2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于混合数据增强的MSWI过程燃烧状态识别

郭海涛 汤健 丁海旭 乔俊飞

郭海涛, 汤健, 丁海旭, 乔俊飞. 基于混合数据增强的MSWI过程燃烧状态识别. 自动化学报, 2024, 50(3): 560−575 doi: 10.16383/j.aas.c210843
引用本文: 郭海涛, 汤健, 丁海旭, 乔俊飞. 基于混合数据增强的MSWI过程燃烧状态识别. 自动化学报, 2024, 50(3): 560−575 doi: 10.16383/j.aas.c210843
Guo Hai-Tao, Tang Jian, Ding Hai-Xu, Qiao Jun-Fei. Combustion states recognition method of MSWI process based on mixed data enhancement. Acta Automatica Sinica, 2024, 50(3): 560−575 doi: 10.16383/j.aas.c210843
Citation: Guo Hai-Tao, Tang Jian, Ding Hai-Xu, Qiao Jun-Fei. Combustion states recognition method of MSWI process based on mixed data enhancement. Acta Automatica Sinica, 2024, 50(3): 560−575 doi: 10.16383/j.aas.c210843

基于混合数据增强的MSWI过程燃烧状态识别

doi: 10.16383/j.aas.c210843
基金项目: 国家自然科学基金(62073006, 62021003), 北京市自然科学基金(4212032, 4192009), 科学技术部国家重点研发计划(2018YFC1900800-5), 矿冶过程自动控制技术国家(北京市)重点实验室(BGRIMM-KZSKL-2020-02)资助
详细信息
    作者简介:

    郭海涛:北京工业大学信息学部硕士研究生. 主要研究方向为面向城市固废焚烧过程的图像处理研究. E-mail: guoht@emails.bjut.edu.cn

    汤健:北京工业大学信息学部教授. 主要研究方向为小样本数据建模, 城市固废处理过程智能控制. 本文通信作者. E-mail: freeflytang@bjut.edu.cn

    丁海旭:北京工业大学信息学部博士研究生. 主要研究方向为城市固废焚烧过程特征建模与智能控制. E-mail: dinghaixu@emails.bjut.edu.cn

    乔俊飞:北京工业大学信息学部教授. 主要研究方向为污水处理过程智能控制, 神经网络结构设计与优化. E-mail: junfeiq@bjut.edu.cn

Combustion States Recognition Method of MSWI Process Based on Mixed Data Enhancement

Funds: Supported by National Natural Science Foundation of China (62073006, 62021003), Beijing Natural Science Foundation (4212032, 4192009), National Key Research and Development Program of the Ministry of Science and Technology (2018YFC1900800-5), and Beijing Key Laboratory of Process Automation in Mining and Metallurgy (BGRIMM-KZSKL-2020-02)
More Information
    Author Bio:

    GUO Hai-Tao Master student at the Faculty of Information Technology, Beijing University of Technology. His main research interest is image processing of municipal solid waste incineration process

    TANG Jian Professor at the Faculty of Information Technology, Beijing University of Technology. His research interest covers small sample data modeling and intelligent control of municipal solid waste treatment process. Corresponding author of this paper

    DING Hai-Xu Ph.D. candidate at the Faculty of Information Technology, Beijing University of Technology. His research interest covers feature modeling and intelligent control of municipal solid waste incineration process

    QIAO Jun-Fei Professor at the Faculty of Information Technology, Beijing University of Technology. His research interest covers intelligent control of wastewater treatment process and structure design and optimization of neural networks

  • 摘要: 国内城市固废焚烧(Municipal solid waste incineration, MSWI)过程通常依靠运行专家观察炉内火焰识别燃烧状态后再结合自身经验修正控制策略以维持稳定燃烧, 存在智能化水平低、识别结果具有主观性与随意性等问题. 由于MSWI过程的火焰图像具有强污染、多噪声等特性, 并且存在异常工况数据较为稀缺等问题, 导致传统目标识别方法难以适用. 对此, 提出一种基于混合数据增强的MSWI过程燃烧状态识别方法. 首先, 结合领域专家经验与焚烧炉排结构对燃烧状态进行标定; 接着, 设计由粗调和精调两级组成的深度卷积生成对抗网络(Deep convolutional generative adversarial network, DCGAN)以获取多工况火焰图像; 然后, 采用弗雷歇距离(Fréchet inception distance, FID)对生成式样本进行自适应选择; 最后, 通过非生成式数据增强对样本进行再次扩充, 获得混合增强数据构建卷积神经网络以识别燃烧状态. 基于某MSWI电厂实际运行数据实验, 表明该方法有效地提高了识别网络的泛化性与鲁棒性, 具有良好的识别精度.
  • 图  1  MSWI过程工艺图

