2.624

2020影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

城市污水处理过程自适应滑模控制

韩红桂 秦晨辉 孙浩源 乔俊飞

韩红桂, 秦晨辉, 孙浩源, 乔俊飞. 城市污水处理过程自适应滑模控制. 自动化学报, 2022, 48(x): 1−9 doi: 10.16383/j.aas.c210798
引用本文: 韩红桂, 秦晨辉, 孙浩源, 乔俊飞. 城市污水处理过程自适应滑模控制. 自动化学报, 2022, 48(x): 1−9 doi: 10.16383/j.aas.c210798
Han Hong-Gui, Qin Chen-Hui, Sun Hao-Yuan, Qiao Jun-Fei. Adaptive sliding mode control for municipal wastewater treatment process. Acta Automatica Sinica, 2022, 48(x): 1−9 doi: 10.16383/j.aas.c210798
Citation: Han Hong-Gui, Qin Chen-Hui, Sun Hao-Yuan, Qiao Jun-Fei. Adaptive sliding mode control for municipal wastewater treatment process. Acta Automatica Sinica, 2022, 48(x): 1−9 doi: 10.16383/j.aas.c210798

城市污水处理过程自适应滑模控制

doi: 10.16383/j.aas.c210798
基金项目: 国家重点研发项目(2018YFC1900800-5), 国家自然科学基金(61890930-5, 61903010, 62021003), 北京市卓越青年科学家计划项目(BJJWZYJH01201910005020), 北京市教育委员会科技计划重点项目(KZ202110005009)资助
详细信息
    作者简介:

    韩红桂:北京工业大学信息学部教授. 主要研究方向为城市污水处理过程智能优化控制, 神经网络结构设计与优化. 本文通信作者. E-mail: rechardhan@bjut.edu.cn

    秦晨辉:北京工业大学信息学部硕士研究生. 主要研究方向为城市污水处理过程智能控制. E-mail: qinchenqinchen123@163.com

    孙浩源:北京工业大学信息学部讲师. 主要研究方向为城市污水处理网络化控制, 随机采样控制. E-mail: sunhaoyuan@bjut.edu.cn

    乔俊飞:北京工业大学信息学部教授. 主要研究方向为城市污水处理过程智能优化控制, 神经网络结构设计与优化. E-mail: adqiao@bjut.edu.cn

Adaptive Sliding Mode Control for Municipal Wastewater Treatment Process

Funds: Supported by National Key Research and Development Project (2018YFC1900800-5), National Science Foundation of China (61890930-5, 61903010, 62021003), Beijing Outstanding Young Scientist Program (BJJWZYJH01201910005020), and Beijing Natural Science Foundation (KZ202110005009)
More Information
    Author Bio:

    HAN Hong-Gui Professor at the Faculty of Information Technology, Beijing University of Technology. His research interest covers intelligent optimal control of municipal wastewater treatment process, structure design and optimization of neural networks. Corresponding author of this paper

    QIN Chen-Hui Master student at the Faculty of Information Technology, Beijing University of Technology. His research interest covers intelligent control of municipal wastewater treatment process

    SUN Hao-Yuan Lecturer at the Faculty of Information Technology, Beijing University of Technology. His research interest covers networked control of municipal wastewater treatment process, stochastic sampled-data control

    QIAO Jun-Fei Professor at the Faculty of Information Technology, Beijing University of Technology. His research interest covers intelligent optimal control of municipal wastewater treatment process, structure design and optimization of neural networks

  • 摘要: 针对城市污水处理过程时滞导致难以稳定控制的问题, 文中提出了一种自适应滑模控制方法. 首先, 分析了推流时滞对城市污水处理生化反应过程的影响, 建立了时滞影响下的城市污水处理运行控制模型; 其次, 设计了一种基于模糊神经网络的预估补偿模型, 完成了滞后变量的准确预测, 实现了控制模型中变量时刻的统一; 最后, 设计了一种具有自适应开关增益系数的滑模控制器, 实现了溶解氧和硝态氮的稳定控制. 将提出的自适应滑模控制方法应用于城市污水处理过程基准仿真平台, 实验结果显示该方法能够实现城市污水处理运行过程稳定控制.
  • 图  1  自适应滑模控制器结构

    Fig.  1  Schematic diagram of adaptive sliding mode control

    图  2  自适应滑模控制求解过程

    Fig.  2  The calculation process of adaptive sliding mode control

    图  3  溶解氧和硝态氮控制效果 (晴天天气且设定值恒定)

