2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无控制器间通信的线性多智能体一致性的降阶协议

马煜文 李贤伟 李少远

马煜文, 李贤伟, 李少远. 无控制器间通信的线性多智能体一致性的降阶协议. 自动化学报, 2023, 49(9): 1836−1844 doi: 10.16383/j.aas.c220420
引用本文: 马煜文, 李贤伟, 李少远. 无控制器间通信的线性多智能体一致性的降阶协议. 自动化学报, 2023, 49(9): 1836−1844 doi: 10.16383/j.aas.c220420
Ma Yu-Wen, Li Xian-Wei, Li Shao-Yuan. A reduced-order protocol for linear multi-agent consensus without inter-controller communication. Acta Automatica Sinica, 2023, 49(9): 1836−1844 doi: 10.16383/j.aas.c220420
Citation: Ma Yu-Wen, Li Xian-Wei, Li Shao-Yuan. A reduced-order protocol for linear multi-agent consensus without inter-controller communication. Acta Automatica Sinica, 2023, 49(9): 1836−1844 doi: 10.16383/j.aas.c220420

无控制器间通信的线性多智能体一致性的降阶协议

doi: 10.16383/j.aas.c220420
基金项目: 国家自然科学基金 (62273227, 61903250), 上海市自然科学基金 (21ZR1430500)资助
详细信息
    作者简介:

    马煜文:上海交通大学硕士研究生. 主要研究方向为多智能体一致性. E-mail: mo__om@sjtu.edu.cn

    李贤伟:上海交通大学副教授. 主要研究方向为鲁棒控制, 网络化控制和多智能体系统的理论与应用研究. 本文通信作者. E-mail: xianwei.li@sjtu.edu.cn

    李少远:上海交通大学教授. 主要研究方向为预测控制, 自适应控制和模糊智能控制的理论与应用研究. E-mail: syli@sjtu.edu.cn

A Reduced-order Protocol for Linear Multi-agent Consensus Without Inter-controller Communication

Funds: Supported by National Natural Science Foundation of China (62273227, 61903250) and Natural Science Foundation of Shanghai (21ZR1430500)
More Information
    Author Bio:

    MA Yu-Wen Master student at Shanghai Jiao Tong University. His main research interest is consensus of multi-agent systems

    LI Xian-Wei Associate professor at Shanghai Jiao Tong University. His research interest covers theoretical and applied research on robust control, networked control, and multi-agent systems. Corresponding author of this paper

    LI Shao-Yuan Professor at Shanghai Jiao Tong University. His research interest covers theoretical and applied research on predictive control, adaptive control, and fuzzy intelligent control

  • 摘要: 针对线性同质多智能体系统, 提出一种新的降阶输出反馈一致性协议. 该协议仅依赖智能体间相对输出信息, 当相对输出信息可直接测量时, 该协议无需在邻居智能体间共享控制器的状态, 降低系统对通讯媒介的依赖. 本文首先给出该协议存在的充要条件, 然后证明闭环系统的一致性并计算一致性状态. 理论分析表明, 该协议仍然具有类似分离原理的性质, 因此其参数构造过程非常简便. 最后, 通过数值仿真对比实验, 验证了该控制协议的有效性.
    1)  11 本文尚不清楚假设2在一般情形下的直观系统解释. 当$ n_u=n_y=1 $时, 假设2等价于要求智能体的相对阶为1. 若考虑文献[18]的对应条件, 即$ \mathrm{rank}(CB)=\mathrm{rank}(B)=n_u $, 根据未知输入观测器理论[28], 该对应条件的直观解释为邻居的控制输入信号可以直接通过相对输出获得, 不过这种解释并不适用于假设2.
  • 图  1  无控制器通信一致性协议(2)下的智能体状态$ x_i $

    Fig.  1  Agent states $ x_i $ under the protocol (2)

    图  2  无控制器通信一致性协议(2)下的控制器状态$ r_i $

    Fig.  2  Controller states $ r_i $ under the protocol (2)