    Fig.  1  Flow chart of MSWI process

    图  2  基于DCGAN数据增强的燃烧状态识别策略

    Fig.  2  Strategy of combustion state recognition based on DCGAN data enhancement

    图  3  炉排等比例结构示意图

    Fig.  3  Schematic diagram of equal proportion structure of grate

    图  4  燃烧和停炉状态图像标定示意图

    Fig.  4  Image calibration diagram of combustion and shutdown status

    图  5  生成网络结构

    Fig.  5  Structure of generation network

    图  6  判别网络结构

    Fig.  6  Structure of discrimination network

    图  7  燃烧线前移

    Fig.  7  Combustion line forward

    图  8  燃烧线正常

    Fig.  8  Combustion line normal

    图  9  燃烧线后移

    Fig.  9  Combustion line back

    图  10  粗调DCGAN迭代过程中FID对生成燃烧状态图像的评估结果

    Fig.  10  Assessment of FID for generating combustion state images during rough DCGAN iteration

    图  11  燃烧线前移的增强图像

    Fig.  11  Expansion results of combustion line forward image

    图  13  燃烧线后移的增强图像

    Fig.  13  Expansion results of combustion line back image

    图  12  燃烧线正常的增强图像

    Fig.  12  Expansion results of combustion line normal image

    图  14  本文所提的非生成式数据增强

    Fig.  14  Non-generative data enhancement with the proposed method

    图  15  随机进行的非生成式数据增强

    Fig.  15  Non-generative data enhancement with random mode

    图  16  不同生成模型生成的燃烧状态图像

    Fig.  16  Combustion state images generated by different generation models

    表  1  数据集划分

    Table  1  Dataset partition

    数据集划分方式训练集验证集测试集
    A时间次序9 × 89 × 19 × 1
    B随机抽样9 × 89 × 19 × 1
    下载: 导出CSV

    表  2  不同生成模型生成数据的评估结果

    Table  2  Evaluation results of data generated by different generation models

    方法评价指标
    FIDminFIDaverageEpoch
    GAN250.00254.5010000
    LSGAN58.5651.943000
    DCGAN43.8149.672500
    本文方法36.1048.512500
    下载: 导出CSV

    表  3  识别模型的性能对比

    Table  3  Performance comparison of recognition models

    方法测试集准确率测试集损失验证集准确率验证集损失
    方式ACNN0.7518±0.002450.6046±0.028820.6115±0.002121.6319±0.11640
    非生成式数据增强+CNN0.8272±0.002060.6504±0.040380.7830±0.001830.9077±0.03739
    DCGAN数据增强+CNN0.8000±0.000980.8776±0.010630.5885±0.003961.9024±0.11050
    本文方法0.8482±0.001050.5520±0.010060.7269±0.003770.9768±0.05797
    方式BCNN0.8926±0.001050.2298±0.003090.8519±0.000610.2519±0.00167
    非生成式数据增强+CNN0.9371±0.001840.1504±0.008250.9704±0.000550.1093±0.01037
    DCGAN数据增强+CNN0.9000±0.001230.3159±0.011500.8445±0.002070.2913±0.00396
    本文方法0.9407±0.003670.2019±0.014980.9741±0.000440.0699±0.00195
    下载: 导出CSV

