2.624

2020影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分层控制策略的六轮滑移机器人横向稳定性控制

于力率 苏晓杰 孙少欣 焦春亭

于力率, 苏晓杰, 孙少欣, 焦春亭. 基于分层控制策略的六轮滑移机器人横向稳定性控制. 自动化学报, 2022, 48(x): 1−12 doi: 10.16383/j.aas.c220326
引用本文: 于力率, 苏晓杰, 孙少欣, 焦春亭. 基于分层控制策略的六轮滑移机器人横向稳定性控制. 自动化学报, 2022, 48(x): 1−12 doi: 10.16383/j.aas.c220326
Yu Li-Shuai, Su Xiao-Jie, Sun Shao-Xin, Jiao Chun-Ting. Lateral stability control of six-wheeled skid-steering robot based on hierarchical control strategy. Acta Automatica Sinica, 2022, 48(x): 1−12 doi: 10.16383/j.aas.c220326
Citation: Yu Li-Shuai, Su Xiao-Jie, Sun Shao-Xin, Jiao Chun-Ting. Lateral stability control of six-wheeled skid-steering robot based on hierarchical control strategy. Acta Automatica Sinica, 2022, 48(x): 1−12 doi: 10.16383/j.aas.c220326

基于分层控制策略的六轮滑移机器人横向稳定性控制

doi: 10.16383/j.aas.c220326
基金项目: 广东省重点研发计划(2020B0909020001), 国家自然科学基金(62173051, 62103066, 62003061), 中国博士后科学基金(2021TQ0392, 2021M700592), 重庆市技术创新与应用发展专项重点项目(cstc2021jscx-gksbX0030) 资助
详细信息
    作者简介:

    于力率:重庆大学自动化学院控制科学与工程博士研究生. 2020年获得重庆大学控制工程硕士学位. 主要研究方向为多机器人系统, 机器人规划与控制, 人工智能算法及其应用. E-mail: yulishuai@cqu.edu.cn

    苏晓杰:重庆大学自动化学院教授. 2013年获哈尔滨工业大学控制科学与工程博士学位. 主要研究方向为智能控制系统及其在无人系统中的应用. 本文通信作者. E-mail: suxiaojie@cqu.edu.cn

    孙少欣:重庆大学自动化学院助理研究员. 2021获得东北大学控制理论与控制工程博士学位. 主要研究方向为模糊系统, 时滞系统, 故障估计, 容错控制和随机系统. E-mail: ssx5fd@cqu.edu.cn

    焦春亭:重庆大学自动化学院的助理研究员. 2020年获得清华大学控制科学与工程博士学位. 主要研究方向为智能控制系统、机器人控制和运动规划. E-mail: jiaochunting@cqu.edu.cn

Lateral Stability Control of Six-wheeled Skid-steering Robot Based on Hierarchical Control Strategy

Funds: Supported by Key Research and Development Projects of Guangdong (2020B0909020001), National Natural Science Foundation of China (62173051,62103066,62003061), Postdoctoral Science Foundation of China (2021TQ0392,2021M700592), The Special Key Projects of Technological Innovation and Application Development of Chongqing (cstc2021jscx-gksbX0030)
More Information
    Author Bio:

    YU Li-Shuai Ph. D. candidate in control theory and control engineering at the College of Automation, Chongqing University. He received the M.S. degrees in control engineering from Chongqing University, Chongqing, in 2020. His current research interests include multi-robot systems, motion control and artificial intelligence in robotics

    SU Xiao-Jie Professor at the College of Automation, Chongqing University. He received Ph. D. degree in control theory and control engineering from the Harbin Institute of Technology, Harbin, in 2013. His current research interests include intelligent control systems, advanced control and system analysis, and application of intelligent robot control. Corresponding author of this paper

