2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分层粒度对比网络的钢铁燃气调度知识获取与建模

王天宇 赵珺 王伟 王天鑫

王天宇, 赵珺, 王伟, 王天鑫. 基于分层粒度对比网络的钢铁燃气调度知识获取与建模. 自动化学报, 2022, 48(9): 2212−2222 doi: 10.16383/j.aas.c211198
引用本文: 王天宇, 赵珺, 王伟, 王天鑫. 基于分层粒度对比网络的钢铁燃气调度知识获取与建模. 自动化学报, 2022, 48(9): 2212−2222 doi: 10.16383/j.aas.c211198
Wang Tian-Yu, Zhao Jun, Wang Wei, Wang Tian-Xin. Hierarchical granular contrastive network-based knowledge acquisition and modeling for gas scheduling of steel industry. Acta Automatica Sinica, 2022, 48(9): 2212−2222 doi: 10.16383/j.aas.c211198
Citation: Wang Tian-Yu, Zhao Jun, Wang Wei, Wang Tian-Xin. Hierarchical granular contrastive network-based knowledge acquisition and modeling for gas scheduling of steel industry. Acta Automatica Sinica, 2022, 48(9): 2212−2222 doi: 10.16383/j.aas.c211198

基于分层粒度对比网络的钢铁燃气调度知识获取与建模

doi: 10.16383/j.aas.c211198
基金项目: 国家重点研发计划(2017YFA0700300), 国家自然科学基金(62125302, 62076182, 61833003, U1908218), 大连市杰出青年科技人才计划(2018RJ01), 中国博士后科学基金面上项目(2021M700667)资助
详细信息
    作者简介:

    王天宇:大连理工大学控制科学与工程学院博士后. 2020年获得大连理工大学工学博士学位. 主要研究方向为工业系统建模与优化, 能源调度和机器学习. E-mail: wangty@dlut.edu.cn

    赵珺:大连理工大学控制科学与工程学院教授. 2008年获得大连理工大学工学博士学位. 主要研究方向为工业生产调度, 计算机集成制造, 智能优化和机器学习. 本文通信作者. E-mail: zhaoj@dlut.edu.cn

    王伟:大连理工大学控制科学与工程学院教授. 1988年获得东北大学工业自动化博士学位. 主要研究方向为自适应控制, 计算机集成制造和工业过程计算机控制. E-mail: wangwei@dlut.edu.cn

    王天鑫:大连理工大学电子信息专业硕士研究生. 主要研究方向为基于数据的预测和调度, 数据挖掘和深度强化学习. E-mail: wtx@mail.dlut.edu.cn

Hierarchical Granular Contrastive Network-based Knowledge Acquisition and Modeling for Gas Scheduling of Steel Industry

Funds: Supported by the National Key Research & Development Program of China (2017YFA0700300), National Natural Science Foundation of China (62125302, 62076182, 61833003, U1908218), the Outstanding Youth Science-Technology Talent Program of Dalian (2018RJ01), and the China Postdoctoral Science Foundation (2021M700667)
More Information
    Author Bio:

    WANG Tian-Yu Postdoctor at Faculty of Control Science and Engineering, Dalian University of Technology. He received his Ph.D. degree in engineering from Dalian University of Technology in 2020. His research interest covers industrial system modeling and optimization, energy scheduling, and machine learning

    ZHAO Jun Professor at Faculty of Control Science and Engineering, Dalian University of Technology. He received his Ph.D. degree in engineering from Dalian University of Technology in 2008. His research interest covers industrial production scheduling, computer integrated manufacturing, intelligent optimization, and machine learning. Corresponding author of this paper

    WANG Wei Professor at Faculty of Control Science and Engineering, Dalian University of Technology. He received his Ph.D. degree in industrial automation from the Northeastern University in 1988. His research interest covers adaptive controls, computer integrated manufacturing, and computer controls of industrial processes

    WANG Tian-Xin Master student in electronic information, at Dalian University of Technology. His research interest covers data-based forecasting and scheduling, data mining, and deep reinforcement learning

  • 摘要: 对于钢铁燃气系统的实时有效调度是实现企业节能降耗的关键. 考虑燃气产消过程所包含的多工况特征, 提出了一种基于分层粒度对比网络的调度知识获取与建模方法. 鉴于深度对比学习对于语义信息的处理能力, 定义和描述了一系列信息粒度, 以建立能源数据的语义表示. 为初步提取多工况调度知识, 采用长短时记忆(Long and short-term memory, LSTM)网络学习具有时变特性的粒度变量特征. 在此基础上, 利用专家经验知识定性地划分对比学习样本, 建立基于粒度对比学习的知识表征网络. 为挖掘调度数据中所包含的深层次知识, 进一步提出了基于反馈机制的分层对比网络模型, 并通过网络输出层实现调度建模任务. 实验部分采用了国内某钢铁厂高炉煤气系统的实际数据进行了多组对比实验, 结果表明所提方法获得的知识表示能够有效提高燃气系统的建模精度, 帮助实现专家级别的调度表现.
  • 图  1  典型钢铁工业燃气系统结构图

