2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于渐进无迹卡尔曼滤波网络的人体肢体运动估计

杨旭升 王雪儿 汪鹏君 张文安

杨旭升, 王雪儿, 汪鹏君, 张文安. 基于渐进无迹卡尔曼滤波网络的人体肢体运动估计. 自动化学报, 2023, 49(8): 1723−1731 doi: 10.16383/j.aas.c220523
引用本文: 杨旭升, 王雪儿, 汪鹏君, 张文安. 基于渐进无迹卡尔曼滤波网络的人体肢体运动估计. 自动化学报, 2023, 49(8): 1723−1731 doi: 10.16383/j.aas.c220523
Yang Xu-Sheng, Wang Xue-Er, Wang Peng-Jun, Zhang Wen-An. Estimation of human limb motion based on progressive unscented Kalman filter network. Acta Automatica Sinica, 2023, 49(8): 1723−1731 doi: 10.16383/j.aas.c220523
Citation: Yang Xu-Sheng, Wang Xue-Er, Wang Peng-Jun, Zhang Wen-An. Estimation of human limb motion based on progressive unscented Kalman filter network. Acta Automatica Sinica, 2023, 49(8): 1723−1731 doi: 10.16383/j.aas.c220523

基于渐进无迹卡尔曼滤波网络的人体肢体运动估计

doi: 10.16383/j.aas.c220523
基金项目: 浙江省 “尖兵” “领雁” 研发攻关计划 (2022C03114), 国家自然科学基金 (62173305), 浙江省自然科学基金 (LD21F030002) 资助
详细信息
    作者简介:

    杨旭升:浙江工业大学信息工程学院副研究员. 主要研究方向为信息融合估计, 人体运动估计和目标定位. E-mail: xsyang@zjut.edu.cn

    王雪儿:浙江工业大学信息工程学院硕士研究生. 主要研究方向为人体运动估计, 信息融合估计. E-mail: wangxueer@zjut.edu.cn

    汪鹏君:温州大学电气与电子工程学院教授. 主要研究方向为人工智能, 信息安全. E-mail: wangpengjun@wzu.edu.cn

    张文安:浙江工业大学信息工程学院教授. 主要研究方向为多源信息融合估计及应用. 本文通信作者. E-mail: wazhang@zjut.edu.cn

Estimation of Human Limb Motion Based on Progressive Unscented Kalman Filter Network

Funds: Supported by Zhejiang Province “Jianbing” “Lingyan” Research and Development Project (2022C03114), National Natural Science Foundation of China (62173305), and Natural Science Foundation of Zhejiang Province (LD21F030002)
More Information
    Author Bio:

    YANG Xu-Sheng Associate researcher at the College of Information Engineering, Zhejiang University of Technology. His research interest covers information fusion estimation, human motion estimation, and target positioning

    WANG Xue-Er Master student at the College of Information Engineering, Zhejiang University of Technology. Her research interest covers human motion estimation and information fusion estimation

    WANG Peng-Jun Professor at the College of Electrical and Electronic Engineering, Wenzhou University. His research interest covers artificial intelligence and information security

    ZHANG Wen-An Professor at the College of Information Engineering, Zhejiang University of Technology. His research interest covers multi-sensor information fusion estimation and its applications. Corresponding author of this paper

  • 摘要: 针对基于表面肌电信号 (Surface electromyography, sEMG) 的人体肢体运动估计建模困难的问题, 提出一种渐进无迹卡尔曼滤波网络 (Progressive unscented Kalman filter network, PUKF-net), 来实现降低肢体运动与sEMG量测的建模难度以及提高肢体运动估计精度的目的. 首先, 设计深度神经网络从sEMG数据中学习肢体运动状态与sEMG量测之间的映射关系和噪声统计特性. 其次, 采用渐进量测更新方法对先验状态估计进行修正, 减小运动估计的线性化误差, 提高PUKF-net模型的稳定性. 通过结合深度神经网络和渐进卡尔曼滤波的优势, 使得PUKF-net具有良好的模型适应性和抗噪能力. 最后, 设计基于sEMG的人体肢体运动估计实验, 验证了PUKF-net模型的有效性. 相较于长短期记忆网络 (Long short-term memory, LSTM) 和其他卡尔曼滤波网络, PUKF-net在肢体运动估计中的均方根误差 (Root mean square error, RMSE) 下降了14.9%, 相关系数R2提高了5.1%.
  • 图  1  PUKF-net结构