    Fig.  3  The control results of $ {{S_{O,5}}}$ and $ {{S_{NO,2}}}$ (dry weather with constant settings)

    图  4  溶解氧和硝态氮控制误差 (晴天天气且设定值恒定)

    Fig.  4  The error results of $ {{S_{O,5}}}$ and $ {{S_{NO,2}}}$ (dry weather with constant settings)

    图  5  氧传递系数和内回流变化曲线 (晴天天气且设定值恒定)

    Fig.  5  The results of $ {{K_L}{a_5}}$ and $ {{Q_a}}$ (dry weather with constant settings)

    图  6  溶解氧和硝态氮控制效果 (雨天天气且设定值恒定)

    Fig.  6  The control results of $ {{S_{O,5}}}$ and $ {{S_{NO,2}}}$ (rain weather with constant settings)

    图  7  溶解氧和硝态氮控制误差 (雨天天气且设定值恒定)

    Fig.  7  The error results of $ {{S_{O,5}}}$ and $ {{S_{NO,2}}} $ (rain weather with constant settings)

    图  8  氧传递系数和内回流变化曲线 (雨天天气且设定值恒定)

    Fig.  8  The results of $ {{K_L}{a_5}}$ and $ {{Q_a}}$ (rain weather with constant settings)

    图  9  溶解氧和硝态氮控制效果 (晴天天气且设定值变化)

    Fig.  9  The control results of $ {{S_{O,5}}}$ and $ {{S_{NO,2}}}$ (dry weather with changing settings)

    图  10  溶解氧和硝态氮控制误差 (晴天天气且设定值变化)

    Fig.  10  The error results of $ {{S_{O,5}}}$ and $ {{S_{NO,2}}}$ (dry weather with changing settings)

    图  11  氧传递系数和内回流变化曲线 (晴天天气且设定值变化)

    Fig.  11  The results of $ {{K_L}{a_5}}$ and $ {{Q_a}}$ (dry weather with changing settings)

    表  1  不同控制器性能比较 (雨天天气且设定值恒定)

    Table  1  The comparison results of different controllers (rain weather with constant settings)

    控制策略溶解氧硝态氮
    ISEIAE${\rm{De}}{{\rm{v}}^{\max }}$ISEIAE${\rm{De}}{{\rm{v}}^{\max }}$
    ASMC4.93×$10^{-3}$0.0350.495.27×$10^{-3}$0.0460.42
    SMC[20]5.52×$10^{-3}$0.0300.615.62×$10^{-3}$0.0460.44
    FNNC[34]1.06×$10^{-2}$0.0750.569.95×$10^{-3}$0.0760.56
    PID[12]1.43×$10^{-2}$0.0720.748.10×$10^{-3}$0.0560.53
    下载: 导出CSV

    表  2  不同控制器性能比较 (晴天天气且设定值变化)

    Table  2  The comparison results of different controllers (dry weather with changing settings)

    控制策略溶解氧硝态氮
    ISEIAE${\rm{De}}{{\rm{v}}^{\max }}$ISEIAE${\rm{De}}{{\rm{v}}^{\max }}$
    ASMC2.12×$10^{-3}$0.0300.343.31×$10^{-3}$0.0430.33
    SMC[20]3.64×$10^{-3}$0.0320.363.87×$10^{-3}$0.0440.39
    FNNC[34]7.75×$10^{-3}$0.0610.489.90×$10^{-3}$0.0750.50
    PID[12]7.93×$10^{-3}$0.0450.854.78×$10^{-3}$0.0470.49
    下载: 导出CSV
  • [1] 韩红桂, 张琳琳, 伍小龙, 乔俊飞. 数据和知识驱动的城市污水处理过程多目标优化控制. 自动化学报, 2021, 47(11): 2538-2546

    Han Hong-Gui, Zhang Lin-Lin, Wu Xiao-Long, Qiao Jun-Fei. Data-knowledge Driven Multiobjective Optimal Control for Municipal Wastewater Treatment Process. Acta Automatica Sinica, 2021, 47(11): 2538−2546
    [2] 黄俊熙, 岑玉铭, 关宇霆, 张伟龙. 污水处理过程中除磷加药智能控制系统及应用研究. 中国给水排水, 2022, 38(1): 104-107

    Huang Jun-Xi, Cen Yu-Ming, Guan Yu-Ting, Zhang Wei-Long. Application of Intelligent Control System for Chemical Phosphorus Removal in Wastewater Treatment Process. China Water & Wastewater, 2022, 38(1): 104-107
    [3] 杨翠丽, 武战红, 韩红桂, 乔俊飞. 城市污水处理过程优化设定方法研究进展. 自动化学报, 2020, 46(10): 2092-2108