    SUN Shao-Xin Assistant research fellow of the College of Automation, Chongqing University. She received Ph. D. degree in control theory and control engineering from Northeastern University, Shenyang, in 2021. Her current research interests include fuzzy systems, time-delay systems, fault estimation, fault tolerant control, and stochastic/random systems

    JIAO Chun-Ting Assistant research fellow of the College of Automation, Chongqing University. He received the PhD degree in Control Science and Engineering from Tsinghua University, Beijing, in 2020. His current research interests include intelligent control systems, robot manipulation, and motion planning

  • 摘要: 六轮野外机器人通常体积庞大, 难以建立其动力学模型. 采用传统的速度控制方法很难保证机器人的横向稳定性. 为了解决这一问题, 研究了基于分层控制策略的六轮滑移机器人横向稳定性控制问题. 首先分析整车受力情况, 建立六轮滑移机器人的动力学模型. 其次, 设计基于分层控制策略的动力学控制器, 其中上层为基于改进趋近律的滑模控制器, 实现对期望横摆角速度的跟踪; 下层为基于附着率最优的转矩分配控制器, 该控制器可以保证机器人行驶的横向稳定性. 最后, 在不同工况下进行仿真实验, 并搭建实验平台进行实物测试. 结果表明设计的控制器可以有效提高机器人的横向稳定性.
  • 图  1  机器人系统框架

    Fig.  1  Robot system framework

    图  2  滑移底盘动力学模型

    Fig.  2  Dynamic model of skid-steering chassis

    图  3  两种用户驱动工具

    Fig.  3  Two operation modes for the drivers

    图  4  机器人分层控制策略

    Fig.  4  Hierarchical control strategy

    图  5  实验样机

    Fig.  5  Experimental prototype

    图  6  系统总体框图

    Fig.  6  System block diagram

    图  7  转向速度跟踪仿真

    Fig.  7  Simulation of steering speed tracking

    图  8  单移线工况仿真

    Fig.  8  Simulation of single-shift mode

    图  9  横向冲击工况仿真

    Fig.  9  Simulation with lateral impact

    图  10  实物仿真

    Fig.  10  Simulation of experimental prototype

    表  1  模型参数

    Table  1  Model parameters

    参数名称参数含义
    $o$机器人重心
    $B$机器人轮距
    $R_{e}$轮胎的滚动半径
    $a,b,c$前中后三轴离重心轴距离
    $v_{x}$重心的纵向速度
    $v_{y}$重心的横向速度
    $\omega_{\gamma}$横摆角速度
    $F_{xij}$车胎所受纵向力
    $F_{yij}$车胎所受横向力
    下载: 导出CSV

    表  2  机器人参数

    Table  2  Robot parameters

    参数名称参数值单位
    整车质量$m$2 655kg
    绕$z$轴转动惯量$I_{z}$5 813.86$\text{kg}\cdot {{\text{m}}^{\text{2}}}$
    质心到前轴距离$a$2m
    质心到中轴距离$b$0m
    质心到后轴距离$c$2m
    轮距$B$2.03m
    车轮有效半径$r$0.425m
    下载: 导出CSV
  • [1] Zhao H, Luo C, Xu Y, Li J. Differential steering control for 6×6 wheel-drive mobile robot. In: Proceedings of the 26th International Conference on Automation and Computing. Portsmouth, UK: IEEE, 2021. 1−6
    [2] 孙忠廷, 柏建军, 陈炳旭, 陈云. 轮式移动机器人自适应轨迹跟踪控制. 控制工程, 2021, 28(12): 2420-2425 doi: 10.14107/j.cnki.kzgc.20200387