    Fig.  1  Structure of PUKF-net

    图  2  $ \text{LSTM}_Q$, $ \text{LSTM}_R$网络结构

    Fig.  2  Network structure of $ \text{LSTM}_Q$ and $ \text{LSTM}_R$

    图  3  $ \text{LSTM}_h$计算流程

    Fig.  3  Calculation process including $ \text{LSTM}_h$

    图  4  实验设计 ((a) 传感器布局; (b) 关节角度坐标; (c) 轨迹规划; (d) Optitrack采集到手腕关节点轨迹)

    Fig.  4  Experiment design ((a) Sensor layout; (b) Joint angle coordinates; (c) Trajectory planning; (d) Track of wrist joint collected by Optitrack)

    图  5  sEMG分析 ((a) 人体大臂肌肉分布; (b) Myo位置肌肉横截面; (c)协同矩阵$ W$; (d) sEMG原始信号)

    Fig.  5  sEMG analysis ((a) Muscle distribution of human upper arm; (b) Cross-section of Myo wearing position; (c) Non-negative matrix factorization comatrix $ W$; (d) Original signal of sEMG)

    图  6  关节角度估计曲线

    Fig.  6  Joint angle estimation curve

    表  1  测试者身体参数

    Table  1  Physiological information of subjects

    测试者年龄身高 (cm)体重 (kg)性别
    S13115565
    S22416153
    S32918285
    S42017761
    S52517375
    S62817565
    S73016047
    S82517172
    S92217570
    S102416250
    S113215954
    S122917078
    下载: 导出CSV

    表  2  LSTM、LSTM-KF、PUKF-net在测试集上的RMSE和$ \text{R}^2 $

    Table  2  RMSE and $ \text{R}^2 $ of LSTM, LSTM-KF, PUKF-net

    测试者RMSE $ \text{R}^2$
    LSTMLSTM-KFPUKF-net LSTMLSTM-KFPUKF-net
    S115.91312.66811.9400.8230.8960.906
    S224.56818.67715.4730.6220.7480.829
    S319.73616.99614.0440.7370.8250.872
    S420.65313.31512.6680.6790.8630.876
    S526.74620.67516.4480.6290.7610.824
    S616.79313.66411.5880.8030.8800.905
    S722.19317.16414.1870.6990.8520.868
    S817.98415.24112.2940.7480.8270.880
    S922.53718.46415.6240.7100.8170.861
    S1024.14218.55516.1650.6550.8090.848
    S1114.60111.27110.5450.6820.7920.844
    S1219.19616.13713.0440.7210.8040.865
    平均值20.42216.06913.6680.7090.8230.865
    下载: 导出CSV
  • [1] Ding Q C, Han J D, Zhao X G. Continuous estimation of human multi-joint angles from sEMG using a state-space model. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(9): 1518-1528 doi: 10.1109/TNSRE.2016.2639527
    [2] 丁其川, 熊安斌, 赵新刚, 韩建达. 基于表面肌电的运动意图识别方法研究及应用综述. 自动化学报, 2016, 42(1): 13-25

    Ding Qi-Chuan, Xiong An-Bin, Zhao Xin-Gang, Han Jian-Da. A review on researches and applications of sEMG-based motion intent recognition methods. Acta Automatica Sinica, 2016, 42(1): 13-25
    [3] Liu H, Tao J, Lyu P, Tian F. Human-robot cooperative control based on sEMG for the upper limb exoskeleton robot. Robotics and Autonomous Systems, 2020, 125: Article No. 103350 doi: 10.1016/j.robot.2019.103350
    [4] 陈玲玲, 李珊珊, 刘作军, 张燕. 基于表面肌电的下肢肌肉功能网络构建及其应用研究. 自动化学报, 2017, 43(3): 407-417

    Chen Ling-Ling, Li Shan-Shan, Liu Zuo-Jun, Zhang Yan. Construction of lower limb's functional muscle network and its application based on surface EMG. Acta Automatica Sinica, 2017, 43(3): 407-417
    [5] Pallotti A, Orengo G, Saggio G. Measurements comparison of finger joint angles in hand postures between an sEMG armband and a sensory glove. Biocybernetics and Biomedical Engineering, 2021, 41(2): 605-616 doi: 10.1016/j.bbe.2021.03.003
    [6] Ao D, Song R, Gao J W. Movement performance of human — robot cooperation control based on EMG-driven Hill-type and proportional models for an ankle power-assist exoskeleton robot. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(8): 1125-1134 doi: 10.1109/TNSRE.2016.2583464
    [7] He Y, Li F, Li J K, Liu J S, Wu X Y. An sEMG based adaptive method for human-exoskeleton collaboration in variable walking environments. Biomedical Signal Processing and Control, 2022, 74: Article No. 103477 doi: 10.1016/j.bspc.2021.103477
    [8] 张鋆豪, 何百岳, 杨旭升, 张文安. 基于可穿戴式惯性传感器的人体运动跟踪方法综述. 自动化学报, 2019, 45(8): 1439-1454 doi: 10.16383/j.aas.c180367