    图  3  一致性协议$ (21) $下的智能体状态$ x_i $

    Fig.  3  Agent states $ x_i $ under the protocol (21)

    图  4  遭受网络攻击时一致性协议$ (21) $下的智能体状态$ x_i $

    Fig.  4  Agent states $ x_i $ under the protocol (21) when subjected to a network attack

  • [1] Yu C B, Hendrickx J M, Fidan B, Anderson B DO, Blondel V D. Three and higher dimensional autonomous formations: Rigidity, persistence and structural persistence. Automatica, 2007, 43(3): 387–402 doi: 10.1016/j.automatica.2006.08.025
    [2] Su H S, Wang X F, Lin Z L. Flocking of multi-agents with a virtual leader. IEEE Transactions on Automatic Control, 2009, 54(2): 293–307 doi: 10.1109/TAC.2008.2010897
    [3] Cortés J. Distributed algorithms for reaching consensus on general functions. Automatica, 2008, 44(3): 726–737 doi: 10.1016/j.automatica.2007.07.022
    [4] Ren H R, Wang Y, Liu M, Li H Y. An optimal estimation framework of multi-agent systems with random transport protocol. IEEE Transactions on Signal Processing, 2022, 70: 2548–2559 doi: 10.1109/TSP.2022.3175020
    [5] Hu Z P, Ren H R, Shi P. Synchronization of complex dynamical networks subject to noisy sampling interval and packet loss. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(8): 3216–3226 doi: 10.1109/TNNLS.2021.3051052
    [6] Olfati-Saber R, Fax J A, Murray R M. Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE, 2007, 95(1): 215–233 doi: 10.1109/JPROC.2006.887293
    [7] Yu W W, Chen G R, Cao M. Some necessary and suffcient conditions for second-order consensus in multi-agent dynamical systems. Automatica, 2010, 46(6): 1089–1095 doi: 10.1016/j.automatica.2010.03.006
    [8] Li Z K, Ren W, Liu X D, Fu M Y. Consensus of multi-agent systems with general linear and Lipschitz nonlinear dynamics using distributed adaptive protocols. IEEE Transactions on Automatic Control, 2012, 58(7): 1786–1791
    [9] Li Z K, Wen G H, Duan Z S, Ren W. Designing fully distributed consensus protocols for linear multi-agent systems with directed graphs. IEEE Transactions on Automatic Control, 2015, 60(4): 1152–1157 doi: 10.1109/TAC.2014.2350391
    [10] Han T, Guan Z H, Xiao B, Wu J, Chen X. Distributed output consensus of heterogeneous multi-agent systems via an output regulation approach. Neurocomputing, 2019, 360: 131–137 doi: 10.1016/j.neucom.2019.06.028
    [11] Wieland P, Sepulchre R, Allgöwer F. An internal model principle is necessary and suffcient for linear output synchronization. Automatica, 2011, 47(5): 1068–1074 doi: 10.1016/j.automatica.2011.01.081
    [12] Trentelman H L, Takaba K, Monshizadeh N. Robust synchronization of uncertain linear multi-agent systems. IEEE Transactions on Automatic Control, 2013, 58(6): 1511–1523 doi: 10.1109/TAC.2013.2239011
    [13] Xu X, Liu L, Feng G. Consensus of discrete-time linear multiagent systems with communication, input and output delays. IEEE Transactions on Automatic Control, 2018, 63(2): 492–497 doi: 10.1109/TAC.2017.2720703
    [14] Li X W, Soh Y C, Xie L H. Robust consensus of uncertain linear multi-agent systems via dynamic output feedback. Automatica, 2018, 98: 114–123 doi: 10.1016/j.automatica.2018.09.020
    [15] Li Z K, Duan Z S, Chen G R, Huang L. Consensus of multiagent systems and synchronization of complex networks: A unified viewpoint. IEEE Transactions on Circuits and Systems I: Regular Papers, 2010, 57(1): 213–224 doi: 10.1109/TCSI.2009.2023937