    Sun Zhong-Ting, Bai Jian-Jun, Chen Bing-Xu, Chen Yun. Adaptive trajectory tracking control for wheeled mobile robots. Control Engineering, 2021, 28(12): 2420-2425 doi: 10.14107/j.cnki.kzgc.20200387
    [3] Maclaurin B. Comparing the steering performances of skid- and Ackermann-steered vehicles. Proceedings of the Institution of Mechanical Engineers Part D: Journal of Automobile Engineering. 2008, 222(5): 739-756 doi: 10.1243/09544070JAUTO567
    [4] Yu W, Chuy O Y, Collins E G, Hollis P. Analysis and experimental verification for dynamic modeling of a skid-steered wheeled vehicle. IEEE Transactions on Robotics, 2010, 26(2): 340-353 doi: 10.1109/TRO.2010.2042540
    [5] Liao J, Chen Z, Yao B. Model-based coordinated control of four-wheel independently driven skid steer mobile robot with wheel–ground interaction and wheel dynamics. IEEE Transactions on Industrial Informatics, 2018, 15(3): 1742-1752
    [6] Tang S, Yuan S, Li X, Zhou J. Dynamic modeling and experimental validation of skid-steered wheeled vehicles with low-pressure pneumatic tires on soft terrain. Proceedings of the Institution of Mechanical Engineers Part D: Journal of Automobile Engineering, 2020, 234(2-3): 840-856 doi: 10.1177/0954407019847302
    [7] Du P, Ma Z, Chen H, Xu D, Wang Y, Jiang Y, et al. Speed-adaptive motion control algorithm for differential steering vehicle. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2021, 235(2-3): 672-85 doi: 10.1177/0954407020950588
    [8] 熊璐, 黄少帅, 陈远龙, 杨光兴, 章仁燮. 轮式差动转向无人车运动跟踪控制的研究. 汽车工程, 2015, 37(10): 1109-1116 doi: 10.3969/j.issn.1000-680X.2015.10.002

    Xiong Lu, Huang Shao-Shuai, Chen Yuan-Long, Yang Guang-Xing, Zhang Ren-Xie. Research on motion tracking control of wheeled differential steering unmanned vehicle. Automotive Engineering, 2015, 37(10): 1109-1116 doi: 10.3969/j.issn.1000-680X.2015.10.002
    [9] 王昕煜, 平雪良. 基于多传感器融合信息的移动机器人速度控制方法. 工程设计学报, 2021, 28(1): 63-71 doi: 10.3785/j.issn.1006-754X.2021.00.013

    Wang Xin-Yu, Ping Xue-Liang. Speed control method of mobile robot based on multi-sensor fusion information. Journal of Engineering Design, 2021, 28(1): 63-71 doi: 10.3785/j.issn.1006-754X.2021.00.013
    [10] 贾松敏, 卢兴阳, 张祥银, 张国梁. 轮子打滑状态下全向移动机器人轨迹跟踪控制. 控制与决策, 2020, 35(4): 833-842 doi: 10.13195/j.kzyjc.2018.0644

    Jia Song-Min, Lu Xing-Yang, Zhang Xiang-Yin, Zhang Guo-Liang. Trajectory tracking control of omnidirectional mobile robot under wheel slip. Control and Decision Making, 2020, 35(4): 833-842 doi: 10.13195/j.kzyjc.2018.0644
    [11] 王玉琼, 高松, 王玉海, 徐艺, 郭栋, 周英超. 高速无人驾驶车辆轨迹跟踪和稳定性控制. 浙江大学学报(工学版), 2021, 55(10): 1922-1929 doi: 10.3785/j.issn.1008-973X.2021.10.014

    Wang Yu-Qiong, Gao Song, Wang Yu-Hai, Xu Yi, Guo Dong, Zhou Ying-Chao. Trajectory tracking and stability control of high speed unmanned vehicle. Journal of Zhejiang University (Engineering Edition), 2021, 55(10): 1922-1929 doi: 10.3785/j.issn.1008-973X.2021.10.014
    [12] Ni J, Hu J, Xiang C. Robust path following control at driving handling limits of an autonomous electric racecar. IEEE Transactions on Vehicular Technology, 2019, 68(6): 5518-5526 doi: 10.1109/TVT.2019.2911862
    [13] Shino M, Nagai M. Independent wheel torque control of small-scale electric vehicle for handling and stability improvement. JSAE Review, 2003, 24(4): 449-456 doi: 10.1016/S0389-4304(03)00080-8
    [14] 续丹, 王国栋, 曹秉刚. 独立驱动电动汽车的转矩优化分配策略研究. 西安交通大学学报, 2012, 46(3): 42-46