    Zhang Jun-Hao, He Bai-Yue, Yang Xu-Sheng, Zhang Wen-An. A review on wearable inertial sensor based human motion tracking. Acta Automatica Sinica, 2019, 45(8): 1439-1454 doi: 10.16383/j.aas.c180367
    [9] Bahador A, Yousefi M, Marashi M, Bahador O. High accurate lightweight deep learning method for gesture recognition based on surface electromyography. Computer Methods and Programs in Biomedicine, 2020, 195: 105643 doi: 10.1016/j.cmpb.2020.105643
    [10] Wang C, Guo W Y, Zhang H, Guo L L, Huang C C, Lin C. sEMG-based continuous estimation of grasp movements by long-short term memory network. Biomedical Signal Processing and Control, 2020, 59: Article No. 101774 doi: 10.1016/j.bspc.2019.101774
    [11] 朱煜, 赵江坤, 王逸宁, 郑兵兵. 基于深度学习的人体行为识别算法综述. 自动化学报, 2016, 42(6): 848-857

    Zhu Yu, Zhao Jiang-Kun, Wang Yi-Ning, Zheng Bing-Bing. A review of human action recognition based on deep learning. Acta Automatica Sinica, 2016, 42(6): 848-857
    [12] Yang W, Yang D P, Liu Y, Liu H. Decoding simultaneous multi-DOF wrist movements from raw EMG signals using a convolutional neural network. IEEE Transactions on Human-Machine Systems, 2019, 49(5): 411-420 doi: 10.1109/THMS.2019.2925191
    [13] Liu J, Ren Y P, Xu D L, Kang S H, Zhang L Q. EMG-based real-time linear-nonlinear cascade regression decoding of shoulder, elbow, and wrist movements in able-bodied persons and stroke survivors. IEEE Transactions on Biomedical Engineering, 2020, 67(5): 1272-1281 doi: 10.1109/TBME.2019.2935182
    [14] Xu L F, Chen X, Cao S, Zhang X, Chen X. Feasibility study of advanced neural networks applied to sEMG-based force estimation. Sensors, 2018, 18(10): 3226 doi: 10.3390/s18103226
    [15] Lu Y Z, Wang H, Zhou B, Wei C F, Xu S Q. continuous and simultaneous estimation of lower limb multi-joint angles from sEMG signals based on stacked convolutional and LSTM models. Expert Systems with Applications, 2022, 203: Article No. 117340 doi: 10.1016/j.eswa.2022.117340
    [16] Chai Y Y, Liu K P, Li C X, Sun Z B, Jin L, Shi T. A novel method based on long short-term memory network and discrete-time zeroing neural algorithm for upper-limb continuous estimation using sEMG signals. Biomedical Signal Processing and Control, 2021, 67: Article No. 102416 doi: 10.1016/j.bspc.2021.102416
    [17] Chen C H, Lu C X, Wang B, Trigoni N, Markham A. DynaNet: neural Kalman dynamical model for motion estimation and prediction. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(12): 5479-5491 doi: 10.1109/TNNLS.2021.3112460
    [18] Zhang J, Wu Y N, Jiao S. Research on trajectory tracking algorithm based on LSTM-UKF. In: Proceedings of the 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC). Beijing, China: IEEE, 2021. 61−65
    [19] Jondhale S R, Deshpande R S. Kalman filtering framework-based real time target tracking in wireless sensor networks using generalized regression neural networks. IEEE Sensors Journal, 2019, 19(1): 224-233 doi: 10.1109/JSEN.2018.2873357
    [20] Lim H, Ryu H, Rhudy M B, Lee D, Jang D, Lee C, et al. Deep learning-aided synthetic airspeed estimation of UAVs for analytical redundancy with a temporal convolutional network. IEEE Robotics and Automation Letters, 2021, 7(1): 17-24
    [21] Li J M, Chen C W, Cheng T H. Motion prediction and robust tracking of a dynamic and temporarily-occluded target by an unmanned aerial vehicle. IEEE Transactions on Control Systems Technology, 2020, 29(4): 1623-1635
    [22] Coskun H, Achilles F, DiPietro R, Navab N, Tombari F. Long short-term memory Kalman filters: Recurrent neural estimators for pose regularization. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, 2017. 5524−5532
    [23] Bao T Z, Zhao Y H, Zaidi S A R, Xie S Q, Yang PF, Zhang Z Q. A deep Kalman filter network for hand kinematics estimation using sEMG. Pattern Recognition Letters, 2021, 143: 88-94 doi: 10.1016/j.patrec.2021.01.001
    [24] Zhao C, Sun L, Yan Z, Neumann G, Duckett T, Stolkin R. Learning Kalman Network: a deep monocular visual odometry for on-road driving. Robotics and Autonomous Systems, 2019, 121: Article No. 103234 doi: 10.1016/j.robot.2019.07.004
    [25] Revach G, Shlezinger N, van Sloun R J G, Eldar Y C. Kalmannet: Data-driven Kalman filtering. In: Proceedings of the ICASSP 2021 —— 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Toronto, ON, Canada: IEEE, 2021. 3905−3909
    [26] Yang X S, Zhang W A, Liu A D, Yu L. Linear fusion estimation for range-only target tracking with nonlinear transformation. IEEE Transactions on Industrial Informatics, 2020, 16(10): 6403-6412 doi: 10.1109/TII.2019.2955931
    [27] 张文安, 陈国庆, 杨旭升. UHF-RFID环境下的移动机器人定位方法. 控制与决策, 2018, 33(10): 1807-1812 doi: 10.13195/j.kzyjc.2017.0741