    A1  符号及含义

    A1  Symbols and their descriptions

    符号符号含义
    D 判别器
    G生成器
    $ V(D,G)$GAN 原始的目标函数
    ${\boldsymbol{z}} $潜在空间的随机噪声
    $ D^*$固定G 参数, 在$\mathop {\max }\nolimits_D V \left({D,G} \right)$过程中, D 的最优解
    ${D_{{\text{JS}}}}$JS 散度
    ${R_{jk}}$图像中经过卷积核扫描后的第 j 行第 k 列的结果
    ${H_{j - u,k - v}}$卷积核
    ${F_{u,v}}$图像
    $X$燃烧状态数据集, 包含前移、正常和后移的数据集, 即燃烧图像粗调 DCGAN 中判别网络输入值集合$[ { {\boldsymbol{x} }_{{1} } };{ {\boldsymbol{x} }_{{2} } }; $ ${ {\boldsymbol{x} }_{{3} } }; \cdots ;{ {\boldsymbol{x} }_{\rm{a}}} \cdots ]$, 即$ \left[ {{X_{{\rm{real}}}};{X_{{\rm{false}}}}} \right]$
    $ X_{{\rm{FW}}}$燃烧线前移数据集
    $ X_{{\rm{NM}}}$燃烧线正常数据集
    $ X_{{\rm{BC}}}$燃烧线后移数据集
    $ X'_{{\rm{FW}}}$训练集燃烧线前移数据集
    $ X'_{{\rm{NM}}}$训练集燃烧线正常数据集
    $ X'_{{\rm{BC}}}$训练集燃烧线后移数据集
    $ X''_{{\rm{FW}}}$测试、验证燃烧线前移数据集
    $ X''_{{\rm{NM}}}$测试、验证燃烧线正常数据集
    $ X''_{{\rm{BC}}}$测试、验证燃烧线后移数据集
    $ {D_t}(\cdot, \cdot )$燃烧图像粗调 DCGAN 子模块中, 判别网络参数为${\theta _{D,t}}$时, 判别网络预测值集合
    $ {D_{t+1}}(\cdot, \cdot )$燃烧图像粗调 DCGAN 子模块中, 判别网络参数为${\theta _{D,t+1}}$时, 判别网络预测值集合
    $ Y_{D,t}$在燃烧图像粗调 DCGAN 子模块中第 t 次博弈训练判别网络的真实值集合
    $ Y_{G,t}$在燃烧图像粗调 DCGAN 子模块中第 t 次博弈训练生成网络的真实值集合
    $ loss_{D,t}$在燃烧图像粗调 DCGAN 子模块中第 t 次博弈更新判别网络的损失值
    $ loss_{G,t}$在燃烧图像粗调 DCGAN 子模块中第 t 次博弈更新生成网络的损失值
    $ X_{{\rm{real}}}$在燃烧图像粗调 DCGAN 子模块中参加博弈的真实数据
    $ X_{{\rm{false}},t}$在燃烧图像粗调 DCGAN 子模块中参加第 t 次博弈的生成的数据
    $ G_t({\boldsymbol{z}})$在燃烧图像粗调 DCGAN 子模块第 t 次博弈中由随机噪声经过生成网络得到的虚拟样本
    ${S_{D,t}}$燃烧图像粗调 DCGAN 中获得的判别网络的结构参数
    ${S_{G,t}}$燃烧图像粗调 DCGAN 中获得的生成网络的结构参数
    ${\theta _{D,t}}$在燃烧图像粗调 DCGAN 子模块中第 t 次博弈判别网络更新前的网络参数
    ${\theta _{G,t}}$在燃烧图像粗调 DCGAN 子模块中第 t 次博弈生成网络更新前的网络参数
    $ X_{{\rm{real}}}^{{\rm{FW}}}$燃烧线前移精调 DCGAN 子模块中参加博弈的真实数据
    $ X_{{\rm{false}},t}^{{\rm{FW}}}$在燃烧线前移精调 DCGAN 子模块中参加第 t 次博弈的生成数据
    $ X_{{\rm{real}}}^{{\rm{NM}}}$燃烧线正常精调 DCGAN 子模块中参加博弈的真实数据
    $ X_{{\rm{false}},t}^{{\rm{NM}}}$在燃烧线正常精调 DCGAN 子模块中参加第 t 次博弈的生成数据
    $ X_{{\rm{real}}}^{{\rm{BC}}}$燃烧线后移精调 DCGAN 子模块中参加博弈的真实数据
    $ X_{{\rm{false}},t}^{{\rm{BC}}}$在燃烧线后移精调 DCGAN 子模块中参加第 t 次博弈的生成数据
    $ D_t^{{\rm{FW}}}(\cdot, \cdot )$在燃烧线前移精调 DCGAN 子模块中判别网络参数为参数$\theta _{D,t}^{{\text{FW}}}$时, 判别网络预测值集合
    $ D_t^{{\rm{NM}}}(\cdot, \cdot )$在燃烧线正常精调 DCGAN 子模块中判别网络参数为参数$\theta _{D,t}^{{\text{NM}}}$时, 判别网络预测值集合
    $ {D}_{t}^{\text{BC}}(\cdot, \cdot ) $在燃烧线后移精调 DCGAN 子模块中判别网络参数为参数$\theta _{D,t}^{{\text{BC}}}$时, 判别网络预测值集合
    $ D_{t+1}^{{\rm{FW}}}(\cdot, \cdot )$在燃烧线前移精调 DCGAN 子模块中判别网络参数为参数$\theta _{D,t + 1}^{{\text{FW}}}$时, 判别网络预测值集合
