2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于黎曼度量的一类反馈控制系统性能监测与诊断

李琳琳 李莎莎 DING Steven Xianchun 彭鑫 彭开香

李琳琳, 李莎莎, DING Steven Xianchun, 彭鑫, 彭开香. 基于黎曼度量的一类反馈控制系统性能监测与诊断. 自动化学报, 2023, 49(9): 1928−1940 doi: 10.16383/j.aas.c210027
引用本文: 李琳琳, 李莎莎, DING Steven Xianchun, 彭鑫, 彭开香. 基于黎曼度量的一类反馈控制系统性能监测与诊断. 自动化学报, 2023, 49(9): 1928−1940 doi: 10.16383/j.aas.c210027
Li Lin-Lin, Li Sha-Sha, Ding Steven Xianchun, Peng Xin, Peng Kai-Xiang. Riemannian metric based performance monitoring and diagnosis for a class of feedback control systems. Acta Automatica Sinica, 2023, 49(9): 1928−1940 doi: 10.16383/j.aas.c210027
Citation: Li Lin-Lin, Li Sha-Sha, Ding Steven Xianchun, Peng Xin, Peng Kai-Xiang. Riemannian metric based performance monitoring and diagnosis for a class of feedback control systems. Acta Automatica Sinica, 2023, 49(9): 1928−1940 doi: 10.16383/j.aas.c210027

基于黎曼度量的一类反馈控制系统性能监测与诊断

doi: 10.16383/j.aas.c210027
基金项目: 国家自然科学基金(62073029, U21A20483, 62003140), 北京市自然科学基金(4202045), 中央高校基本业务费(FRF-TP-20-012A3)资助
详细信息
    作者简介:

    李琳琳:北京科技大学自动化学院教授. 2008年获得西安交通大学学士学位, 2011年获得北京大学硕士学位, 2015 年获得德国杜伊斯堡−埃森大学博士学位. 主要研究方向为故障诊断与容错控制, 智能控制, 非线性系统的模糊控制和诊断. 本文通信作者. E-mail: linlin.li@ustb.edu.cn

    李莎莎:北京科技大学自动化学院硕士研究生. 主要研究方向为故障诊断, 容错控制, 性能监测. E-mail: S20190578@xs.ustb.edu.cn

    DING Steven Xianchun:德国杜伊斯堡−埃森大学控制工程教授, 自动控制与复杂系统研究所所长. 1992年于德国杜伊斯堡的Gerhard-Mercato大学获得博士学位. 主要研究方向为基于模型与数据驱动的故障诊断, 容错控制, 以及其在汽车系统和化工过程中的应用. E-mail: steven.ding@uni-due.de

    彭鑫:华东理工大学能源化工过程智能制造教育部重点实验室研究员. 2009年和2017年分别获得华东理工大学控制科学与工程学士及博士学位. 主要研究方向为工业过程智能建模, 控制及优化, 数据驱动的状态监测与溯源诊断. E-mail: xinpeng@ecust.edu.cn

    彭开香:北京科技大学自动化学院教授. 2007 年获得北京科技大学控制科学与工程博士学位. 主要研究方向为复杂工业系统故障诊断与容错控制. E-mail: kaixiang@ustb.edu.cn

Riemannian Metric Based Performance Monitoring and Diagnosis for a Class of Feedback Control Systems

Funds: Supported by National Natural Science Foundation of China (62073029, U21A20483, 62003140), Beijing Natural Science Foundation (4202045), and the Fundamental Research Funds for the Central Universities (FRF-TP-20-012A3)
More Information
    Author Bio:

    LI Lin-Lin Professor at the School of Automation and Electrical Engineering, University of Science and Technology Beijing. She received her bachelor degree from Xi'an Jiaotong University in 2008 and her master degree from Peking University in 2011. In 2015, she received her Ph.D. degree at the Institute for Automatic Control and Complex Systems (AKS), University of Duisburg-Essen, Germany. Her research interest covers fault diagnosis and fault tolerant control, intelligent control, fuzzy control and estimation for nonlinear systems. Corresponding author of this paper