    [16] Zhou B, Xu C C, Duan G R. Distributed and truncated reducedorder observer based output feedback consensus of multi-agent systems. IEEE Transactions on Automatic Control, 2014, 59(8): 2264–2270 doi: 10.1109/TAC.2014.2301573
    [17] Lu M B, Liu L. Cooperative output regulation of linear multiagent systems by a novel distributed dynamic compensator. IEEE Transactions on Automatic Control, 2017, 62(12): 6481–6488 doi: 10.1109/TAC.2017.2658026
    [18] Lv Y Z, Wen G H, Huang T W, Duan Z S. Adaptive attackfree protocol for consensus tracking with pure relative output information. Automatica, 2020, 117. Article No.108998 doi: 10.1016/j.automatica.2020.108998
    [19] Li X W, Soh Y C, Xie L H. A novel reduced-order protocol for consensus control of linear multi-agent systems. IEEE Transactions on Automatic Control, 2019, 64(7): 3005–3012 doi: 10.1109/TAC.2018.2876390
    [20] Seo J H, Shim H, Back J. Consensus of high-order linear systems using dynamic output feedback compensator: Low gain approach. Automatica, 2009, 45(11): 2659–2664 doi: 10.1016/j.automatica.2009.07.022
    [21] Li X W, Soh Y C, Xie L H. Output-feedback protocols without controller interaction for consensus of homogeneous multi-agent systems: A unified robust control view. Automatica, 2017, 81: 37–45 doi: 10.1016/j.automatica.2017.03.001
    [22] Zhao Y, Wen G H, Duan Z S, Xu X, Chen G R. A new observer-type consensus protocol for linear multi-agent dynamical systems. Asian Journal of Control, 2013, 15(2): 571–582 doi: 10.1002/asjc.572
    [23] Lv Y Z, Wen G H, Huang T W. Adaptive protocol design for distributed tracking with relative output information: A distributed fixed-time observer approach. IEEE Transactions on Control of Network Systems, 2020, 7(1): 118–128 doi: 10.1109/TCNS.2019.2919855
    [24] Stoorvogel A A, Saberi A, Zhang M R. Solvability conditions and design for state synchronization of multi-agent systems. Automatica, 2017, 84: 43–47 doi: 10.1016/j.automatica.2017.06.016
    [25] Scardovi L, Sepulchre R. Synchronization in networks of identical linear systems. Automatica, 2009, 45(11): 2557–2562 doi: 10.1016/j.automatica.2009.07.006
    [26] Xu J, Xie L H, Li T, Lum K Y. Consensus of multi-agent systems with general linear dynamics via dynamic output feedback control. IET Control Theory & Applications, 2013, 7(1): 108–115
    [27] 李润梅, 张立威, 王剑. 基于时变间距和相对角度的无人车跟随控制 方法研究. 自动化学报, 2018, 44(11): 2031-2040

    Li Run-Mei, Zhang Li-Wei, Wang Jian. A control method of unmanned car following under time-varying relative distance and angle. Acta Automatica Sinica, 2018, 44(11): 2031–2040.
    [28] Hou M, Muller P C. Design of observers for linear systems with unknown inputs. IEEE Transactions on Automatic Control, 1992, 37(6): 871–875 doi: 10.1109/9.256351
    [29] Ren W, Beard R W. Consensus seeking in multi-agent systems under dynamically changing interaction topologies. IEEE Transactions on Automatic Control, 2005, 50(5): 655–661 doi: 10.1109/TAC.2005.846556
  • 加载中
图(4)
计量
  • 文章访问数:  1008
  • HTML全文浏览量:  177
  • PDF下载量:  308
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-22
  • 录用日期:  2023-01-11
  • 网络出版日期:  2023-04-18
  • 刊出日期:  2023-09-26

目录

    /

    返回文章
    返回