    $ D_{t+1}^{{\rm{NM}}}(\cdot, \cdot )$在燃烧线正常精调 DCGAN 子模块中判别网络参数为参数$\theta _{D,t + 1}^{{\text{NM}}}$时, 判别网络预测值集合
    $ D_{t+1}^{{\rm{BC}}}(\cdot, \cdot )$在燃烧线后移精调 DCGAN 子模块中判别网络参数为参数$\theta _{D,t + 1}^{{\text{BC}}}$时, 判别网络预测值集合
    $ Y_{D,t}^{{\rm{FW}}}$燃烧线前移精调 DCGAN 子模块中第 t 次博弈训练 D 的真实值集合
    $ Y_{G,t}^{{\rm{FW}}}$燃烧线前移精调 DCGAN 子模块中第 t 次博弈训练G的真实值集合
    $ Y_{D,t}^{{\rm{NM}}}$燃烧线正常精调 DCGAN 子模块中第 t 次博弈训练 D 的真实值集合
    $ Y_{G,t}^{{\rm{NM}}}$燃烧线正常精调 DCGAN 子模块中第 t 次博弈训练G的真实值集合
    $ Y_{D,t}^{{\rm{BC}}}$燃烧线后移精调 DCGAN 子模块中第 t 次博弈训练 D 的真实值集合
    $ Y_{G,t}^{{\rm{BC}}}$燃烧线后移精调 DCGAN 子模块中第 t 次博弈训练G的真实值集合
    $ loss_{D,t}^{{\rm{FW}}}$燃烧线前移精调 DCGAN 子模块中第 t 次博弈更新 D 的损失值
    $ loss_{G,t}^{{\rm{FW}}}$燃烧线前移精调 DCGAN 子模块中第 t 次博弈更新G的损失值
    $ loss_{D,t}^{{\rm{NM}}}$燃烧线正常精调 DCGAN 子模块中第 t 次博弈更新 D 的损失值
    $ loss_{G,t}^{{\rm{NM}}}$燃烧线正常精调 DCGAN 子模块中第 t 次博弈更新 G 的损失值
    $ loss_{D,t}^{{\rm{BC}}}$燃烧线后移精调 DCGAN 子模块中第 t 次博弈更新 D 的损失值
    $ loss_{G,t}^{{\rm{BC}}}$燃烧线后移精调 DCGAN 子模块中第 t 次博弈更新G的损失值
    $\theta _{D,t}^{{\text{FW}}}$燃烧线前移 DCGAN 子模块中第 t 次博弈判别网络更新前的网络参数
    $\theta _{G,t}^{{\text{FW}}}$燃烧线前移 DCGAN 子模块中第 t 次博弈生成网络更新前的网络参数
    $\theta _{D,t}^{{\text{NM}}}$燃烧线正常 DCGAN 子模块中第 t 次博弈判别网络更新前的网络参数
    $\theta _{G,t}^{{\text{NM}}}$燃烧线正常 DCGAN 子模块中第 t 次博弈生成网络更新前的网络参数
    $\theta _{D,t}^{{\text{BC}}}$燃烧线后移 DCGAN 子模块中第 t 次博弈判别网络更新前的网络参数
    $\theta _{G,t}^{{\text{BC}}}$燃烧线后移 DCGAN 子模块中第 t 次博弈生成网络更新前的网络参数
    ${\widehat Y_{{\text{ CNN }},t}}$燃烧状态识别模块第 t 次更新 CNN 模型预测值集合
    $los{s_{{\text{ CNN }},t}}$燃烧状态识别模块第 t 次更新 CNN 的损失
    $ \theta _{{\rm{ CNN }},t}$燃烧状态识别模块第 t 次更新 CNN 的网络更新参数
    $ loss$神经网络的损失
    ${\boldsymbol{x} }_{{a} }$神经网络第 a 幅输入图像
    $y_a $a 幅输入图像输入神经网络后的输出值
    $ D_t(X)$判别网络预测值集合, 即$ {D_t}(\cdot, \cdot )$
    $L $损失函数
    $\delta_i $i 层的误差
    $O_i $i 层输出
    $W_i$i 层的所有权重参数
    $B_i $i 层的所有偏置参数
    $ {\nabla _{{W_{i - 1}}}}$第$i-1 $层的权重的当前梯度
    $ {\nabla _{{B_{i - 1}}}}$第$i-1 $层的偏置的当前梯度
    $ {\theta _{D,t}}$t 次判别网络的参数
    $ {m _{D,t}}$t 次判别网络一阶动量
    $ {v _{D,t}}$t 次判别网络的二阶动量
    $\alpha $学习率
    $\gamma $很小的正实数
    $ {\nabla _{D,t}}$t 次判别网络参数的梯度
    $\beta_1 $Adam 超参数
    $\beta_2 $Adam 超参数
    $ {\eta _{D,t}}$计算第 t 次的下降梯度
    $ {\widehat m_{D,t}}$初始阶段判别网络的第 t 次一阶动量
    $ {\widehat v_{D,t}}$初始阶段判别网络的第 t 次的二阶动量
    $Y $神经网络真值集合
    $ f(X)$神经网络预测值集合
    $p $概率分布
    ${p_{\text{r}}}$真实图像的概率分布
    ${p_{\text{g}}}$生成图像的概率分布
    ${p_{\boldsymbol{z}}}$z 所服从的正态分布
    Cov协方差矩阵
    下载: 导出CSV
  • [1] 乔俊飞, 郭子豪, 汤健. 面向城市固废焚烧过程的二噁英排放浓度检测方法综述. 自动化学报, 2020, 46(6): 1063-1089