    LI Sha-Sha Master student at the School of Automation and Electrical Engineering, University of Science and Technology Beijing. Her research interest covers fault diagnosis, fault-tolerant control, and performance monitoring

    DING Steven Xianchun Professor of control engineering and the head of the Institute for Automatic Control and Complex Systems (AKS) at the University of Duisburg-Essen, Germany. He received his Ph.D. degree from the Gerhard-Mercator University of Duisburg, Germany, in 1992. His research interest covers model-based and data-driven fault diagnosis, fault tolerant systems, and their application in industry with a focus on automotive systems and chemical processes

    PENG Xin Researcher at the Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology. He received his bachelor degree and Ph.D. degree in control science and engineering from East China University of Science and Technology in 2009 and 2017, respectively. His research interest covers modeling, optimization and control of complex industrial process, and data-driven process monitoring and traceable diagnosis

    PENG Kai-Xiang Professor at the School of Automation and Electrical Engineering, University of Science and Technology Beijing. He received his Ph.D. degree in control science and engineering from University of Science and Technology Beijing in 2007. His research interest covers fault diagnosis and fault-tolerant control for complex industrial system

  • 摘要: 针对复杂工业系统对性能衰退的容忍度低等问题, 提出基于系统性能预测的一类反馈控制系统过程监测方法, 通过黎曼度量对控制性能衰退程度进行预测与监测, 并给出发生故障的类型, 以提升过程监测系统的实时性与准确性. 首先, 利用系统的实时数据, 计算系统性能衰退的预测指标; 其次, 利用黎曼度量对系统性能衰退程度进行预测与监测, 并利用随机算法给出对应的阈值来诊断系统性能衰退; 最后, 通过计算各类引发系统性能衰退的故障的性能预测指标集合的中心和阈值, 实现故障的实时定位. 所提出的方法通过三容水箱仿真实验平台进行验证.
  • 图  1  基于黎曼度量的变化检测

    Fig.  1  Riemannian metric based change detection

    图  2  基于黎曼度量的控制性能监测流程图

    Fig.  2  Flow chart of Riemannian metric based control performance monitoring

    图  3  三容水箱示意图

    Fig.  3  The schematic of the three-tank system

    图  4  管道1发生堵塞时诊断效果图

    Fig.  4  Detection performance of plugging in Pipe 1

    图  5  管道2发生堵塞时诊断效果图

    Fig.  5  Detection performance of plugging in Pipe 2

    图  6  管道3发生堵塞时诊断效果图

    Fig.  6  Detection performance of plugging in Pipe 3

    图  7  控制参数不匹配时诊断效果图

    Fig.  7  Detection performance of controller parameter unmatch

    图  8  基于ISPD的性能检测结果[16]

    Fig.  8  ISPD based performance detection results[16]

    表  1  水箱DTS200的参数

    Table  1  Parameters of tank DTS200

    参数 符号 单位
    水箱面积 $ {\cal{A}} $ 154 $ \mathrm{cm}^{2} $
    水箱间管道面积 $s_{{n} }$ 0.5 $ \mathrm{cm}^{2} $
    水箱最高水位 $ H_{\mathrm{max}} $ 62 $ \mathrm{cm} $
    泵 1 的最大进水量 $ Q_{1_{\mathrm{max}}} $ 120 $ \mathrm{cm}^{3}/\mathrm{s} $
    泵 2 的最大进水量 $ Q_{2_{\mathrm{max}}} $ 120 $ \mathrm{cm}^{3}/\mathrm{s} $
    管道 1 水流系数 $ a_{1} $ 0.45
    管道 2 水流系数 $ a_{2} $ 0.60
    管道 3 水流系数 $ a_{3} $ 0.45
    下载: 导出CSV