    Zhang Wen-An, Chen Guo-Qing, Yang Xu-Sheng. Mobile robot localization method in UHF-RFID. Control and Decision, 2018, 33(10): 1807-1812. doi: 10.13195/j.kzyjc.2017.0741
    [28] 李自由, 赵新刚, 张弼, 丁其川, 张道辉, 韩建达. 基于表面肌电的意图识别方法在非理想条件下的研究进展. 自动化学报, 2021, 47(5): 15

    Li Zi-You, Zhao Xin-Gang, Zhang Bi, Ding Qi-Chuan, Zhang Dao-Hui, Han Jian-Da. Review of sEMG-based motion intent recognition methods in non-ideal conditions. Acta Automatica Sinica, 2021, 47(5): 955-969
    [29] Julier S, Uhlmann J, Durrant-Whyte H F. A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Transactions on Automatic Control, 2000, 45(3): 477-482 doi: 10.1109/9.847726
    [30] Yang X S, Zhang W A, Yu L, Shi L. Performance evaluation of distributed linear regression Kalman filtering fusion. IEEE Transactions on Automatic Control, 2021, 66(6): 2889-2896 doi: 10.1109/TAC.2020.3012638
    [31] 郑婷婷, 杨旭升, 张文安, 俞立. 一种高斯渐进滤波框架下的目标跟踪方法. 自动化学报, 2018, 44(12): 2250-2258

    Zheng Ting-Ting, Yang Xu-Sheng, Zhang Wen-An, Yu Li. A target tracking method in Gaussian progressive filtering framework. Acta Automatica Sinica, 2018, 44(12): 2250-2258
    [32] Yang X S, Zhao C, Chen B. Progressive Gaussian approximation filter with adaptive measurement update. Measurement, 2019, 148: Article No. 106898 doi: 10.1016/j.measurement.2019.106898
    [33] 谢平, 李欣欣, 杨春华, 杨芳梅, 陈晓玲, 吴晓光. 基于表面肌电非负矩阵分解与一致性的肌间协同耦合关系研究. 中国生物医学工程学报, 2017, 36(2): 150-157 doi: 10.3969/j.issn.0258-8021.2017.02.004

    Xie Ping, Li Xin-Xin, Yang Chun-Hua, Yang Fang-Mei, Chen Xiao-Ling, Wu Xiao-Guang. Research on the intermuscular synergy and coupling analysis based on surface EMG nonnegative matrix factorization-coherence. Chinese Journal of Biomedical Engineering, 2017, 36(2): 150-157 doi: 10.3969/j.issn.0258-8021.2017.02.004
    [34] 佟丽娜, 侯增广, 彭亮, 王卫群, 陈翼雄, 谭民. 基于多路sEMG时序分析的人体运动模式识别方法. 自动化学报, 2014, 40(5): 810-821

    Tong Li-Na, Hou Zeng-Guang, Peng Liang, Wang Wei-Qun, Chen Yi-Xiong, Tan Min. Multi-channel sEMG time series analysis based human motion recognition method. Acta Automatica Sinica, 2014, 40(5): 810-821
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  821
  • HTML全文浏览量:  223
  • PDF下载量:  243
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-24
  • 录用日期:  2023-01-11
  • 网络出版日期:  2023-06-07
  • 刊出日期:  2023-08-21

目录

    /

    返回文章
    返回