    Qiao Jun-Fei, Guo Zi-Hao, Tang Jian. Dioxin emission concentration measurement approaches for municipal solid wastes incineration process: A survey. Acta Automatica Sinica, 2020, 46(6): 1063-1089
    [2] Lu J W, Zhang S K, Hai J, Lei M. Status and perspectives of municipal solid waste incineration in China: A comparison with developed regions. Waste Management, 2017, 69: 170-186 doi: 10.1016/j.wasman.2017.04.014
    [3] Kalyani K A, Pandey K K. Waste to energy status in India: A short review. Renewable and Sustainable Energy Reviews, 2014, 31: 113-120 doi: 10.1016/j.rser.2013.11.020
    [4] 汤健, 乔俊飞. 基于选择性集成核学习算法的固废焚烧过程二噁英排放浓度软测量. 化工学报, 2018, 70(2): 696-706

    Tang Jian, Qiao Jun-Fei. Dioxin emission concentration soft measuring approach of municipal solid waste incineration based on selective ensemble kernel learning algorithm. CIESC Journal, 2019, 70(2): 696-706
    [5] 汤健, 王丹丹, 郭子豪, 乔俊飞. 基于虚拟样本优化选择的城市固废焚烧过程二噁英排放浓度预测. 北京工业大学学报, 2021, 47(5): 431-443