    Xu Dan, Wang Guo-Dong, Cao Bing-Gang. Research on torque optimal allocation strategy of independent drive electric vehicle. Journal of Xi'an Jiaotong University, 2012, 46(3): 42-46
    [15] 李庆望, 张缓缓, 严帅, 高超. 四轮独立驱动电动汽车单轮失效稳定性控制. 控制工程, 2021, 28(1): 155-163 doi: 10.14107/j.cnki.kzgc.20190045

    Li Qing-Wang, Zhang Huan-Huan, Yan Shuai, Gao Chao. Single wheel failure stability control for four-wheel independent drive electric vehicles. Control Engineering, 2021, 28 (1): 155-163 doi: 10.14107/j.cnki.kzgc.20190045
    [16] 闫永宝, 张豫南, 颜南明, 韩宝亮. 六轮独立驱动滑动转向车辆运动控制算法仿真研究. 兵工学报, 2013, 34(11): 1461-1468 doi: 10.3969/j.issn.1000-1093.2013.11.019

    Yan Yong-Bao, Zhang Yu-Nan, Yan Nan-Ming, Han Bao-Liang. Simulation Research on motion control algorithm of six wheel independent drive sliding steering vehicle. Journal of Ordnance Industry, 2013, 34 (11): 1461-1468 doi: 10.3969/j.issn.1000-1093.2013.11.019
    [17] 晏永, 曾京, 徐坤, 赵飞燕. 悬挂阻尼与车辆蛇行运动稳定性关系. 系统仿真学报, 2021, 33(08): 1784-1790 doi: 10.16182/j.issn1004731x.joss.20-0237

    Yan Yong, Zeng Jing, Xu Kun, Zhao Fei-Yan. Relationship between suspension damping and vehicle hunting stability. Journal of System Simulation, 2021, 33(08): 1784-1790 doi: 10.16182/j.issn1004731x.joss.20-0237
    [18] Belrzaeg M, Ahmed A A, Almabrouk A Q, Khaleel M M, Ahmed A A, Almukhtar M. Vehicle dynamics and tire models: An overview. World Journal of Advanced Research and Reviews, 2021, 12(1): 331-348 doi: 10.30574/wjarr.2021.12.1.0524
    [19] Kozowski K, Pazderski D. Modeling and control of a 4-wheel skid-steering mobile robot. International Journal of Applied Mathematics and Computer Science, 2004, 14(4)
    [20] 余卓平, 高乐天, 章仁燮, 熊璐. 轮边电机驱动差动转向车辆动力学控制. 同济大学学报: 自然科学版, 2018, 46(5): 631-638

    Yu Zhuo-Ping, Gao Le-Tian, Zhang Ren-Xie, Xiong Lu. Dynamic control of differential steering vehicle driven by wheel motor. Journal of Tongji University: Natural Science Edition, 2018, 46 (5): 631-638
    [21] Macadam C C. Understanding and modeling the human driver. Vehicle System Dynamics, 2003, 40(1-3): 101-134 doi: 10.1076/vesd.40.1.101.15875
    [22] Zhang X, Sun L, Zhao K, Sun L. Nonlinear speed control for PMSM system using sliding-mode control and disturbance compensation techniques. IEEE Transactions on Power Electronics, 2013, 28(3): 1358-1365 doi: 10.1109/TPEL.2012.2206610
  • 加载中
计量
  • 文章访问数:  37
  • HTML全文浏览量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-24
  • 录用日期:  2022-09-26
  • 网络出版日期:  2022-10-25

目录

    /

    返回文章
    返回