Zhou W X, Xie L, Su H Y. Gene prediction by the noise-assisted MEMD and wavelet transform for identifying the protein coding regions. Biocybernetics and Biomedical Engineering, 2021, 41(1): 196-210 doi: 10.1016/j.bbe.2020.12.005
    [105] Cao P P, Wang H L, Zhou K J. Multichannel signal denoising using multivariate variational mode decomposition with subspace projection. IEEE Access, 2020, 8: 74039-74047 doi: 10.1109/ACCESS.2020.2988552
    [106] Chen Q M, Xu X Z, Shi Y, Xie L, Su H Y. MNCMD-based causality analysis of plant-wide oscillations for industrial process control system. In: Proceedings of the Chinese Automation Congress. New York, USA: IEEE, 2020. 5617−5622
    [107] Chen Q M, Fei X, Xie L, Wang Q B. Causality analysis in process control based on denoising and periodicity-removing CCM. Journal of Intelligent Manufacturing and Special Equipment, 2020, 1(1): 25-41 doi: 10.1108/JIMSE-06-2020-0003
    [108] Chen Q M, Lang X, Pan Y, Shi Y, Xie L, Su H Y. Detecting multiple plant-wide oscillations in process control systems based on multivariate intrinsic chirp component decomposition. In: Proceedings of the CAA Symposium on Fault Detection, Supervision, and Safety for Technical Processes. New York, USA: IEEE, 2021. 1−6
    [109] Gupta P, Sharma K K, Joshi S D. Baseline wander removal of electrocardiogram signals using multivariate empirical mode decomposition. Healthcare Technology Letters, 2015, 2(6): 164-166 doi: 10.1049/htl.2015.0029
    [110] Lang X, He B B, Zhang Y, Chen Q M, Xie L. Adaptive clutter filtering for ultrafast Doppler imaging of blood flow using fast multivariate empirical mode decomposition. In: Proceedings of the International Ultrasonics Symposium. New York, USA: IEEE, 2021. 1−4
    [111] 刘源. 基于多元EMD的BCI信号处理研究 [硕士学位论文], 燕山大学, 中国, 2013.

    Liu Yuan. BCI Signal Processing Based on Multivariate EMD [Master thesis], Yanshan University, China, 2013.
    [112] Padhmashree V, Bhattacharyya A. Human emotion recognition based on time–frequency analysis of multivariate EEG signal. Knowledge-Based Systems, 2022, 238: Article No. 107867 doi: 10.1016/j.knosys.2021.107867
    [113] Shi Y, Zhang Z M, Sun P, Xie L, Chen Q M, Su H Y, et al. Two-layer structure strategy for large-scale systems integrating online adaptive constraints adjustment method and cooperative distributed DMC algorithm. Control Engineering Practice, 2021, 116: Article No. 104932 doi: 10.1016/j.conengprac.2021.104932
    [114] Shi Y, Zhang Z M, Hu X R, Sun P, Xie L, Chen Q M, et al. SVD-based robust distributed MPC for tracking systems coupled in dynamics with global constraints. IEEE Transactions on Cybernetics, 2022: 1-12
    [115] Zhang Q, Lu S, Xie L, Chen Q M, Su H Y. Quality-relevant process monitoring with concurrent locality-preserving dynamic latent variable method. ACS Omega, 2022, 7(31): 27249-27262 doi: 10.1021/acsomega.2c02118
    [116] Aftab M F, Hovd M, Sivalingam S. Plant-wide oscillation detection using multivariate empirical mode decomposition. Computers & Chemical Engineering, 2018, 117: 320-330
    [117] Chen Q M, Lang X, Lu S, Ur Rehman N, Xie L, Su H Y. Detection and root cause analysis of multiple plant-wide oscillations using multivariate nonlinear chirp mode decomposition and multivariate granger causality. Computers & Chemical Engineering, 2021, 147: Article No. 107231
    [118] Li S L, Ma J. Early fault feature extraction of nuclear main pump based on MEMD-1.5 dimensional Teager energy spectrum. In: Proceedings of the 9th Data Driven Control and Learning Systems Conference. New York, USA: IEEE, 2020. 111−116
    [119] Song Q Y, Jiang X X, Wang S, Guo J F, Huang W G, Zhu Z K. Self-adaptive multivariate variational mode decomposition and its application for bearing fault diagnosis. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-13
    [120] Huang J, Cui X L, Li C S, Xiao Z H, Chen Q M. Multivariate time-varying complex signal processing framework and its application in rotating machinery rotorbearing system. Measurement Science and Technology, 2022, 33(12): Article No. 125114 doi: 10.1088/1361-6501/ac919b
    [121] Huang Y M, Hasan N, Deng C R, Bao Y K. Multivariate empirical mode decomposition based hybrid model for dayahead peak load forecasting. Energy, 2022, 239: Article No. 122245 doi: 10.1016/j.energy.2021.122245
    [122] Huang Y M, Deng C R, Zhang X Y, Bao Y K. Forecasting of stock price index using support vector regression with multivariate empirical mode decomposition. Journal of Systems and Information Technology, 2022, 24(2): 75-95 doi: 10.1108/JSIT-12-2019-0262
    [123] Tang L, Zhang C Y, Li L, Wang S Y. A multiscale method for forecasting oil price with multifactor search engine data. Applied Energy, 2020, 257: Article No. 114033 doi: 10.1016/j.apenergy.2019.114033
    [124] Prasad R, Ali M, Xiang Y, Khan H. A double decomposition-based modelling approach to forecast weekly solar radiation. Renewable Energy, 2020, 152: 9-22 doi: 10.1016/j.renene.2020.01.005
    [125] Prasad R, Ali M, Kwan P, Khan H. Designing a multistage multivariate empirical mode decomposition coupled with ant colony optimization and random forest model to forecast monthly solar radiation. Applied Energy, 2019, 236: 778-792 doi: 10.1016/j.apenergy.2018.12.034
    [126] Yuan W Y, Wang K Q, Bo X, Tang L, Wu J J. A novel multifactor & multiscale method for PM2.5 concentration forecasting. Environmental Pollution, 2019, 255: Article No. 113187 doi: 10.1016/j.envpol.2019.113187
    [127] Boashash B, Reilly A P. Algorithms for Time-frequency Signal Analysis. London: Longman Cheshire, 1992.
    [128] Nuttall A H, Bedrosian E. On the quadrature approximation to the Hilbert transform of modulated signals. Proceedings of the IEEE, 1966, 54(10): 1458-1459 doi: 10.1109/PROC.1966.5138
    [129] Boashash B. Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals. Proceedings of the IEEE, 1992, 80(4): 520-538 doi: 10.1109/5.135376
    [130] Xie L, Lang X, Horch A, Yang Y X. Online oscillation detection in the presence of signal intermittency. Control Engineering Practice, 2016, 55: 91-100 doi: 10.1016/j.conengprac.2016.06.020
    [131] Zhong T, Qu J F, Fang X Y, Li H, Wang Z P. The intermittent fault diagnosis of analog circuits based on EEMD-DBN. Neurocomputing, 2021, 436: 74-91 doi: 10.1016/j.neucom.2021.01.001
    [132] Nazari M, Sakhaei S M. Successive variational mode decomposition. Signal Processing, 2020, 174: Article No. 107610 doi: 10.1016/j.sigpro.2020.107610
    [133] He X Z, Zhou X Q, Yu W N, Hou Y X, Mechefske C K. Adaptive variational mode decomposition and its application to multi-fault detection using mechanical vibration signals. ISA transactions, 2021, 111: 360-375 doi: 10.1016/j.isatra.2020.10.060
    [134] 刘建昌, 权贺, 于霞, 何侃, 李镇华. 基于参数优化VMD和样本熵的滚动轴承故障诊断. 自动化学报, 2022, 48(3): 808-819