    Tang Jian, Wang Dan-Dan, Guo Zi-Hao, Qiao Jun-Fei. Prediction of dioxin emission concentration in the municipal solid waste incineration process based on optimal selection of virtual samples. Journal of Beijing University of Technology, 2021, 47(5): 431-443
    [6] 汤健, 乔俊飞, 徐喆, 郭子豪. 基于特征约简与选择性集成算法的城市固废焚烧过程二噁英排放浓度软测量. 控制理论与应用, 2021, 38(1): 110-120

    Tang Jian, Qiao Jun-Fei, Xu Zhe, Guo Zi-Hao. Soft measuring approach of dioxin emission concentration in municipal solid waste incineration process based on feature reduction and selective ensemble algorithm. Control Theory & Applications, 2021, 38(1): 110-120
    [7] Kolekar K A, Hazra T, Chakrabarty S N. A review on prediction of municipal solid waste generation models. Procedia Environmental Sciences, 2016, 35: 238-244 doi: 10.1016/j.proenv.2016.07.087
    [8] Li X M, Zhang C M, Li Y Z, Zhi Q. The status of municipal solid waste incineration (MSWI) in China and its clean development. Energy Procedia, 2016, 104: 498-503 doi: 10.1016/j.egypro.2016.12.084
    [9] 乔俊飞, 段滈杉, 汤健, 蒙西. 基于火焰图像颜色特征的MSWI燃烧工况识别. 控制工程, 2022, 29(7): 1153-1161

    Qiao Jun-Fei, Duan Hao-Shan, Tang Jian, Meng Xi. Recognition of MSWI combustion conditions based on color features of flame images. Control Engineering of China, 2022, 29(7): 1153-1161
    [10] 高济, 何志均. 基于规则的联想网络. 自动化学报, 1989, 15(4): 318-323

    Gao Ji, He Zhi-Jun. The associative network based on rules. Acta Automatica Sinica, 1989, 15(4): 318-323
    [11] Roy S K, Krishna G, Dubey S R, Chaudhuri B B. HybridSN: Exploring 3-D-2-D CNN feature hierarchy for hyperspectral image classification. IEEE Geoscience and Remote Sensing Letters, 2020, 17(2): 277-281 doi: 10.1109/LGRS.2019.2918719
    [12] Ahammad S H, Rajesh V, Rahman Z U, Lay-Ekuakille A. A hybrid CNN-based segmentation and boosting classifier for real time sensor spinal cord injury data. IEEE Sensors Journal, 2020, 20(17): 10092-10101 doi: 10.1109/JSEN.2020.2992879
    [13] Sun Y, Xue B, Zhang M J, Yen G G, Lv J C. Automatically designing CNN architectures using the genetic algorithm for image classification. IEEE Transactions on Cybernetics, 2020, 50(9): 3840-3854 doi: 10.1109/TCYB.2020.2983860
    [14] Zhou P, Gao B H, Wang S, Chai T Y. Identification of abnormal conditions for fused magnesium melting process based on deep learning and multisource information fusion, IEEE Transactions on Industrial Electronics, 2022, 69(3): 3017-3026 doi: 10.1109/TIE.2021.3070512
    [15] 张震, 汪斌强, 李向涛, 黄万伟. 基于近邻传播学习的半监督流量分类方法. 自动化学报, 2013, 39(7): 1100-1109

    Zhang Zhen, Wang Bin-Qiang, Li Xiang-Tao, Huang Wan-Wei. Semi-supervised traffic identification based on affinity propagation. Acta Automatica Sinica, 2013, 39(7): 1100-1109
    [16] 王松涛, 周真, 靳薇, 曲寒冰. 基于贝叶斯框架融合的RGB-D图像显著性检测. 自动化学报, 2020, 46(4): 695-720

    Wang Song-Tao, Zhou Zhen, Jin Wei, Qu Han-Bing. Saliency detection for RGB-D images under Bayesian framework. Acta Automatica Sinica, 2020, 46(4): 695-720
    [17] 陶剑文, 王士同. 领域适应核支持向量机. 自动化学报, 2012, 38(5): 797-811 doi: 10.3724/SP.J.1004.2012.00797

    Tao Jian-Wen, Wang Shi-Tong. Kernel support vector machine for domain adaptation. Acta Automatica Sinica, 2012, 38(5): 797-811 doi: 10.3724/SP.J.1004.2012.00797
    [18] 李强, 王正志. 基于人工神经网络和经验知识的遥感信息分类综合方法. 自动化学报, 2000, 26(2): 233-239