    Yang Cui-Li, Wu Zhan-Hong, Han Hong-Gui, Qiao Jun-Fei. Perspectives on optimal setting methods for municipal wastewater treatment processes. Acta Automatica Sinica, 2020, 46(10): 2092-2108
    [4] 李永明, 史旭东, 熊伟丽. 基于工况识别的污水处理过程多目标优化控制. 化工学报, 2019, 70(11): 4325-4336

    Li Yong-Ming, Shi Xu-Dong, Xiong Wei-Li. Condition recognition based intelligent multi-objective optimal control for wastewater treatment. CIESC Journal, 2019, 70(11): 4325-4336
    [5] 乔俊飞, 卢超, 王磊, 韩红桂. 城市污水处理过程模型研究综述. 信息与控制, 2018, 47(2): 129-139

    Qiao Jun-Fei, Lu Chao, Wang Lei, Han Hong-Gui. Models of urban wastewater treatment process: An overview. Information and Control, 2018, 47(2): 129-139
    [6] 张帅, 周平. 污水处理过程递推双线性子空间建模及无模型自适应控制. 自动化学报, to be published

    Zhang Shuai, Zhou Ping. Recursive bilinear subspace modeling and model-free adaptive control of wastewater treatment. Acta Automatica Sinica, to be published
    [7] 权利敏, 杨翠丽, 乔俊飞. 数据驱动的溶解氧浓度在线自组织控制方法. 自动化学报, to be published

    Quan Li-Min, Yang Cui-Li, Qiao Jun-Fei. Data-driven online self-organizing control for dissolved oxygen concentration, Acta Automatica Sinica, to be published
    [8] Han H G. Liu Z, Lu W, Hou Y, Qiao J F. Dynamic MOPSO-based optimal control for wastewater treatment process. IEEE Transactions on Cybernetics, 2021, 51(5): 2518-2528 doi: 10.1109/TCYB.2019.2925534
    [9] Chistiakova T, Wigren T, Carlsson B. Combined L2 -stable feedback and feedforward aeration control in a wastewater treatment plant. IEEE Transactions on Control Systems Technology, 2020, 28(3): 1017-1024 doi: 10.1109/TCST.2019.2891410
    [10] Iratni A, Chang N. Advances in control technologies for wastewater treatment processes: Status, challenges, and perspectives. IEEE/CAA Journal of Automatica Sinica, 2019, 6(2): 337-363 doi: 10.1109/JAS.2019.1911372
    [11] 杜胜利, 张庆达, 曹博琦, 乔俊飞. 城市污水处理过程模型预测控制研究综述. 信息与控制, 2022, 51(1): 41-53

    Du Sheng-Li, Zhang Qing-Da, Cao Bo-Qi, Qiao Jun-Fei. A Review of Model Predictive Control for Urban Wastewater Treatment Process. Information and Control, 2022, 51(1): 41-53
    [12] Flores V R, Sanchez E N, Béteau J F, Hernandez S C. Dissolved oxygen regulation by logarithmic/antilogarithmic control to improve a wastewater treatment process. Environmental Technology, 2013, 34(23): 3103-3116 doi: 10.1080/09593330.2013.803159
    [13] Samsudin S I, Rahmat M F, Wahab N A, Razali M C, Gaya M S, Salim S N S. Improvement of activated sludge process using enhanced nonlinear PI controller. Arabian Journal for Science & Engineering, 2014, 39(8): 6575-6586
    [14] Cristea S, Prada C D, Sarabia D, Gutierrez G. Aeration control of a wastewater treatment plant using hybrid NMPC. Computers & Chemical Engineering, 2011, 35(4): 638-650
    [15] Belchior C A C, Araújo R A M, Landeck J A C. Dissolved oxygen control of the activated sludge wastewater treatment process using stable adaptive fuzzy control. Computers & Chemical Engineering, 2012, 37(1): 152-162
    [16] Xu J, Niu Y G, Lam H K. Event-triggered sliding mode control of fuzzy systems via artificial time-delay estimation. IEEE Transactions on Fuzzy Systems, 2021, 29(9): 2467-2478 doi: 10.1109/TFUZZ.2020.2999744
    [17] Xie M Y, Yu S D, Lin H P, Ma J Y, Wu H T. Improved sliding mode control with time delay estimation for motion tracking of cell puncture mechanism. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67(9): 3199-3210 doi: 10.1109/TCSI.2020.2981629
    [18] Yan H C, Zhou X P, Zhang H, Yang F W, Wu Z G. A novel sliding mode estimation for microgrid control with communication time delays. IEEE Transactions on Smart Grid, 2019, 10(2): 1509-1520 doi: 10.1109/TSG.2017.2771493
    [19] Han Y Q, Kao Y G, Gao C C. Robust sliding mode control for uncertain discrete singular systems with time-varying delays and external disturbances. Automatica, 2017, 75(1): 210-216
    [20] Munoz C, Young H, Antileo C, Bornhardt C. Sliding mode control of dissolved oxygen in an integrated nitrogen removal process in a sequencing batch reactor (SBR). Water Science & Technology, 2009, 60(10): 2545-2553
    [21] Xu D, Zhou H M, Shao X Y, Wang T. Performance study of sliding mode controller with improved adaptive polynomial-based forward prediction. Mechanical Systems and Signal Processing, 2019, 133(1): 1-18
    [22] Alipouri Y, Alipour H, Huang B. Multiple step ahead prediction based high order discrete-time sliding mode control design with actuator and communication delays. Journal of the Franklin Institute, 2020, 357(12): 7845-7863 doi: 10.1016/j.jfranklin.2020.05.050
    [23] Shah D H, Patel D M. Design of sliding mode control for quadruple-tank MIMO process with time delay compensation. Journal of Process Control, 2019, 76(1): 46-61
    [24] Ozturk M C, Serrat F M, Teymour F. Optimization of aeration profiles in the activated sludge process. Chemical Engineering Science, 2016, 139(1): 1-14
    [25] 黄灿, 桂卫华, 阳春华, 蒋朝辉, 谢永芳. 多变量时滞过程解耦Smith控制. 控制理论与应用, 2010, 27(10): 1393-1398