    Fig.  1  A typical structure of the gas system in steel industry

    图  2  燃气产消多工况特征及调度过程

    Fig.  2  The multi-condition characteristics and their scheduling process of gas generation and consumption

    图  3  所提方法整体框架图

    Fig.  3  The overall framework of the proposed method

    图  4  粒度对比网络结构图

    Fig.  4  The structure of the granular contrastive network

    图  5  样本数据知识表征的计算过程描述

    Fig.  5  The calculation process of the knowledge representation of sample data

    图  6  分层粒度对比网络结构

    Fig.  6  The structure of hierarchical granular contrastive network

    图  7  分层粒度对比网络实施过程

    Fig.  7  The implement process of the hierarchical granular contrastive network

    图  8  调度量结果对比

    Fig.  8  Comparative results of scheduling amount

    图  9  各阶段对比学习模型的误差比较

    Fig.  9  Absolute error of the scheduling amount during different contrastive learning phases

    图  10  不同方法获得的调度量绝对误差对比

    Fig.  10  Absolute error of the scheduling amount obtained by the comparative algorithms

    图  11  通过知识表示构建多工况组合模型与单一预测建模的结果对比

    Fig.  11  Prediction modeling results with and without using the granular contrastive learning model for extracting multiple working-condition knowledge

    表  1  各对比学习阶段的误差统计

    Table  1  Error statistical results of different contrastive learning phases

    模型MAERMSEMAPE
    二分类知识学习25.553835.903847.8148
    多分类知识学习25.280537.314648.4387
    分层次对比网络 (本文方法)14.262118.012025.9330
    下载: 导出CSV

    表  2  各对比方法的误差及耗时统计

    Table  2  Statistical results of error and time consumption of the comparative algorithms

    模型MAERMSEMAPETC (s)
    LSSVM30.811240.587458.34361.8990
    Actor-critic52.654262.478699.1213195.1375
    LSTM25.486738.186048.689511.7582
    本文方法14.262118.012025.933039.0892
    下载: 导出CSV

    表  3  不同场景下的煤气柜位预测误差统计

    Table  3  The error statistics of the gas tank level prediction under different situations

    统计误差
    MAERMSEMAPE
    接近柜位存储上限单工况1.82482.81280.9093
    多工况0.95761.16460.4794
    接近柜位存储下限单工况2.01872.68311.3711
    多工况1.17721.50330.7981
    下载: 导出CSV
  • [1] Wang T Y, Zhao J, Liu Q L, Wang W. Granular-based multi-layer spatiotemporal network with control gates for energy prediction of steel industry. IEEE Transactions on Instrumentation and Measurement, DOI: 10.1109/TIM.2021.3122173
    [2] Wang T Y, Zhao J, Xu Q S, Pedrycz W, Wang W. A dynamic scheduling framework for byproduct gas system combining expert knowledge and production plan. IEEE Transactions on Automation Science and Engineering, DOI: 10.1109/TASE.2022.3162653
    [3] Jiang S L, Peng G, Bogle I D L. A two-stage robust optimization approach for oxygen flexible distribution under uncertainty in iron and steel plants. arXiv preprint arXiv: 2106.11635, 2021.
    [4] . Yang J H, Cai J J, Sun W Q, Huang J. Optimal allocation of surplus gas and suitable capacity for buffer users in steel plant. Applied Thermal Engineering, 2017, 115: 586-596 doi: 10.1016/j.applthermaleng.2016.12.096
    [5] . Zhai Y W, Lv Z, Zhao J, Wang W, Leung H. Data-driven inference modeling based on an on-line Wang-Mendel fuzzy approach. Information Sciences, 2021, 551: 113-127 doi: 10.1016/j.ins.2020.10.018
    [6] . Jin F, Wang L Q, Zhao J, Wang W, Liu Q L. Granular-causality-based byproduct energy scheduling for energy-intensive enterprise. IEEE Transactions on Automation Science and Engineering, 2020, 17(4): 1662-1673 doi: 10.1109/TASE.2020.2969436
    [7] . Wang D, Ha M M, Zhao M M. The intelligent critic framework for advanced optimal control. Artificial Intelligence Review, 2022, 55: 1-22 doi: 10.1007/s10462-021-10118-9
    [8] 王鼎, 赵明明, 哈明鸣, 乔俊飞. 基于折扣广义值迭代的智能最优跟踪及应用验证. 自动化学报, 2022, 48(1): 182-193 doi: 10.16383/j.aas.c210658