    Li Qiang, Wang Zheng-Zhi. Remote sensing information classification based on artificial neural network and knowledge. Acta Automatica Sinica, 2000, 26(2): 233-239
    [19] 罗珍珍, 陈靓影, 刘乐元, 张坤. 基于条件随机森林的非约束环境自然笑脸检测. 自动化学报, 2018, 44(4): 696-706

    Luo Zhen-Zhen, Chen Jing-Ying, Liu Le-Yuan, Zhang Kun. Conditional random forests for spontaneous smile detection in unconstrained environment. Acta Automatica Sinica, 2018, 44(4): 696-706
    [20] 郝红卫, 王志彬, 殷绪成, 陈志强. 分类器的动态选择与循环集成方法. 自动化学报, 2011, 37(11): 1290-1295

    Hao Hong-Wei, Wang Zhi-Bin, Yin Xu-Cheng, Chen Zhi-Qiang. Dynamic selection and circulating combination for multiple classifier systems. Acta Automatica Sinica, 2011, 37(11): 1290-1295
    [21] 常亮, 邓小明, 周明全, 武仲科, 袁野, 杨硕, 等. 图像理解中的卷积神经网络. 自动化学报, 2016, 42(9): 1300-1312

    Chang Liang, Deng Xiao-Ming, Zhou Ming-Quan, Wu Zhong-Ke, Yuan Ye, Yang Shuo, et al. Convolutional neural networks in image understanding. Acta Automatica Sinica, 2016, 42(9): 1300-1312
    [22] Bai W D, Yan J H, Ma Z Y. Method of flame identification based on support vector machine. Power Engingeering, 2004, 24(4): 548-551
    [23] Sun D, Lu G, Zhou H, Yan Y, Liu S. Quantitative assessment of flame stability through image processing and spectral analysis. IEEE Transactions on Instrumentation and Measurement, 2015, 64(12): 3323-3333 doi: 10.1109/TIM.2015.2444262
    [24] Khan A, Sohail A, Zahoora U, Qureshi A S. A survey of the recent architectures of deep convolutional neural networks. Artificial Intelligence Review, 2020, 53(8): 5455-5516 doi: 10.1007/s10462-020-09825-6
    [25] 冯晓硕, 沈樾, 王冬琦. 基于图像的数据增强方法发展现状综述. 计算机科学与应用, 2021, 11(2): 370-382 doi: 10.12677/CSA.2021.112037

    Feng Xiao-Shuo, Shen Yue, Wang Dong-Qi. A survey on the development of image data augmentation. Computer Science and Application, 2021, 11(2): 370-382 doi: 10.12677/CSA.2021.112037
    [26] Goodfellow I J, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial nets. In: Proceedings of the 27th International Conference on Neural Information Processing Systems. Montréal, Canada: MIT Press, 2014. 2672−2680
    [27] 唐贤伦, 杜一铭, 刘雨微, 李佳歆, 马艺玮. 基于条件深度卷积生成对抗网络的图像识别方法. 自动化学报, 2018, 44(5): 855-864

    Tang Xian-Lun, Du Yi-Ming, Liu Yu-Wei, Li Jia-Xin, Ma Yi-Wei. Image recognition with conditional deep convolutional generative adversarial networks. Acta Automatica Sinica, 2018, 44(5): 855-864
    [28] 刘建伟, 谢浩杰, 罗雄麟. 生成对抗网络在各领域应用研究进展. 自动化学报, 2020, 46(12): 2500-2536

    Liu Jian-Wei, Xie Hao-Jie, Luo Xiong-Lin. Research progress on application of generative adversarial networks in various fields. Acta Automatica Sinica, 2020, 46(12): 2500-2536
    [29] 王坤峰, 苟超, 段艳杰, 林懿伦, 郑心湖, 王飞跃. 生成式对抗网络GAN的研究进展与展望. 自动化学报, 2017, 43(3): 321-332