    表  2  水箱堵塞故障隔离

    Table  2  Isolation of pipe plugging

    故障 $ d_R^2({\boldsymbol P},{\boldsymbol P}_{z,1}) $ $ d_R^2({\boldsymbol P},{\boldsymbol P}_{z,2}) $ $ d_R^2({\boldsymbol P},{\boldsymbol P}_{z,3}) $ 故障隔离
    $a_1 = 0.30$ $ 0.0388 $ $ 0.1088 $ $ 0.1193 $ 故障簇 1
    $ a_2 = 0.35 $ $ 0.0894 $ $ 0.0270 $ $ 0.0810 $ 故障簇 2
    $ a_3 = 0.28 $ $ 0.1258 $ $ 0.1099 $ $ 0.0478 $ 故障簇 3
    $ a_1 = 0.27 $ $ 0.0636 $ $ 0.1325 $ $ 0.1409 $ 故障簇 1
    $a_2 = 0.40$ $ 0.0809 $ $ 0.0139 $ $ 0.0732 $ 故障簇 2
    下载: 导出CSV
  • [1] 何潇, 郭亚琦, 张召, 贾繁林, 周东华. 动态系统的主动故障诊断技术. 自动化学报, 2020, 46(8): 1557-1570

    He Xiao, Guo Ya-Qi, Zhang Zhao, Jia Fan-Lin, Zhou Dong-Hua. Active fault diagnosis for dynamic systems. Acta Automatica Sinica, 2020, 46(8): 1557-1570
    [2] Ding S X. Data-driven Design of Fault Diagnosis and Fault-tolerant Control Systems. Berlin: Springer, 2014.
    [3] 彭开香, 马亮, 张凯. 复杂工业过程质量相关的故障检测与诊断技术综述. 自动化学报, 2017, 43(3): 349-365

    Peng Kai-Xiang, Ma Liang, Zhang Kai. Review of quality-related fault detection and diagnosis techniques for complex industrial processes. Acta Automatica Sinica, 2017, 43(3): 349-365
    [4] 钱峰, 杜文莉, 钟伟民, 唐漾. 石油和化工行业智能优化制造若干问题及挑战. 自动化学报, 2017, 43(6): 893-901

    Qian Feng, Du Wen-Li, Zhong Wei-Min, Tang Yang. Problems and challenges of smart optimization manufacturing in petrochemical industries. Acta Automatica Sinica, 2017, 43(6): 893-901
    [5] Li L L, Ding S X. Gap metric techniques and their application to fault detection performance analysis and fault isolation schemes. Automatica, 2020, 118: Article No. 109029
    [6] 陈晓露, 王瑞璇, 王晶, 周靖林. 基于混合型判别分析的工业过程监控及故障诊断. 自动化学报, 2020, 46(8): 1600-1614