    Liu Jian-Chang, Quan He, Yu Xia, He Kan, Li Zhen-Hua. Rolling bearing fault diagnosis based on parameter optimization VMD and sample entropy. Acta Automatica Sinica, 2022, 48(3): 808-819
    [135] Singh P, Singhal A, Joshi S D. Time-frequency analysis of gravitational waves. In: Proceedings of the International Conference on Signal Processing and Communications. New York, USA: IEEE, 2018. 197−201
    [136] 毛文涛, 田思雨, 窦智, 张迪, 丁玲. 一种基于深度迁移学习的滚动轴承早期故障在线检测方法. 自动化学报, 2022, 48(1): 302-314

    Mao Wen-Tao, Tian Si-Yu, Dou Zhi, Zhang Di, Ding Ling. A new deep transfer learning-based online detection method of rolling bearing early fault. Acta Automatica Sinica, 2022, 48(1): 302-314
    [137] Liu S H, He B B, Chen Q M, Lang X, Zhang Y F. Median complementary ensemble empirical mode decomposition and its application to time-frequency analysis of industrial oscillations. In: Proceedings of the Chinese Control Conference. New York, USA: IEEE, 2021. 2999−3004
    [138] Hasan N. A methodological approach for predicting COVID-19 epidemic using EEMD-ANN hybrid model. Internet of Things, 2020, 11: Article No. 100228 doi: 10.1016/j.iot.2020.100228
    [139] Wen Q S, Gao J K, Song X M, Sun L, Xu H, Zhu S H. RobustSTL: A robust seasonal-trend decomposition algorithm for long time series. In: Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI, 2019. 5409−5416
    [140] Wen Q S, He K, Sun L, Zhang Y Y, Ke M, Xu H. RobustPeriod: Robust time-frequency mining for multiple periodicity detection. In: Proceedings of the International Conference on Management of Data. New York, USA: ACM, 2021. 2328−2337
    [141] Wen Q S, Yang L, Zhou T, Sun L. Robust time series analysis and applications: An industrial perspective. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2022. 4836−4837
    [142] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A, et al. Attention is all you need. Advances in Neural Information Processing Systems, 2017, 30
    [143] Zhou T, Ma Z Q, Wen Q S, Wang X, Sun L, Jin R. FEDformer: Frequency enhanced decomposed transformer for long-term series forecasting. In: Proceedings of the 39th International Conference on Machine Learning. New York, USA: PMLR, 2022. 27268−27286
    [144] Wen Q S, Zhou T, Zhang C L, Chen W Q, Ma Z Q, Yan J C, et al. Transformers in time series: A survey. arXiv preprint arXiv: 2202.07125, 2022.
  • 加载中
图(24) / 表(3)
计量
  • 文章访问数:  1288
  • HTML全文浏览量:  973
  • PDF下载量:  462
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-09
  • 录用日期:  2022-12-19
  • 网络出版日期:  2023-05-22
  • 刊出日期:  2024-01-29

目录

    /

    返回文章
    返回