    Huang Can, Gui Wei-Hua, Yang Chun-Hua, Jiang Zhao-Hui, Xie Yong-Fang. Decoupling Smith control for multivariable system with time-delays. Control Theory & Applications, 2010, 27(10): 1393-1398
    [26] Xie S, Wang H Z, Peng J C, Liu X L, Yuan X F. A hierarchical data reconciliation based on multiple time-delay interval estimation for industrial processes. ISA Transactions, 2020, 105(1): 198-209
    [27] 李旭光, 张颖伟, 冯琳. 时滞系统的完全稳定性研究综述. 控制与决策, 2018, 33(7): 1153-1170

    Li Xu-Guang, Zhang Ying-Wei, Feng Lin. Survey on complete stability study for time-delay systems. Control and Decision, 2018, 33(7): 1153-1170
    [28] Canete J F, Saz-Orozco P, Gabriel J G, Baratti R, Ruano A, Rivas-Blanco I. Control and soft sensing strategies for a wastewater treatment plant using a neuro-genetic approach. Computers & Chemical Engineering, 2021, 144(1): 1-14
    [29] Asadi A, Verma A, Yang K. Wastewater treatment aeration process optimization: A data mining approach. Journal of Environmental Management, 2016, 203(2): 630-639
    [30] Santin I, Pedret C, Vilanova R. Applying variable dissolved oxygen set point in a two level hierarchical control structure to a wastewater treatment process. Journal of Process Control, 2015, 28(1): 40-55
    [31] Carpenter C M G, Helbling D E. Removal of micropollutants in biofilters: Hydrodynamic effects on biofilm assembly and functioning. Water Research, 2017, 120(1): 211-221
    [32] Liu H B, Yoo C K. Cascade control of effluent nitrate and ammonium in an activated sludge process. Desalination and Water Treatment, 2015, 57(45): 21253-21263
    [33] 吴菁, 刘乙奇, 刘坚, 黄道平, 邱禹, 于广平. 基于动态多核相关向量机的软测量建模研究. 化工学报, 2019, 70(4): 1472-1484

    Wu Jing, Liu Yi-Qi, Liu Jian, Huang Dao-Ping, Qiu Yu, Yu Guang-Ping. Study on the soft sensor of multi-kernel relevance vector machine based on time difference. CIESC Journal, 2019, 70(4): 1472−1484
    [34] Qiao J F, Hou Y, Zhang L, Han H G. Adaptive fuzzy neural network control of wastewater treatment process with multiobjective operation. Neurocomputing, 2018, 275(1): 383-393
  • 加载中
计量
  • 文章访问数:  34
  • HTML全文浏览量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-24
  • 录用日期:  2022-03-01
  • 网络出版日期:  2022-05-08

目录

    /

    返回文章
    返回