    Chen Xiao-Lu, Wang Rui-Xuan, Wang Jing, Zhou Jing-Lin. Industrial process monitoring and fault diagnosis based on hybrid discriminant analysis. Acta Automatica Sinica, 2020, 46(8): 1600-1614
    [7] Huang B, Kadali R. Dynamic modeling, predictive control and performance monitoring: A data-driven subspace approach. Lecture Notes in Control and Information Sciences. London: Springer, 2008.
    [8] Jelali M. An overview of control perormance assessment technology and industrial applications. Control Engineering Practice, 2006, 14: 441-466 doi: 10.1016/j.conengprac.2005.11.005
    [9] Schafer J, Cinar A. Multivariable MPC system performance assessment, monitoring, and diagnosis. Journal of Process Control, 2004, 14(2): 113-129 doi: 10.1016/j.jprocont.2003.07.003
    [10] Verenich I, Dumas M, Rosa M L, Nguyen H. Predicting process performance: A white-box approach based on process models. Journal of Software: Evolution and Process, 2019, 31(6): Article No. e2170
    [11] Ding S X, Yin S, Peng K, Hao H. A novel scheme for key performance indicator prediction and diagnosis with application to an industrial hot strip mill. IEEE Transactions on Industrial Informatics, 2013, 9(4): 2239-2247 doi: 10.1109/TII.2012.2214394
    [12] Xie X, Sun W, Cheung K. An advanced PLS approach for key performance indicator related prediction and diagnosis in case of outliers. IEEE Transactions on Industrial Electronics, 2016, 63(4): 2587-2594
    [13] Duan Y, Liu M, Dong M. A metric-learning-based nonlinear modeling algorithm and its application in key-performance-indicator prediction. IEEE Transactions on Industrial Electronics, 2020, 67(8): 7073-7082 doi: 10.1109/TIE.2019.2935979
    [14] Li L, Luo H, Ding S X, Yang Y, Peng K. Performance-based fault detection and fault-tolerant control for automatic control systems. Automatica, 2019, 99: 309-316
    [15] Tao X, Lu C, Lu C, Wang Z. An approach to performance assessment and fault diagnosis for rotating machinery equipment. Eurasip Journal on Advances in Signal Processing, 2013, 2013(1): 1-16 doi: 10.1186/1687-6180-2013-1
    [16] Li L, Ding S X. Performance supervised fault detection schemes for industrial feedback control systems and their data-driven implementation. IEEE Transactions on Industrial Informatics, 2020, 16(4): 2849-2858 doi: 10.1109/TII.2019.2940099
    [17] Seem J E. Method and System for Assessing Performance of Control Systems, U.S. US7729882 B2, 2009.
    [18] Yin S, Zhu X, Kaynak O. Improved PLS focused on key-performance-indicator-related fault diagnosis. IEEE Transactions on Industrial Electronics, 2015, 62(3): 1651-1658 doi: 10.1109/TIE.2014.2345331
    [19] He S, Wang Y, Liu C. Modified partial least square for diagnosing key-performance-indicator-related faults. The Canadian Journal of Chemical Engineering, 2018, 96(2): 444-454 doi: 10.1002/cjce.23002
    [20] Song B, Zhou X, Shi H, Tao Y. Performance-indicator-oriented concurrent subspace process monitoring method. IEEE Transactions on Industrial Electronics, 2019, 66(7): 5535-5545 doi: 10.1109/TIE.2018.2868316
    [21] Li H, Zhao J, Zhang X, Teng H. Gear fault diagnosis and damage level identification based on Hilbert transform and Euclidean distance technique. Journal of Vibroengineering, 2014, 16(8): 4137-4151
    [22] Tian Y, Lu C, Wang Z. Self-adaptive bearing fault diagnosis based on permutation entropy and manifold-based dynamic time warping. Mechanical Systems & Signal Processing, 2019, 114: 658-673
    [23] Patel S, Upadhyay S H. Euclidean distance based feature ranking and subset selection for bearing fault diagnosis. Expert Systems with Applications, 2020, DOI: 10.1016/j.eswa.2020.113400
    [24] Liang H. Fault analysis of hierarchical cluster and fault diagnosis of Mahalanobis distance in analog circuit. Journal of Electronic Measurement and Instrument, 2010, 24(7): 610-615 doi: 10.3724/SP.J.1187.2010.00610
    [25] 艾延廷, 冯研研, 周海仑.小波变换和EEMD-马氏距离的轴承故障诊断.噪声与振动控制, 2015, 1: 235-239 doi: 10.3969/j.issn.1006-1355.2015.01.050

    Ai Yan-Ting, Feng Yan-Yan, Zhou Hai-Lun. Fault diagnosis of roller bearings using wavelet transform and EEMD-Mahalanobis distance. Noise and Vibration Control, 2015, 1: 235-239\\ doi: 10.3969/j.issn.1006-1355.2015.01.050
    [26] Ji H. Statistics Mahalanobis distance for incipient sensor fault detection and diagnosis. Chemical Engineering Sience, 2021, DOI: 10.1016/j.ces.2020.116233
    [27] 吕鹏飞, 闫云聚, 荔越. 基于马氏距离的改进核Fisher化工故障诊断研究. 自动化学报, 2020, 46(11): 2379-2392