    Wang Kun-Feng, Gou Chao, Duan Yan-Jie, Lin Yi-Lun, Zheng Xin-Hu, Wang Fei-Yue. Generative adversarial networks: The state of the art and beyond. Acta Automatica Sinica, 2017, 43(3): 321-332
    [30] Yang L, Liu Y H, Peng J Z. An automatic detection and identification method of welded joints based on deep neural network. IEEE Access, 2019, 7: 164952-164961 doi: 10.1109/ACCESS.2019.2953313
    [31] Lian J, Jia W K, Zareapoor M, Zheng Y J, Luo R, Jain D K, et al. Deep-learning-based small surface defect detection via an exaggerated local variation-based generative adversarial network. IEEE Transactions on Industrial Informatics, 2020, 16(2): 1343-1351 doi: 10.1109/TII.2019.2945403
    [32] Niu S L, Li B, Wang X G, Lin H. Defect image sample generation with GAN for improving defect recognition. IEEE Transactions on Automation Science and Engineering, 2020, 17(3): 1611-1622
    [33] Wu X J, Qiu L T, Gu X D, Long Z L. Deep learning-based generic automatic surface defect inspection (ASDI) with pixelwise segmentation. IEEE Transactions on Instrumentation and Measurement, 2021, 70: Article No. 5004010
    [34] Bichler M, Fichtl M, Heidekrüger S, Kohring N, Sutterer P. Learning equilibria in symmetric auction games using artificial neural networks. Nature Machine Intelligence, 2021, 3(8): 687-695 doi: 10.1038/s42256-021-00365-4
    [35] Heusel M, Ramsauer H, Unterthiner T, Nessler B, Hochreiter S. GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, USA: Curran Associates Inc., 2017. 6629−6640
    [36] Lucic M, Kurach K, Michalski M, Bousquet O, Gelly S. Are GANs created equal? A large-scale study. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montréal, Canada: Curran Associates Inc., 2018. 698−707
    [37] Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks. In: Proceedings of the 4th International Conference on Learning Representations. San Juan, Puerto Rico: 2016.
    [38] Suárez P L, Sappa A D, Vintimilla B X. Infrared image colorization based on a triplet DCGAN architecture. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. Honolulu, USA: IEEE, 2017. 18−23
    [39] Yeh R A, Chen C, Lim T Y, Schwing A G, Hasegawa-Johnson M, Do M N. Semantic image inpainting with deep generative models. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE, 2017. 5485−5493
    [40] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. In: Proceedings of the 26th Annual Conference on Neural Information Processing Systems. Lake Tahoe, USA: Curran Associates Inc., 2012. 1106−1114
    [41] Zeiler M D, Fergus R. Visualizing and understanding convolutional networks. In: Proceedings of the 13th European Conference on Computer Vision. Zurich, Switzerland: Springer, 2014. 818−833
    [42] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition [Online], available: http://arxiv.org/abs/1409.1556, April 10, 2015
    [43] Szegedy C, Liu W, Jia Y Q, Sermanet P, Reed S, Anguelov D, et al. Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE, 2015. 1−9
    [44] He K M, Zhang X Y, Ren S Q, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE, 2016. 770−778
    [45] 林景栋, 吴欣怡, 柴毅, 尹宏鹏. 卷积神经网络结构优化综述. 自动化学报, 2020, 46(1): 24-37

    Lin Jing-Dong, Wu Xin-Yi, Chai Yi, Yin Hong-Peng. Structure optimization of convolutional neural networks: A survey. Acta Automatica Sinica, 2020, 46(1): 24-37
    [46] Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors. Nature, 1986, 323(6088): 533-536 doi: 10.1038/323533a0
    [47] Kingma D P, Ba J. Adam: A method for stochastic optimization. arXiv preprint arXiv: 1412.6980, 2017.
    [48] Mao X D, Li Q, Xie H R, Lau R Y K, Wang Z, Smolley S P. Least squares generative adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision. Venice, Italy: IEEE, 2017. 2813−2821
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  909
  • HTML全文浏览量:  465
  • PDF下载量:  161
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-06
  • 录用日期:  2021-12-02
  • 网络出版日期:  2022-02-10
  • 刊出日期:  2024-03-29

目录

    /

    返回文章
    返回