    . Wang Ding, Zhao Ming-Ming, Ha Ming-Ming, Qiao Jun-Fei. Intelligent optimal tracking with application verifications via discounted generalized value iteration. Acta Automatica Sinica, 2022, 48(1): 182−193 doi: 10.16383/j.aas.c210658
    [9] . Wang D, Zhao M M, Ha M M, Ren J. Neural optimal tracking control of constrained nonaffine systems with a wastewater treatment application. Neural Networks, 2021, 143: 121-132 doi: 10.1016/j.neunet.2021.05.027
    [10] . Zhao C H, Chen J H, Jing H. Condition-driven data analytics and monitoring for wide-range nonstationary and transient continuous processes. IEEE Transactions on Automation Science and Engineering, 2020, 18(4): 1563-1574
    [11] Chen X, Zhao C H. Conditional discriminative autoencoder and condition-driven immediate representation of soft transition for monitoring complex nonstationary processes. Control Engineering Practice, 2022, 122: Article No. 105090
    [12] . Chen J H, Zhao C H. Exponential stationary subspace analysis for stationary feature analytics and adaptive nonstationary process monitoring. IEEE Transactions on Industrial Informatics, 2021, 17(12): 8345-8356 doi: 10.1109/TII.2021.3053308
    [13] Chen T, Kornblith S, Swersky K, Norouzi M, Hinton G E. Big self-supervised models are strong semi-supervised learners. arXiv preprint arXiv: 2006.10029, 2020.
    [14] Chen X C, Yao L, Zhou T, Dong J M, Zhang Y. Momentum contrastive learning for few-shot COVID-19 diagnosis from chest CT images. Pattern Recognition, 2021, 113: Article No. 107826
    [15] Marcheggiani D, Titov I. Encoding sentences with graph convolutional networks for semantic role labeling. arXiv preprint arXiv: 1703.04826, 2017.
    [16] Wu S, Tang Y Y, Zhu Y Q, Wang L, Xie X, Tan T N. Session-based recommendation with graph neural networks. In: Proceedings of the 2019 AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2019.
    [17] . Chen T, Kornblith S, Norouzi M, Hinton G. A simple framework for contrastive learning of visual representations. International Conference on Machine Learning, 2020, 119: 1597-1607
    [18] . Pedrycz W. Granular computing for data analytics: A manifesto of human-centric computing. IEEE/CAA Journal of Automatica Sinica, 2018, 5(6): 1025-1034 doi: 10.1109/JAS.2018.7511213
    [19] . Wang T Y, Han Z Y, Zhao J, Wang W. Adaptive granulation-based prediction for energy system of steel industry. IEEE Transactions on Cybernetics, 2018, 48(1): 127-138 doi: 10.1109/TCYB.2016.2626480
    [20] Han Z Y, Pedrycz W, Zhao J, Wang W. Hierarchical granular computing-based model and its reinforcement structural learning for construction of long-term prediction intervals. IEEE Transactions on Cybernetics, DOI: 10.1109/TCYB.2020.2964011
    [21] . Wang T Y, Zhao J, Sheng C Y, Wang W, Wang L Q. Multi-layer encoding genetic algorithm-based granular fuzzy inference for blast furnace gas scheduling. IFAC-PapersOnLine, 2016, 49(20): 132-137 doi: 10.1016/j.ifacol.2016.10.109
    [22] Zhao J, Wang T Y, Pedrycz W, Wang W. Granular prediction and dynamic scheduling based on adaptive dynamic programming for the blast furnace gas system. IEEE Transactions on Cybernetics, DOI: 10.1109/TCYB.2019.2901268
    [23] 桂卫华, 陈晓方, 阳春华, 谢永芳. 知识自动化及工业应用. 中国科学: 信息科学, 2016, 46(8): 1016-1034 doi: 10.1360/N112016-00065

    . Gui Wei-Hua, Chen Xiao-Fang, Yang Chun-Hua, Xie Yong-Fang. Knowledge automation and industrial application. Scientia Sinica informationis, 2016, 46(8): 1016-1034 doi: 10.1360/N112016-00065
    [24] . Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computation, 1997, 9(8): 1735-1780 doi: 10.1162/neco.1997.9.8.1735
    [25] . Liu J, Shahroudy A, Xu D, Kot A C, Wang G. Skeleton-based action recognition using spatiotemporal LSTM network with trust gates. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(12): 3007-3021
    [26] . Wang T Y, Leung H, Zhao J, Wang W. Multiseries featural LSTM for partial periodic time-Series prediction: A case study for steel industry. IEEE Transactions on Instrumentation and Measurement, 2020, 69(9): 5994-6003 doi: 10.1109/TIM.2020.2967247
    [27] . Han Z Y, Liu Y, Zhao J, Wang W. Real time prediction for converter gas tank levels based on multi-output least square support vector regressor. Control Engineering Practice, 2012, 20(12): 1400-1409 doi: 10.1016/j.conengprac.2012.08.006
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  741
  • HTML全文浏览量:  149
  • PDF下载量:  178
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-15
  • 录用日期:  2022-06-06
  • 网络出版日期:  2022-07-11
  • 刊出日期:  2022-09-16

目录

    /

    返回文章
    返回