    Lv Peng-Fei, Yan Yun-Ju, Li Yue. Research on fault diagnosis of improved kernel Fisher based on Mahalanobis distance in the field of chemical industry. Acta Automatica Sinica, 2020, 46(11): 2379-2391
    [28] Amari S. Information Geometry and Its Applications. Berlin: Springer, 2016.
    [29] Boothby W M. An Introduction to Differentiable Manifolds and Riemannian Geometry. Pittsburgh: Academic Press, 1975.
    [30] An J, Ai P. Deep domain adaptation model for bearing fault diagnosis with Riemann metric correlation alignment. Mathematical Problems in Engineering, 2020, 1: 1-12
    [31] 周美含, 姜宏, 孙帅. 基于黎曼流形的MIMO雷达目标检测方法. 吉林大学学报: 信息科学版, 2020, 3: 237-242

    Zhou Mei-Han, Jiang Shuai, Suan Shuai. Target detection method for MIMO radar based on Riemannian manifold. Journal of Jilin University(Information Science Edition), 2020, 3: 237-242
    [32] Wang S, Sun X, Li C. Wind turbine gearbox fault diagnosis method based on Riemannian manifold. Mathematical Problems in Engineering: Theory, Methods and Applications, 2014, 8: 1-10
    [33] Wang Z, Jia L, Qin Y. Adaptive diagnosis for rotating machineries using information geometrical Kernel-ELM based on VMD-SVD. Entropy, 2018, 20(1): 73-91 doi: 10.3390/e20010073
    [34] 孙小婷. 主测地线分析技术在汽轮机系统中的应用. 自动化应用, 2020, 1: 22-25

    Sun Xiao-Ting. Application of main geodesic analysis technology in steam turbine system. Automation Application, 2020, 1: 22-25
    [35] Hiriart-Urruty J B, Malick J. A fresh variational-analysis look at the positive semidefinite matrices world. Journal of Optimization Theory and Applications, 2012, 153(3): 551-577 doi: 10.1007/s10957-011-9980-6
    [36] Moakher M. A differential geometric approach to the geometric mean of symmetric positive-definite matrices. Siam Journal on Matrix Analysis & Applications, 2005, 26: 735-747
    [37] Moakher M, Bathelor P G. Symmetric Positive-definite Matrices: From Geometry to Applications and Visualization. Berlin: Springer, 2006.
    [38] Ding S X. Advanced Methods for Fault Diagnosis and Fault-tolerant Control. Berlin: Springer, 2021.
    [39] Magnus J R. Linear Structures. Oxford: Oxford University Press, 1998.
    [40] Tempo R, Calcfiro G, Dabbene F. Randomized Algorithms for Analysis and Control of Uncertain Systems. Berlin: Springer, 2005.
    [41] Cryan M. Probability and computing: Randomized algorithms and probabilistic analysis. Bulletin of Symbolic Logic, 2006, 12(2): 304-308 doi: 10.1017/S107989860000278X
    [42] Ding S X, Li L, Krüger M. Application of randomized algorithms to assessment and design of observer-based fault detection systems. Automatica, 2019, 107: 175-182 doi: 10.1016/j.automatica.2019.05.037
    [43] Lewis F L, Vrabie D, Vamvoudakis K G. Reinforcement learning and feedback control using natural decision methods to design optimal adaptive controllers. IEEE Control Systems Magazine, 2012, 32(6): 76-105 doi: 10.1109/MCS.2012.2214134
    [44] 杨浩, 姜斌, 周东华. 互联系统容错控制的研究回顾与展望. 自动化学报, 2017, 43(1): 9-19

    Yang Hao, Jiang Bin, Zhou Dong-Hua. Review and perspectives on fault tolerant control for interconnected systems. Acta Automatica Sinica, 2017, 43(1): 9-19
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  2472
  • HTML全文浏览量:  495
  • PDF下载量:  183
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-09
  • 录用日期:  2021-05-12
  • 网络出版日期:  2021-06-15
  • 刊出日期:  2023-09-26

目录

    /

    返回文章
    返回